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The Semantic Web is based on the idea of a common and minimal language to enable
large quantities of existing data to be analyzed and processed. This triggers the need to
develop the database foundations of this basic language, which is the Resource Description
Framework (RDF). This paper addresses this challenge by: 1) developing an abstract model
and query language suitable to formalize and prove properties about the RDF data and
query language; 2) studying the RDF data model, minimal and maximal representations,
as well as normal forms; 3) studying systematically the complexity of entailment in the
model, and proving complexity bounds for the main problems; 4) studying the notions
of query answering and containment arising in the RDF data model; and 5) proving
complexity bounds for query answering and query containment.
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1. Introduction

The Semantic Web is a proposal to build an infrastructure of machine-readable semantics for the data on the Web. In
1999 the W3C issued a recommendation of a metadata model and language to serve as the basis for such infrastructure,
the Resource Description Framework (RDF) [44]. As time passed, RDF evolved and increasingly gained attraction from both
researchers and practitioners as a data model apt to represent the first layer of semantics on the Web [50].

RDF follows the W3C design principles of interoperability, extensibility, evolution and decentralization. Particularly, the
RDF model was designed with the following goals: simple data model; formal semantics and provable inference; extensible
URI-based vocabulary; allowing anyone to make statements about any resource. In the RDF model, the universe to be mod-
eled is a set of resources, essentially anything that can have a uniform resource identifier, URI. The language to describe them
is a set of properties, technically binary predicates. Descriptions are statements very much in the subject–predicate–object
structure, where predicate and object are resources or strings. Both subject and object can be anonymous objects, known
as blank nodes. In addition, the RDF specification includes a built-in vocabulary with a normative semantics (RDFS). This
vocabulary deals with inheritance of classes and properties, as well as typing, among other features [46]. Good introductory
references for the RDF model are [47] and [48]. Fig. 1 shows a simple example of RDF data. Simultaneously to the release
of data model, the natural problem of querying RDF was raised. In fact, several languages for querying RDF were developed
in parallel with RDF itself (see the studies [12] and [11] for detailed comparisons of RDF query languages). In 2008 the RDF
Data Access Working Group (part of the Semantic Web Activity) released the standard of a query language for RDF, called
SPARQL [49] which address the basic needs of querying RDF, leaving several issues open for the future: inclusion of RDFS
vocabulary, paths, nesting, premises, etc.
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Fig. 1. An RDF graph specifying a schema to describe art resources. The relations subclass (sc), subproperty (sp), type, domain and range belong to the RDFS
vocabulary. The triple (Picasso, paints, Guernica) shows that in RDF specifications, schemas and data can be described at the same level. Note that the set of
arc labels and node labels may intersect, e.g. paints is both a node label and an arc label. There are arcs not depicted to avoid crowding the figure. Example
taken from [6].

All these developments have triggered the need of a more systematic research on formal aspects of the RDF database
model, that is, its data model and query language. Among the first formal studies of the characteristic of the RDF data model
was the paper Foundations of Semantic Web databases, presented at the PODS conference in 2004 [22]. That paper presented
an integrated analysis of fundamental database problems in the realm of RDF, including normal forms and redundancy
elimination, minimal representation for data exchange, semantics of query languages, query containment and complexity of
query processing.

The RDF data model allows several representations for the same information, which raises the question about the ex-
istence of normal forms and testing of equivalence among them. On the same lines, query language features deserve a
systematic and integrated study. Traditional database notions of query containment do not translate directly to the RDF
setting. They need to be reformulated to take into account the fact that RDF queries process logical specifications rather
than plain data. Additionally, if one adds premises and constraints on queries, further complexity to the problem is added.
Regarding query processing, the presence of predefined semantics and blank nodes in RDF introduce new problems. These
include testing entailment of databases and query conditions for keeping RDF databases and query outputs as concise as
possible.

The PODS 2004 paper introduced a simple and abstract version of RDF which captured the core aspects of the language,
as well as a query language in a streamlined form to have a basic core to focus on the central aspects of the aforementioned
problems. The abstract model was not intended for practical use, but designed to be simple enough to make it easy to
formalize and prove results about its properties. The query language design addressed the basic features that arise in
querying RDF graphs as opposed to standard databases: the presence of blank nodes, premises in queries, and the role
played in this scenario by RDFS vocabulary with predefined semantics.

This paper is an extended, modified and updated version of [22]. Besides including the formal proofs that for space
reasons were all absent in that conference version, in this paper we have extended several results on minimal represen-
tations and query containment. In the meantime, since the publication of [22], several results presented in the paper has
been developed and improved by the RDF community. Of particular interest in this direction was the introduction of an
abstract fragment to study RDF [31], which corrected the fragment presented in [22]. Thus, this paper incorporates these
new improvements when necessary to our discussion, and points to other relevant developments of the area. We expect
this paper to serve as a basic, self-contained and updated reference regarding the formal study of the RDF model on the
lines of [22].

Related work. The RDF model was introduced in 1999 as a W3C recommendation [44]. In 2004 a standard semantics for
the data model [45] was issued by the W3C. The first formal analysis on RDF from a database point of view was presented
by Gutierrez el at. [22], where complexity bounds on entailment and computing cores were given. The RDF specification
has been also object of several analysis in the W3C Committees and in the academic world. The studies of Marin [29]
and ter Horst [26] formalized the notation and corrected minor problems. Ter Horst [26] also proved completeness and
complexity results for an extension to some vocabulary of OWL. From a logical point of view, Yang and Kifer in [41] present
an F-logic version of RDF. They define two notions of entailment for RDF graphs and concentrate mainly in the semantics
of blank nodes and reification. De Bruijn et al. [8,9] present a logical analysis of the theory of RDF in a classical first order
logic setting. In other direction, Muñoz et al. [31] study fragments of RDF and systematize the core fragment which was
introduced in [22]. Extensions of the model, adding expressiveness leading to the realm of descriptive logics, can be found
in the Web Ontology Language, OWL [37]. This line of development has rich developments which we will not survey here.

