CRT-325

Outside Start Cilostazol Bridge Study (Outpatient peri-Surgical Intervention of Drug Eluting Stent Antplatelet Regimen Testing A Cilostazol Bridge Study): A 6 year experience

Charles L. Laham,1 Michael S. Chandra,2 Nicolas W. Shammas3 'Holly Family Memorial Hospital, Manitowoc, WI;1University point Clinic Cardiology, Cedar Rapids, IA;2Midwest Cardiovascular Research Foundation, Davenport, IA

BACKGROUND Dual antiplatelet therapy (DAPT) with a P2Y12 inhibitor + aspirin (ASA) decreases drug-eluting stent (DES) thrombosis. Annually 5%-10% of DES patients (pts) are advised DAPT interruption to reduce peri-operative (peri-op) bleeding. Premature DAPT stoppage especially during the first year after (post) 1st generation (F-Gen) DES leads to high stent thrombosis (ST) rates of 10-20%. Of all DES, paclitaxel eluting DES have highest ST rates off DAPT with recent studies showing associated major adverse cardiac event (MACE) rates persist for at least 30 months post DES placement. There is no consensus as to the best bridging in DES patients taken off DAPT preoperatively. The feasibility of outpatient cilostazol bridging of DES off DAPT peri-op has not been formally tested. We report our 6 year experience with cilostazol bridging during peri-op DAPT stoppage mostly in F-Gen paclitaxel DES during periods of proven high ST/MACE risk.

METHODS From 2005 to 2010 we tested cilostazol bridging of DES in consecutive pts advised to stop both DAPT peri-op. 12 dosing regimen intervals were tailored to reduce risk and degree of expected peri-op bleeding. Initially DAPT was only advised for 2 months post DES and later extended to 1 year, thus early bridging was in urgent unavoidable surgeries during the high risk first 6-12 month post DES. When DAPT was later advised long-term due to late ST reports, peri-op cilostazol bridging was extended to all procedures up to 5 years post DES placement. MACE was felt to be related to bridging if it occurred while off DAPT peri-op or within 30 days post-op. We hereby report results for peri-op cilostazol bridging off DAPT from 2 weeks to 60 months post latest DES.

DAPT was stopped after last doses on 8th day pre-op and cilostazol 100mg po bid started on the 7th pre-op day: for low risk bleeding surgeries, cilostazol was stopped 24-36 hours pre-op and DAPT resumption advised at 12-24 hrs post-op. For moderate-high bleeding risk surgeries (epidural, back & urology surgery, coronary angiography and duplex ultrasound, transfusions over that typical of surgery type. The primary endpoint was the composite rate of procedure or stent related major adverse events (MAEs) at 12 months post index procedure. MAEs were defined as 30-day mortality, clinically-induced target lesion revascularization (TLR) and index limb amputation at 12 months. Results were compared to a pre-specified performance goal based on prior prospective, multicenter studies utilizing the bridge-to-balloon, self-expanding stents for the treatment of iliac lesions similar to those in this study. Core laboratories were utilized for independent confirmation of angiography and duplex ultrasound findings. All site reported MAEs were adjudicated by an independent Clinical Events Committee.

RESULTS For the BIOFLEX-I study of patients with iliac disease treated with the Astron stent, the primary endpoint was met. The 12-month composite endpoint of MAE was 2.1% (3/146) (p = 0.0005 95 CI [0.4%, 5.9%]. The 30-day mortality rate was 0.7% (1/146) 95 CI [0.0%, 3.8%]. Target lesion revascularization (TLR) rates at 12 months were 1.4% (2/146) 95 CI [0.2%, 4.5%], and 12-month index limb amputation was 0.0% (0/146) 95 CI [0.0%, 2.5%]. The secondary endpoint of primary patency was 89.8% (125/138) 95 CI [83.3%, 94.5%] at 12 months.

CONCLUSION The 12-month outcomes of the BIOFLEX-I study for the Astron stent in iliac indications demonstrate a low MAE rate, high primary patency, and a low rate of TLR. This supports the safety and efficacy of the self-expanding, nitinol stent for treatment of atherosclerotic lesions in the iliac arteries.

CRT-321

Passeo-18 Lux Drug Releasing Balloon: 12-month Update From The Biolux P-I and Biolux P-II Studies And The Biolux P-III All-comers Study Design

Marzanne Brodmann,1 Thomas Zeiller,2 Diet Schellenberg,1 Karl-Ludwig Schulte,1 Marianne Sperlich,3 Patrick Peeters,3 Johannes Lammer,4 Ernst Pfluger,4 Gunar Tepe5
1Medical University of Graz, Graz, Austria;2Universitäts-Herzzentrum Freiburg Bad Krozingen, Bad Krozingen, Germany;3Universitätsklinikum Leipzig, Leipzig, Germany;4Ev. Krankenhaus Koeningen Elizabeth Herzberge, Berlin, Germany;5AZ Sint Blasius, Dendermonde, Belgium;6Medina Ziekenhuis, Ronhieden, Belgium;7Universitätsklinikum für Radiodagnostik, AKH Wien, Vienna, Austria, 8RoMed Klinikum Rosenheim, Rosenheim, Germany

PURPOSE Drug releasing balloon (DRB) angioplasty has evolved to a paradigm-shift in the endovascular treatment of peripheral artery disease (PAD). The current evidence base has been fuelled mostly by clinical trials with restrictive eligibility criteria, excluding most patients treated in daily practice.