Languages for querying RDF have been developed in parallel with RDF itself. We can mention rdfDB [19], an influential
simple graph-matching query language from which several other query languages evolved. Among them, SquishQL [30] is
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a graph-navigation query language that was designed to test some of the functionalities of an RDF query language. It adds
constraints on the variables and returns a table as result. SquishQL has several implementations like RDQL and Inkling [30].
RQL [27] has a very different syntax based on OQL, but can perform similar sorts of queries. It is a typed language following
a functional approach and supports generalized path expressions. Its new version is [6]. Other languages are Triple [39],
a query and transformation language, QEL [32], a query-exchange language designed to work across heterogeneous repos-
itories, and DQL [43], a language for querying DAML+OIL knowledge bases, that consider RDF data as a knowledge base,
applying reasoning techniques to RDF querying. Good surveys are [38,28], and more recent ones [12,11]. Recent develop-
ments in RDF query languages include studies of the W3C standard SPARQL [49], its formal semantics and complexity [34]
and expressive power [4], as well as extensions in different directions [3,14,35].

There are several ideas developed in the database community that are of interest to RDF. Ideas from the processing
of semistructured data are of use in the RDF context, e.g. incomplete answers [13], and query rewriting [33]. Despite the
apparent similarities of the models, aspects like blank nodes, graph-like structure, and semantics, make the problems studied
in this paper somehow orthogonal to problems addressed in previous research on semistructured data. The notion of core
has appeared in various contexts, e.g. graphs [25], data exchange [15,20,21]. Queries with premises (see Section 4.2) have
been studied in the logic programming community, e.g. [16]. Their complexity aspects from a database point of view are
studied in [7]. Premises also appear in the context of query languages for knowledge bases, e.g. DQL [43]. In SQL-like RDF
query languages, this feature appears as a specification of a schema to be used when processing the query [6,30].

The paper is organized as follows. Section 2 gives the abstract formalization of RDF, including the semantics, a deductive
system, and studies the complexity of entailment. Section 3 studies normal forms for RDF data. This section studies maximal
representations (notions of closure), minimal representations (including notions such as core), and normal forms for RDF
data. Section 4 studies RDF query languages. First we study the notion of answer in this context and then study query with
premises. Section 5 deals with query containment. In this section we show that in the RDF context there are diverse notions
of containment. Then we present results about query containment for queries with and without premises. In Section 6 we
study the complexity of query answering for the models presented. Finally we present brief conclusions. To easy cross-
referencing to readers, we enumerated theorems, propositions, corollaries, definitions, notes, etc. with a unique sequential
numbering.

2. Formalization of abstract RDF

The RDF model is specified in a series of W3C documents [44–46,48]. In this section we introduce an abstract version of
the RDF data model, which is both, a fragment following faithfully the original specification, and an abstract version more
suitable to do formal analysis. What is left out are features of RDF directed to the implementations, such as detailed typing
issues, some distinguish vocabulary which has no particular semantics, and all topics involved with the XML-based syntax
and serialization. The original formulation of this fragment was introduced in [22] and enriched and corrected in [31], and
we present it here to make this paper self-contained. The details can be found in [31].

The main objective of isolating and working over such a fragment is to have a simple and stable core over which to
discuss theoretical issues dealing with RDF from a database point of view.

2.1. RDF graphs

Assume there is an infinite set U (RDF URI references) and an infinite set B = {N j: j ∈ N} (blank nodes). A triple
(s, p,o) ∈ (U ∪ B) × U × (U ∪ B) is called an RDF triple.1 In such a triple, s is called the subject, p the predicate and o the
object. We often denote by UB the union of the sets U and B .

Definition 2.1. An RDF graph (just graph from now on) is a set of RDF triples. A subgraph is a subset of a graph. The universe
of a graph G , universe(G), is the set of elements of UB that occur in the triples of G . The vocabulary of G , voc(G), is the
set universe(G) ∩ U . A graph is ground if it has no blank nodes. In general we will use uppercase letters N, X, Y , . . . to
denote blank nodes, the initial lowercase letters a,b, c, . . . (and p) for URIs and final lowercase letters v, w, x, . . . (and s,o)
to denote general elements in UB.

Graphically we represent RDF graphs as follows: each triple (s, p,o) is represented by s
p−→ o. Note that the set of arc

labels can have non-empty intersection with the set of node labels. Note that technically speaking, and “RDF graph” is
not a graph in classical graph theoretic terms. The problem is that the set of nodes and arcs are not empty. For a further
discussion of this issue see [24].

1 Note that we are not considering literals as independent objects in this model. In [22] literals were considered, but they played no role in the develop-
ment at that abstraction level. Thus, to simplify the model we simply disregarded them here. Nevertheless our results can be easily extended to consider
plain literals [45]. When considering typed literals [45] several issues arise. For example, XML typed literals can be used to express contradictory assertions [45].
In this paper we do not consider typed literals in order to concentrate in the fundamental components of RDF.
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We will need some technical definitions. A map is a function μ : UB → UB preserving URIs, i.e., μ(u) = u for all u ∈ U .
Given a graph G , we define μ(G) as the set of all (μ(s),μ(p),μ(o)) such that (s, p,o) ∈ G . We say that the graph μ(G)

is an instance of the graph G . An instance of G is proper if μ(G) has fewer blank nodes than G . This means that either μ
sends a blank node to a URI, or identifies two blank nodes of G . We will overload the meaning of map and speak of a map
μ : G1 → G2 if there is a map μ such that μ(G1) is a subgraph of G2.

Two RDF graphs G1, G2 are isomorphic, denoted G1 ∼= G2, if there are maps μ1,μ2 such that μ1(G1) = G2 and
μ2(G2) = G1.

We define two operations on graphs. The union of G1, G2, denoted G1 ∪ G2, is the set theoretical union of their sets of
triples. The merge of G1, G2, denoted G1 + G2, is the union G1 ∪ G ′

2, where G ′
2 is an isomorphic copy of G2 whose set of

blank nodes is disjoint with that of G1. Note that G1 + G2 is unique up to isomorphism.

2.2. RDFS vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary (RDF schema [46]) designed to describe
relationships between resources as well as to describe properties like attributes of resources (traditional attribute–value
pairs).

Roughly speaking, this vocabulary can be divided conceptually in the following groups:
(a) A set of properties which are binary relations between subject resources and object resources: rdfs:subPropertyOf [we

will denote it by sp in this paper], rdfs:subClassOf [sc], rdfs:domain [dom], rdfs:range [range] and rdf:type [type].
(b) A set of classes, that denote set of resources. Elements of a class are known as instances of that class. To state that a

resource is an instance of a class, the property type may be used.
(c) Other functionalities, like a system of classes and properties to describe lists, a systems for doing reification.
(d) Utility vocabulary used to document, comment, etc. The complete vocabulary can be consulted in [46].
The groups in (b), (c) and (d) have a light semantics, essentially describing its internal function in the ontological design

of the system of classes of RDFS. Their semantics is defined by “axiomatic triples” [45] which are relationships among
these reserved words. All axiomatic triples are “structural”, in the sense that do not refer to external data but talk about
themselves. Much of this semantics correspond to what in standard languages is captured via typing.

On the contrary, the group (a) is formed by predicates whose intended meaning is non-trivial and is designed to relate
individual pieces of data external to the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by real data). For example, rdfs:subClassOf [sc] is a binary property reflexive and transitive;
when combined with rdf:type [type] specify that the type of an individual (a class) can be lifted to that of a superclass.
This group (a) forms the core of the RDF language. From a theoretical point of view it has been shown to be a very stable
core to work with. The detailed arguments supporting this choice are given in [31].

Thus, throughout the paper we will denote the rdfs-vocabulary by rdfsV ,

rdfsV = {sp,sc,type, dom,range}.

2.3. Semantics of RDF graphs

In this section we present the formalization of the semantics of RDF following [45,31]. The normative semantics for RDF
graphs given in [45] follows standard classical treatment in logic with the notions of model, interpretation, entailment, and
so on. We follow here a simplification of the normative semantics proposed in [31]. The two semantics were shown to be
equivalent when focusing on the fragment of the RDFS vocabulary that we are considering.

2.3.1. RDF model theory
We first present the notion of interpretation for RDF graphs following [31]. An RDF interpretation is a tuple I =

(Res,Prop,Class,PExt,CExt, Int) such that: (1) Res is a non-empty set of resources, called the domain or universe of I ; (2) Prop
is a set of property names (not necessarily disjoint from Res); (3) Class ⊆ Res is a distinguished subset of Res identifying if a
resource denotes a class of resources; (4) PExt : Prop → 2Res×Res , a mapping that assigns an extension to each property name;
(5) CExt : Class → 2Res a mapping that assigns a set of resources to every resource denoting a class; (6) Int : U → Res ∪ Prop,
the interpretation mapping, a mapping that assigns a resource or a property name to each element of U .

Intuitively, a ground triple (s, p,o) in a graph G is true under the interpretation I , if p is interpreted as a property name, s
and o are interpreted as resources, and the interpretation of the pair (s,o) belongs to the extension of the property assigned
to p. More formally, we say that I satisfies the ground triple (s, p,o) if Int(p) ∈ Prop and (Int(s), Int(o)) ∈ PExt(Int(p)).
An interpretation must also satisfy additional conditions induced by the usage of the rdfs-vocabulary. For example, an
interpretation satisfying the triple (c1,sc, c2) must interpret c1 and c2 as classes of resources and must assign to c1 a subset
of the set assigned to c2. More formally, we say that I satisfies (c1,sc, c2) if Int(c1), Int(c2) ∈ Class and CExt(c1) ⊆ CExt(c2).

Blank nodes work as existential variables. Intuitively the triple (X, p,o) would be true under I if there exists a resource
s such that (s, p,o) is true under I . When interpreting blank nodes an arbitrary element can be chosen, taking into account
that the same blank node must always be interpreted as the same element.
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To formally deal with blank nodes, an extension of the interpretation mapping Int is used in the following way. Let
A : B → Res be a function between blank nodes and resources. Denote by IntA : UB → Res the extension of function Int
defined by IntA(x) = A(x) for x ∈ B , and IntA(x) = Int(x) for x /∈ B .

We next formalize the notion of model for an RDF graph [45,31]. We say that the RDF interpretation I = (Res,Prop,Class,
PExt,CExt, Int) models (is an interpretation for, is a model for) an RDF graph G , denoted by I |
 G , if every one of the
following conditions holds:

Simple interpretation:

• there exists a function A : B → Res such that for each (s, p,o) ∈ G ,

Int(p) ∈ Prop and
(
IntA(s), IntA(o)

) ∈ PExt
(
Int(p)

)
.

Properties and classes:

• Int(sp), Int(sc), Int(type), Int(dom), Int(range) ∈ Prop,
• if (x, y) ∈ PExt(Int(dom)) ∪ PExt(Int(range)) then x ∈ Prop and y ∈ Class.

Subproperty:

• PExt(Int(sp)) is transitive and reflexive over Prop,
• if (x, y) ∈ PExt(Int(sp)) then x, y ∈ Prop and PExt(x) ⊆ PExt(y).

Subclass:

• PExt(Int(sc)) is transitive and reflexive over Class,
• if (x, y) ∈ PExt(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y).

Typing:

• (x, y) ∈ PExt(Int(type)) iff y ∈ Class and x ∈ CExt(y),
• if (x, y) ∈ PExt(Int(dom)) and (u, v) ∈ PExt(x) then u ∈ CExt(y),
• if (x, y) ∈ PExt(Int(range)) and (u, v) ∈ PExt(x) then v ∈ CExt(y).

Given G1 and G2 RDF graphs, we say that G1 entails G2, denoted by G1 |
 G2, when for every interpretation I , if I |
 G1
then I |
 G2. We say that two RDF graphs are equivalent, denoted G1 ≡ G2, if and only if G1 |
 G2 and G2 |
 G1. In [31], the
authors showed that this entailment notion between RDF graphs is equivalent to the W3C normative notion of entailment
[45], when one focuses on the fragment of the RDFS vocabulary that we consider in this paper.

The normative semantics of RDF graphs introduces a simplified notion of model to deal with graphs that do not mention
vocabulary with predefined semantics. An interpretation I is a simple model of a graph G , if I satisfies the simple interpre-
tation condition for G . Note that the simple interpretation condition is the only one in the formalization of models of RDF
graphs that does not mention the rdfs-vocabulary. This discussion motivates the following definition.

Definition 2.2. A simple RDF graph is a graph that does not mention the rdfs-vocabulary, i.e. G is simple iff rdfsV ∩
voc(G) = ∅.