METHODS BIOLUX P-I and BIOLUX P-II were prospective, international, multicentre, first-in-human, randomized controlled trials investigating the safety and efficacy of the Passeo-18 Lux DRB in the femoropopliteal and infrapopliteal arteries, respectively. BIOLUX P-III is a global, prospective, international, multicentre, all-comers study to enroll at least 700 patients with infrainguinal artery lesions treated with the Passeo-18 Lux DRB. The clinical and performance primary endpoints are major adverse events at 6 months and freedom from clinically-driven target lesion revascularization at 12 months, respectively. Pre-specified analysis subgroups include: Age; Gender; Diabetes; Renal Insufficiency; Rutherford Category; Ulceration, Infra-popliteal, TASC C&D and heavily calcified lesions.

RESULTS BIOLUX P-III will build and expand on safety and performance outcomes from the BIOLUX P-I and BIOLUX P-II studies: BIOLUX P-I demonstrated significant differences in late lumen loss, TLR and binary restenosis in favour of the Passeo-18 Lux DRB compared to control PTA in femoropopliteal lesions. In BIOLUX P-II, Rutherford Class 5 patients with infraopliteal lesions demonstrated significant clinical improvement at 6 months. Updated 12 month results from both studies will be presented.

CONCLUSION With inclusion and exclusion criteria that reflect complex, ‘real-world’ clinical practice, BIOLUX P-III will further illuminate the role of DRB, alone or in combination with other treatment modalities, in the contemporary management of patients with infrainguinal PAD (ClinicalTrials.gov Identifier: NCT02776131).

Long Term Clinical Data Of The BIOSOLVE-I Study With The Paclitaxel-eluting Absorbable Magnesium Scaffold (DREAMS) And Multi-modality Imaging Analysis

Michael Haude,1 Raimund Bebel,2 Paul Erne,3 Stefan Verheye,4 Paul Vermeersch,4 Jacques Koolen7 1Medical University of Graz, Graz, Austria;2Kantonsspital Luzern, Luzern, Switzerland;3ZNA Middelheim, Antwerp, Belgium;4MedStar Health Research Institute, Washington, DC;5Rome Heart Research, Rome, Italy;6Catharina Ziekenhuis, Eindhoven, Netherlands

OBJECTIVES In order to assess the long term safety, clinical performance and the bioabsorption process of the paclitaxel-eluting absorbable magnesium Scaffold (DREAMS) 3-year clinical data and multi-modality imaging outcomes are reported.

METHOD Forty-six subjects were enrolled in the first-in-man BIOSOLVE-I study in two different cohorts with clinical follow-up at 1, 6, 12, 24 and 36 months; angiographic and IVUS follow-up for cohort 1 at 6-months and for cohort 2 at 12-month. A subgroup of patients underwent OCT and vasmotion testing. The primary endpoint
Adjunctive treatment. Six-month follow up was achieved on all patients (except 3 at 3-month). No cardiac death or scaffold thrombosis was observed. Vasoconstruction after acetylcholine at 6-month (delta=−10.04%; p=0.0008 versus baseline) followed by vasodilatation after nitroglycerine (delta=−8.69%; p=0.0001 versus baseline) demonstrates the uncaging aspect of the absorption process with no further change at the 12-month follow-up. Six-month virtual histology (VH) data showed a significant decrease in the dense calcium by 39.5% (p=0.0015) remaining stable from 6- to 12-month follow-up. This decrease is interred as a surrogate assessment for the bioabsorption process of the scaffold material. Echogenicity data using the decrease in intensity of the ultrasound signal to quantify the change in strut structure demonstrated a continuous decrease in % hyperechogenicity over the follow-up period, with the most pronounced changes within the first 6 months (22 to 16% p<0.001).

CONCLUSION DREAMS shows excellent safety and efficacy data with no death and no scaffold thrombosis up to 3 years in the BIOSOLVE-I trial. Multi-modality imaging documented the absorption process and the uncaging aspect of this device already at 6 months.