Note 2.3 (RDF versus standard first order semantics). Probably the reader is asking [her/him]self why all these non-standard
idiosyncrasies are needed to define a model theory for RDF. The problem is given by the double role of some elements both,
as predicates and as objects. For example the triple (a,type,type) is a legal one in RDF. In a standard first order logic
semantics it should be assigned a binary expression type(a,type), which does not type check.

2.3.2. Deductive system
In this section, we present a deductive system for the notion of entailment. This system follows the one presented

in [31], and is based on a set of rules for |
 given in [45].
The system is arranged in five groups of rules. Group A describes the semantics of blank nodes, which is essentially the

semantics of simple RDF graphs. Group B and Group C describe the semantics of sp and sc, respectively. Group D states
the semantics of dom and range, the domain and range of a relation. Group E and Group F force the reflexivity conditions
over sp and sc, respectively. In every rule, capital letters are variables representing elements in UB.

GROUP A (Existential). For a map μ : G ′ → G:
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G

G ′ (1)

GROUP B (Subproperty).

(A,sp, B)(B,sp, C)

(A,sp, C)
(2)

(A,sp, B)(X, A, Y )

(X, B, Y )
(3)

GROUP C (Subclass).

(A,sc, B)(B,sc, C)

(A,sc, C)
(4)

GROUP D (Typing).

(A,sc, B)(X,type, A)

(X,type, B)
(5)

(A,dom, B)(C,sp, A)(X, C, Y )

(X,type, B)
(6)

(A,range, B)(C,sp, A)(X, C, Y )

(Y ,type, B)
(7)

GROUP E (Subproperty reflexivity).

(X, A, Y )

(A,sp, A)
(8)

(p,sp, p)
for p ∈ {sp,sc,dom,range,type} (9)

(A, p, X)

(A,sp, A)
for p ∈ {dom,range} (10)

(A,sp, B)

(A,sp, A)(B,sp, B)
(11)

GROUP F (Subclass reflexivity).

(X, p, A)

(A,sc, A)
for p ∈ {dom,range,type} (12)

(A,sc, B)

(A,sc, A)(B,sc, B)
(13)

Note 2.4. As noted in [29,26], the set of rules presented in [45] is not complete for |
. The problem is produced when
a blank node X is implicitly used as standing for a property in triples like (a,sp, X), (X,dom,b), or (X,range, c). Here
we solve the problem following the solution proposed by Marin [29] adding rules (6) and (7). These rules are not defined
in [45].

An instantiation of a rule is a uniform replacement of the variables occurring in the triples of the rule by elements of
UB, such that all the triples obtained after the replacement are well-formed RDF triples, that is, not assigning blank nodes
to variables in predicate positions.

Definition 2.5 (Proof). Let G and H be RDF graphs. Define G  H iff there exists a sequence of graphs P1, P2, . . . , Pk , with
P1 = G and Pk = H , and for each j (2 � j � k) one of the following cases hold:

• there exists a map μ : P j → P j−1 (rule (1)),
• there is an instantiation R

R ′ of one of the rules (2)–(13), such that R ⊆ P j−1 and P j = P j−1 ∪ R ′ .

The sequence of rules used at each step (plus its instantiation or map), is called a proof of H from G .

The soundness and completeness of this deductive was shown in [31]:

Theorem 2.6 (Soundness and completeness). (See [31].) Let G and H be RDF graphs, then G |
 H iff G  H.
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2.4. Characterizations and complexity of entailment

In this section we present some well-known results about the complexity of testing entailment between RDF graphs
[22,9,26]. For the sake of completeness we present full proofs of some of these results.

We start by presenting a characterization of the semantic notions of entailment, via mappings between graphs. First we
need to define the following notion of closure, similar versions of which has been considered in [45,29,26] using different
sets of deductive rules. In Section 3.1 we will discuss in depth the notion of closure.

Definition 2.7 (Closure RDFS-cl). The graph RDFS-cl(G), the closure of G , is defined as the set of triples t which can be
deduced from G using rules (2)–(13).

Note that RDFS-cl(G) is an RDF graph over universe(G) plus the rdfs-vocabulary. Because it consists of adding triples by
a fixed set of rules starting from G , it is not difficult to check that for a given G , the closure RDFS-cl(G) is unique.

The following result appears in [45], in a slightly different formulation.

Theorem 2.8. (See [45].) Let G1 and G2 be RDF graphs.

1. G1 |
 G2 iff there is a map μ : G2 → RDFS-cl(G1).
2. If G1 and G2 are simple graphs then G1 |
 G2 iff there is a map μ : G2 → G1 .

Notice that, from the above theorem it follows directly that two simple RDF graphs G1 and G2 are equivalent if and only
if there exist mappings μ1 : G1 → G2 and μ2 : G2 → G1.

To state the complexity results we use a simple encoding of a standard graph with an RDF graph. Let H = (V , E) be a
standard graph, with V a non-empty set of nodes and E ⊆ V × V . Assume we have a set B V = {Xv | v ∈ V } ⊆ B in order
to represent the nodes of H , and let e be a distinguished URI reference (e ∈ U ). Then H is encoded by the RDF graph
G = {(Xu, e, Xv) | (u, v) ∈ E}. We name G as enc(H).

With the above encoding, we obtain a straightforward connection between the classical notions of homomorphism and
isomorphism of standard graphs, and the notions of mapping and isomorphism of RDF graphs. A homomorphism from a
(standard) graph H1 = (V 1, E1) to a graph H2 = (V 2, E2), is a function h : V 1 → V 2 such that (h(u),h(v)) ∈ E2 whenever
(u, v) ∈ E1. When there is a homomorphism from H1 to H2 we say that H1 is homomorphic to H2. An isomorphism between
H1 = (V 1, E1) and H2 = (V 2, E2) is a bijection f : V 1 → V 2 such that ( f (u), f (v)) ∈ E2 if and only if (u, v) ∈ E1. If there is
an isomorphism from H1 to H2 we say that H1 and H2 are isomorphic. Given graphs H1 = (V 1, E1) and H2 = (V 2, E2) it is
easy to prove that H1 is homomorphic to H2 if and only if there exists a map enc(H1) → enc(H2). Similarly, it holds that
H1 and H2 are isomorphic if and only if enc(H1) ∼= enc(H2).