CRT-716
Six-month Revascularization Outcome Of Jetstream Atherectomy In Treating In-stent Restenosis Of Femoropopliteal Arteries: Results Of The Jetstream-ISR Study
Nicolas W. Shammas,1 Gail Shammas,1 Subhash Banerjee,2 Jeffrey J. Popma,3 Atif Mohammad, Michael Jerin1
1Midwest cardiovascular Research Foundation, Davenport, IA; 2VA Medical Center, Dallas, TX; 3Beth Israel Deaconess Medical Center, Boston, MA; 4St Ambrose University, Davenport, IA

BACKGROUND Treatment of in-stent restenosis (ISR) of the femoropopliteal (FP) artery is complex and is associated with high rate of restenosis. Debulking of FP ISR lesions has been attempted to reduce restenotic tissue burden and improve patency or target lesion revascularization (TLR). Recently laser atherectomy of FP ISR was shown to reduce target lesion revascularization at 6 months when compared to plain old balloon angioplasty (POBA) alone.

JetStream Atherectomy (JS) is a rotational cutter with aspiration capacity that has been shown to cut and remove atherosclerotic and restenotic tissue. Its application within a stented FP artery is off label. In this study, JS Navitus L or XC was applied prospectively in a cohort of FP ISR from 2 centers to evaluate acute procedural and 6-month outcomes and stent-device interaction. Data on 40 infrainguinal ISR lesions treated with the older generation Pathway PV atherectomy system were previously reported from Europe and no safety concerns were raised. The primary patency rate, however, was low at 33% after 12 months. Since then, the device was upgraded to the JS Navitus with enhanced cutting ability and aspiration. This is the first prospective report on the off label use of the Jetstream Navitus XC atherectomy device in treating FP ISR (clinicaltrials.gov identifier NCT02728877).

METHODS 29 patients (32 limbs) with FP ISR were treated at 2 medical centers by 2 operators from October 2012 to August 2014. Patients were consented prior to the procedure and were included in the study only if they were found to have an in-stent restenotic lesion in the FP segment. The Jetstream device was used as a first modality of treatment. No other debulking devices, cutting/scoring balloons or cryogenic balloons were allowed. Adjunctive treatment was limited to POBA using a semi or non-compliant peripheral vascular balloon or stenting only if significant residual narrowing (>30%) remained or a significant dissection (type C or higher) was seen. It was recommended that the Jetstream be used to maximize debulking until the residual stenosis ≤50% prior to adjunctive therapy. The study was approved by the Institutional Review Board (IRB) at both institutions. Demographics, clinical, procedural and angiographic variables were prospectively collected. Quantitative vascular angiography was performed on lesions at baseline, post atherectomy alone and post adjunctive treatment. Six-month follow up was achieved on all patients (except 3 at the time of this writing). In-hospital and 6-month major adverse events were recorded. The primary effectiveness endpoint was acute procedural success defined as obtaining angiographically ≤30% residual narrowing with no serious adverse events at the end of the procedure. The primary safety endpoint was major adverse events in-hospital and at 6 months which included device-induced vascular injury as reported by the operator, amputation (major and minor unplanned), death, significant distal embolization requiring the use of pharmacologic or mechanical means to treat (other than a vasodilator), perforation, major bleeding, myocardial infarction as defined by ACC criteria, stroke, access complications (AV fistula and pseudoaneurysm), acute renal failure and acute (<24 hours) or subacute (<24 hours) vessel closure. Secondary endpoints included acute device success defined as a residual narrowing of ≤50% by the JetStream device alone and before adjunctive treatment and with no serious adverse events, distal embolization, clinically driven TLR and TVR at 6-month follow up based on symptom recurrence, ankle brachial indices (ABI), Rutherford-Becker class at one month and 6 month, death, and amputation. Device-stent untoward interaction was evaluated by an independent angiographic core laboratory. Descriptive analysis was done on all variables. Continuous variables were presented as mean ± SD and dichotomous variables as percentages. Kaplan-Meier survival curve for TLR was plotted.

RESULTS 29 consecutive patients (32 limbs) (mean age 72.5 ± 11.1 years, 34.5% males) were included in the study. One patient withdrew from the study. Six-month follow-up was completed on 25 patients. Adjunctive balloon angioplasty was performed in 100% at a mean pressure of 12.2 ± 3.2 atm. Lesion length was 16.6 ± 12 cm and total treated length 23.7 ± 18.8 cm. Acute procedural success occurred in 100% of patients. Acute device success was 75.8%. Embolic filter protection (EFP) was used in 16/32 (50.0%) of limbs. Macrodribis was noted in 2/16 (12.5%) of filters and distal embolization (DE) requiring treatment was 9.4% (0 with no EFP (one after adjunctive PTA), 1 with Spider EFP, 0 with Nav-6 EFP). There were no new stent fractures (n=24) post JS as reported by Core Lab analysis. On 6-month follow-up TLR occurred in 14.3% (Figure 1), patency rate (PSVR=C20) 16/23 (70%), total death 4% (1/25), vascular related death 0%, major bleeding 0%.

CONCLUSION JS atherectomy using the Navitus device has favorable acute results in treating in-stent restenosis of the FP arteries with no device-stent interaction and high procedural success. At 6-month follow-up TLR compares favorably to historic controls from balloon angioplasty or other atherectomy devices. A multicenter randomized trial is needed to confirm these results.