The following complexity results have appeared in several papers in different formulations [45,22,5,26,9]. These results
belong to the folklore of RDF.

Theorem 2.9 (Folklore I). Given G1 and G2 two simple RDF graphs.

1. Deciding if G1 |
 G2 is NP-complete.
2. Deciding if G1 ≡ G2 is NP-complete.

Proof.

1. Membership in NP follows taking the map as the witness. NP-hardness follows from an encoding of Graph Homomor-

phism problem, that asks given two graphs H and H ′ if there is a homomorphism from H to H ′ . Several NP-complete
problems are restrictions of Graph Homomorphism. For example the Clique problem is the restriction when H is a
complete graph. For our purpose, take two standard graph H = (V , E) and H ′ = (V ′, E ′) and their encodings as simple
RDF graphs G = enc(H) and G ′ = enc(H ′). We know that H is homomorphic to H ′ if and only if there is a mapping
G → G ′ , and then we obtain that H is homomorphic to H ′ if and only if G ′ |
 G .

2. Membership in NP follows taking the two maps as the witness. NP-hardness follows from an encoding of the problem
of determining whether two graphs H and H ′ are homomorphically equivalent, i.e., whether H is homomorphic to H ′ and
H ′ is homomorphic to H . Several NP-complete problems are restrictions of this problem. For example, if one restrict
this problem to the case in which H is a triangle (K3) then H is homomorphically equivalent to H ′ if and only if
H ′ contains a triangle and is 3-colorable. For our purpose, take the standard graphs H and H ′ and their encodings as
simple RDF graphs G = enc(H) and G ′ = enc(H ′). Now we know that G ≡ G ′ if and only if there are mappings G → G ′
and G ′ → G , and thus, G ≡ G ′ if and only if H is homomorphic to H ′ and H ′ is homomorphic to H . �

There is also a straightforward connection between the problem of testing entailment of simple RDF graphs, and
the problem of evaluating Boolean conjunctive queries. Given an RDF graph G consider for every p ∈ voc(G) such that
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(s, p,o) ∈ G , a relation name R p . We associate to G a Boolean conjunctive query Q G obtained by taking the conjunction of
all the predicates R p(s,o) such that (s, p,o) ∈ G , and considering the blank nodes of G as existentially quantified variables
in Q G (the elements in voc(G) are considered as constants in Q G ). Similarly, we can associate a relational database DG to
every simple RDF graph G as follows. For every p ∈ voc(G) such that (s, p,o) ∈ G there is a relation R p in DG containing the
set of tuples {(s,o) | (s, p,o) ∈ G}. Notice that the active domain of DG is the set universe(G), thus blank nodes are allowed
to appear in the tuples of the relations in DG . It is straightforward that, given G1 and G2 simple RDF graphs, DG1 |
 Q G2 in
the database sense if and only if there is a map G2 → G1. Thus, DG1 |
 Q G2 if and only if G1 |
 G2.

The above connection can be used to obtain polynomial-time upper bounds for the problem of testing entailment of
simple RDF graphs, when one focuses on special classes of graphs. For instance, it is immediate that given a fixed RDF
graph G2, testing G1 |
 G2 can be done in polynomial time. This is obtained as a direct consequence of the data-complexity
version of the evaluation problem for conjunctive queries [42], that is, the complexity of the problem when the query is
consider to be fixed and only the database is an input parameter. Another case on which testing G1 |
 G2 can be done in
polynomial time, and generalizes some results that appear in the folklore of RDF [22,26,9], is the case when G2 has no cycles
induced by blank nodes. More formally, a cycle induced by blank nodes in a simple RDF graph G , is a sequence (x1, x2, . . . , xn)

of elements in universe(G) where xn = x1 and for every i such that 1 � i < n, there exists p ∈ voc(G) with (xi, p, xi+1) ∈ G
or (xi+1, p, xi) ∈ G , and xi, xi+1 ∈ B . If a simple RDF graph G has no cycles induced by blank nodes, then the associated
conjunctive query Q G is an acyclic conjunctive query [40]. In [40] it was shown that evaluating an acyclic conjunctive query
can be done in polynomial time. Thus, it follows directly that if G2 has no cycles induced by blank nodes, then G1 |
 G2
can be tested in polynomial time. Another notion that can be straightforwardly applied to obtain polynomial-time results
for the entailment problem, is the notion of tree-width of conjunctive queries (see [10,18] for a definition of tree-width
of conjunctive queries). It is well known that conjunctive queries of bounded tree-width can be evaluated in polynomial
time [10,18]. The notion of bounded tree-width has been recently applied in the RDF context [36].

We end this section by stating the complexity of testing entailment in the presence of rdfs-vocabulary.

Theorem 2.10 (Folklore II). Checking G1 |
 G2 is NP-complete for general (not necessarily simple) RDF graphs.

Proof. The hardness part of the proof follows from the fact that simple RDF graphs are special cases of RDF graphs. For
the problem of deciding G1 |
 G2 the witness is a proof of G2 from G1. In particular, the witness is composed by the
graph RDFS-cl(G1), a map μ : G2 → RDFS-cl(G1), a sequence of graphs G1

1, G2
1, . . . , Gk

1, and a sequence r1, r2, . . . , rk−1 of

instantiations of rules (8)–(7), such that (1) G1
1 = G1, (2) Gk

1 = RDFS-cl(G1), and (3) for 1 � i < k, Gi+1
1 is obtained from

Gi
1 by applying rule ri . Notice that every Gi

1 is a graph over universe(G1) and then the size of Gi
1 is at most cubic with

respect to the size of G1 (because |Gi
1| � |universe(G1)|3 � |G1|3). Moreover, the application of every rule adds at least one

triple, and then k � |G1|3, implying that the witness is of polynomial size. The witness can be used to check entailment
in polynomial time, first checking that Gi+1

1 is obtained from Gi
1 for every i, checking that RDFS-cl(G1) is closed under

application of rules r (8)–(7), and then using the mapping μ and the characterization of Theorem 2.8. �
3. Normal forms

For each RDF graph there exist many different equivalent RDF graphs. For several purposes, it is convenient to choose a
distinguished representative of each such equivalence class, that is, a “normalized” version of an RDF graph.

In the normative document specifying the semantics of RDF [45] there are notions that point in this direction, although
none completely satisfactory. Given an RDF graph, that document defines a notion of minimal graph, a lean graph. We prove
that for each RDF graph G , there is a unique lean graph equivalent to it (modulo isomorphism), and following well-known
notions in graph theory, we call it the core of G . On the other hand, the document defines a notion of maximal graph, that
of closure (formalized in Definition 2.7) which we call RDFS closure in this paper.

In this section we discuss pros and cons of these notions, and propose a notion of normal form for RDF graphs. In
Section 3.1, we study maximal representations, give a semantics definition of closure and show that it is equivalent to the
RDFS closure. In Section 3.2, we study minimal representations, in particular the notion of core. Based on the notions of
core and closure, we formalize the notion of normal form, show that it improves the RDFS closure in different aspects, and
study the complexity of computing it.

3.1. Maximal representations

In this section we explore maximal representations of RDF graphs, where the standard mathematical notion is that of
closure: a maximal (with respect to some metric) object of the same kind but equivalent to the original one. Thus a naive
definition is the following:

Definition 3.1 (Naive closure). A closure of a graph G is a maximal set of triples G ′ over universe(G) plus the rdfs-vocabulary
such that G ′ contains G and is equivalent to it.
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Example 3.2 shows that with this definition, there could be more than one closure for a graph.

Example 3.2. There could be more than one closure of a graph. For example the graph

c
r

a

p

p

p

X d

b
q

where p,q, r are different properties, has two different non-isomorphic closures, namely, either adding the triple (X, r,d)

or the triple (X,q,d) (but not both).

A relation between the notions of closure of Definitions 2.7 and 3.1 is presented in the following lemma.

Lemma 3.3. Let G ′ be any closure of G as defined in Definition 3.1. Then RDFS-cl(G) ⊆ G ′ .

Proof. Let G ′ be a closure of G , we will show that RDFS-cl(G) ∩ G ′ = RDFS-cl(G). Let G� = RDFS-cl(G) ∩ G ′ , and suppose
that G� �= RDFS-cl(G). Then the set RDFS-cl(G) − G� is not empty. By the construction of RDFS-cl(G) and because G ⊆ G�

there exists t ∈ RDFS-cl(G) − G� such that G� r G� ∪ {t} and then because G� ⊆ G ′ we have that G ′ r G ′ ∪ {t}, and then
G ′ ≡ G ′ ∪ {t}. Note that t /∈ G ′ and then G ′ ≡ G ′ ∪ {t} is a contradiction with the maximality of G ′ . Finally G� = RDFS-cl(G)

and then RDFS-cl(G) ⊆ G ′ . �
What make the difference between the semantic notion of closure of Definition 3.1 and RDFS-cl are the presence and

treatment of blank nodes. The following notion is motivated by this observation.
The notion of Herbrand Model of a structure, is, roughly speaking, a model in which each syntactic object (ground term) is

represented as itself. When constructing Herbrand Models for sets of existential first order sentences, the idea of Skolemiza-
tion comes into play. The Skolemization of an existential sentence consists simply in replacing every existentially quantified
variable by a brand new constant. Following this idea we can construct a ground graph associated to every RDF graph. For-
mally, given an RDF graph G , define G∗ as the RDF graph obtained by replacing each blank X in G by a fresh constant c X .
Conversely, H∗ denotes the graph obtained from H after replacing each constant c X by the blank X and deleting triples
having blanks as predicates (which are not well-defined triples in the RDF specification).

From the definition of RDFS-cl follows without difficulty the next lemma:

Lemma 3.4. Let G be an RDF graph, then RDFS-cl(G) = (RDFS-cl(G∗))∗ .

We are ready to present a robust semantic notion of closure, not depending on the set of rules as RDFS-cl, and not
having the problems of Definition 3.1:

Definition 3.5. A closure of a graph G , denoted cl(G), is a graph G ′ that satisfies: if G is a ground graph, then G ′ is a
maximal ground graph equivalent to G , otherwise, G ′ = H∗ , where H is a closure of G∗ .

Theorem 3.6. (Cf. [31].) For each graph G:

1. The closure cl(G) is unique.
2. cl(G) coincides with the operational definition given in Hayes’ document, that is, cl(G) = RDFS-cl(G).
3. cl(G) has size Θ(|G|2).
4. Deciding if t ∈ cl(G) can be computed in time O(|G| log |G|).

Proof. 1. Suppose that G ′ and G ′′ are closures of a ground graph G , that is, G ′ and G ′′ are two maximal ground RDF graphs
equivalent to G . Then, by Theorem 2.8, G ′ ⊆ RDFS-cl(G) and G ′′ ⊆ RDFS-cl(G). But, since RDFS-cl(G) ≡ G , and G ′ and G ′′
are maximal, it must be the case that G ′ = RDFS-cl(G) = G ′′ . For non-ground graph uniqueness follows from the injective
nature of the operators (·)∗ and (·)∗ .

2. If G is a ground graph, the previous proof shows that cl(G) = RDFS-cl(G). Otherwise, we have cl(G∗) = RDFS-cl(G∗),
and hence (cl(G∗))∗ = (RDFS-cl(G∗))∗ . Thus, it is enough to prove that RDFS-cl(G) = (RDFS-cl(G∗))∗ , which is Lemma 3.4.

Items 3 and 4 are Theorems 6 and 7 in [31], where the proofs can be found. �



C. Gutierrez et al. / Journal of Computer and System Sciences 77 (2011) 520–541 529
3.2. Minimal representations

We study in this section the notion of core for RDF graphs which is related to the notion of lean presented in [45].
Similar notions have been investigated in other contexts [25,23,15]. For RDF graphs, this notion is closely bound to minimal
representations.

Definition 3.7. A graph G is lean if there is no map μ such that μ(G) is a proper subgraph of G .

Example 3.8. Let p,q, r be different predicates and consider:

G1 a
p

p

X

Y

G2 a
p

p

X

q

Y r b

Then G1 is not lean, but G2 is lean because there is no proper map of G2 into itself.

Lemma 3.9. Let G1 and G2 be two lean RDF graphs. Then G1 ∼= G2 if and only if there are maps G1 → G2 and G2 → G1 .

Proof. The “only if” part is trivial by the definition of ∼=. For the “if” part, suppose that there are two mappings μ1 : G1 → G2
and μ2 : G2 → G1. First, we know that μ1(G1) ⊆ G2 and μ2(G2) ⊆ G1 implying that (μ1μ2)(G2) ⊆ μ1(G1) ⊆ G2. We have
that μ1μ2 is a mapping such that (μ1μ2)(G2) ⊆ G2 and then (μ1μ2)(G2) = G2 because G2 is lean. We have obtained that
G2 = (μ1μ2)(G2) ⊆ μ1(G1) ⊆ G2, and then μ1(G1) = G2. Similarly we obtain that μ2(G2) = G1 and then G1 ∼= G2. �

The following theorem will be the basis of the applications of the notion of core in the context of RDF graphs.

Theorem 3.10 (Core). Each RDF graph G contains a unique (up to isomorphism) lean subgraph which is an instance of G. We will
denote this unique subgraph by core(G).

Proof. First we show by induction on the size of G that every G contains a lean subgraph which is an instance of G . If G
is lean there is nothing to prove. Assume that G is not lean, then by definition there is a map μ such that μ(G) � G . By
induction hypothesis the graph μ(G) contains a lean subgraph which is an instance of μ(G), i.e. there is a map μ′ such
that μ′(μ(G)) ⊆ μ(G) and μ′(μ(G)) is lean, then μ′(μ(G)) ⊆ G and μ′(μ(G)) is a lean instance of G , completing this part
of the proof.

Now we must show that the lean sub-instance is unique up to isomorphism. Consider G and two lean subgraphs G1 and
G2 that are instances of G . Because G1 is an instance of G there is a map G → G1, and because G2 ⊆ G there is a map (the
identity) G2 → G , and then there is a map G2 → G1. Similarly there is a map G1 → G2 and because G1 and G2 are lean
graphs and applying Lemma 3.9 we obtain that G1 ∼= G2. �

Note that by definition of core we have G  core(G) and core(G)  G , and then every RDF graph is equivalent to its core,
that is G ≡ core(G).

For simple graph cores behave well: the concept of lean graph corresponds exactly to minimal representations, and allow
to reduce logical equivalence to isomorphism of graphs, as the next theorem shows.

Theorem 3.11 (Cores for simple RDF graphs). Let G, G1, G2 be simple RDF graphs. Then:

1. core(G) is the unique (up to isomorphism) minimal (w.r.t. number of triples) graph equivalent to G.
2. G1 ≡ G2 if and only if core(G1) ∼= core(G2).

Proof. (1) Suppose that Gm is another minimal graph such that G ≡ Gm . First note that Gm must be a lean graph, because,
if it were not lean then core(Gm) � Gm and core(Gm) ≡ Gm ≡ G and then Gm would not be a minimal (w.r.t. number of
triples) graph equivalent to G . Now Gm ≡ G ≡ core(G) and then Gm ≡ core(G), and because they are both lean simple
graphs, and by Theorem 2.8 and Lemma 3.9, it holds that Gm ∼= core(G).

(2) Let G1 and G2 be simple RDF graphs, then G1 ≡ G2 iff G1 → G2 and G2 → G1 iff core(G1) → core(G2) and
core(G2) → core(G1) iff core(G1) ∼= core(G2) by Lemma 3.9. �

The bad news is that computing cores is hard:

Theorem 3.12. Let G, G ′ be RDF graphs.
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1. Deciding if G is lean is coNP-complete.
2. Deciding if G ′ ∼= core(G) is DP-complete.

Proof. Both proofs are based on encodings of graph theoretic problems dealing with the well-known notion of core: The
core of a graph H is the smallest subgraph of H that is also a homomorphic image of H .

1. The proof is an encoding of the problem Core:
Instance: A graph H .
Question: Is there a homomorphism of H to a proper subgraph?
This problem was shown to be NP-complete by Hell and Nesetril [25]. Encode the graph H = (V , E) as the RDF graph
G = enc(H). Now H has a homomorphism to a proper subgraph iff the RDF graph G has an instance that is a proper
subgraph, i.e. iff G is not lean. We have show that deciding if G is not lean is NP-hard. Now for the membership in
NP the certificate is the mapping μ such that μ(G) is a proper subset of G . The property μ(G) � G can be checked in
polynomial time.

2. The proof is an encoding of the problem Core Identification:
Instance: Two graphs H and H ′ .
Question: Is H ′ the graph theoretic core of H .
This problem was shown to be DP-complete in [15]. Encode the graphs H and H ′ as RDF graphs G = enc(H) and
G ′ = enc(H ′). H ′ is the graph theoretic core of H , iff H ′ is isomorphic to a subgraph of H that is an homomorphic
image of H and has non-homomorphism to a proper subgraph, iff G ′ is isomorphic to a subgraph of G that is an
instance of G and has no instance that is a proper subgraph, iff G ′ is isomorphic to a lean subgraph of G that is an
instance of G , iff G ′ ∼= core(G) by uniqueness of the core. Now for the membership in DP, one can split the problem in
two, first checking if G ′ is isomorphic to a subgraph of G and an instance of G which both are NP (taking the maps as
certificate), and then checking if G ′ is lean that we know is coNP. �

For the case of RDF graphs with RDFS vocabulary, things become more complex. Let us introduce a notion of minimal
representation.

Definition 3.13. A minimal representation of a graph G is a minimal (w.r.t. number of triples) graph equivalent to G and
contained in G .

We have seen that in the case of simple graphs core(G) is the (unique up to isomorphism) minimal representation of G .
Unfortunately, for the case of general graphs we do not have such unique minimal representations in the general case. The
semantics of the vocabulary plays a crucial role.

Example 3.14. There could be more than one reduction of a given graph. This follows from the transitive property of sc
and sp and classical results on transitive reduction on graphs [1]. The standard example is:

G a

b

sp

sp

c
sp

sp

The graphs obtained by deleting either (b,sp,a) or (c,sp,a), are two non-isomorphic reductions of G .

It is known that the transitive reduction of an acyclic graph is unique [1]. The class of graphs acyclic for the properties
of sp and sc form a big and important class. In fact, in modeling, this is considered good practice [17]. Hence this could
be a promising class with minimal representation. Unfortunately, we still have problems. Consider the following graph:

Example 3.15. Consider the graph G = {(a,sc,b), (type,dom,a), (x,type,a), (x,type,b)}.
Even though it is acyclic w.r.t. subproperty and subclass, it has two non-isomorphic minimal representations:

G1 = {
(a,sc,b), (type,dom,a), (x,type,a)

}

G2 = {
(a,sc,b), (type,dom,a), (x,type,b)

}

In G1 the missing triple can be obtained via rule (5), and in G2 via rule (6) (replacing A = type, C = A, B = b and X = x).

The problem occurs because of the presence of vocabulary with predefined semantics in the subject or object positions
in a triple. If we forbid these triples, we get an important subclass of RDF graphs with vocabulary for which there are
minimal representations.



C. Gutierrez et al. / Journal of Computer and System Sciences 77 (2011) 520–541 531
Theorem 3.16. Let G be an RDF graph with no reserved vocabulary in the subject nor in the object position, and acyclic w.r.t. subprop-
erty and subclass. Then G has a unique minimal representation.

Proof. Consider the intersection of all minimal representations of G . We will prove that this graph is the unique minimal
representation of G . We will prove that if t is a triple of G , either it is in all minimal representations, or it is in none of
them (thus, by definition of minimal representation, it can be deduced in all of them).

Before we need some additional notions. Construct the graph Gsc built based on all triples (a,sc,b) of G as follows:
vertices, all subject and object elements of such triples; a directed edge (a,b) if and only if the triple (a,sc,b) is in G .
Similarly construct Gsp .

Next, if c is a vertex in Gsp , and if there is a triple (x, c, y) in G , mark in the graph Gsp the node c and all its descendants
with the pair (x, y).

First, assume the graph G has no reflexive triples of the kind (a,sc,a) nor (a,sp,a). Assume G1 and G2 are minimal
representations of G .

1. (a,sc, c). The only triples in all minimal representations are the ones in a transitive reduction of Gsc , which is unique
for acyclic graphs.
Note that because of our assumptions (no reserved vocabulary in subject nor object positions) the rule (3) will not
deduce triples of the kind (a,sc, c). Thus the only way to deduce such triples is using the transitivity rule (4).

2. (a,sp, c). Similar as before.
3. All triples of the form (a,dom, c) and (a,range, c) are preserved in any minimal representation, because there is no

way of deducing them from other triples.
4. If t = (a,b, c) with no vocabulary RDFS involved, then (a, c) is a label of node b in Gsp (which is the same graph as

(G1)sp and (G2)sp . In fact, one key point in the analysis is that these graphs do not change because there are no triples
with sc nor sp allowed in object or subject positions). The only way to deduce (a,b, c) is the existence of node d in
Gsp with label (a, c) which is an ancestor of b.
Then if b = d the triple (a,b, c) should be in all minimal representations. If b �= d, then (a,b, c) can be safely ignored in
any minimal representation.

5. (a,type, c). This kind of triple deserves careful analysis. Assume there is a triple (a,type,b) which is in G1. With
the restrictions imposed, note that a triple of the form (a,type, c) can be deduced only by rule (5) or rules (6) or (7).
Hence a triple (a,type, c) is in a minimal representation if and only if is deduced by these rules. By induction, we
already know that the antecedents of these rules must be the same in any minimal representation. Hence the result
follows.

Now, if G has a reflexive triple of the kind (a,sc,a) or (a,sp,a), note that either, it can be eliminated in any minimal
representation because it can be obtained by one of the rules (8)–(13), or it cannot be obtained by these rules, in which
case is must be in any minimal representation. �
3.3. Normal form

Although the notion of closure allows us to reduce RDF entailment to the existence of a mapping between two RDF
graphs (as Theorem 2.8 shows), it has some drawbacks, probably the most relevant is that it is syntax dependent, that is,
for graphs G , H it is not necessarily the case that cl(G) ∼= cl(H).

Example 3.17. Consider the following equivalent graphs G and H (where N is a blank node):

N

G: a sc b sc

sc

c

and

H : a sc

sc

b sc c

Then we have that even though G ≡ H , RDFS-cl(G) � RDFS-cl(H) and cl(G) � cl(H). Moreover, also core(G) � core(H).

In fact, one would like a data representation, usually called normal form, with the following properties:

1. (Uniqueness). The normal form of a graph G , nf(G), is unique (up to isomorphism).
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2. (Syntax-independence). For all graphs H, G , G ≡ H if and only if nf(G) ∼= nf(H).

The maximal and minimal representations we studied do not have these properties as Example 3.17 shows. For simple
RDF graphs, the core is really a normal form. But in general, it does not work because it is not unique. On the other hand,
the closure is not syntax independent. Hence we will have to look for a compromise. The following definition introduces,
a combination of the closure and the core, fulfill the desiderata.

Definition 3.18. For a graph G , define its normal form, denoted nf(G), as the core of the closure of G , that is, nf(G) =
core(cl(G)).

The next theorem shows that the notion of normal form meets our desiderata.

Theorem 3.19 (Normal forms for RDF graphs). Let G and H be RDF graphs. Then:

1. The normal form is unique (up to isomorphism).
2. The normal form nf(G) is syntax independent, that is, G ≡ H if and only if nf(G) ∼= nf(H).

Proof. 1. Direct consequence of Theorem 3.6 and the uniqueness (up to isomorphism) of the core.
2. Proposition 3.6 and Theorem 2.8 imply that G |
 H if and only if H → cl(G) → core(cl(G)) = nf(G). Hence, the state-

ment follows using the fact that nf(G) and nf(H) are lean graphs applying Lemma 3.9. �
Note that the normal form for graphs G and H of Example 3.17 is H .
Unfortunately, computing the normal form is hard:

Theorem 3.20. Let G, G ′ be graphs. The problem of deciding if G ′ is the normal form of G is DP-complete.

Proof. The hardness part follows from the fact that if G is a simple graph deciding if G ′ is the normal form of G is equivalent
to deciding if G ′ is the core of G . By Theorem 3.12 we know that this last problem is DP-hard. For the membership in DP,
the problem is equivalent to test whether G ′ is the core of cl(G). We can split this problem in two, first checking if there is
a map cl(G) → G ′ which is NP, and then checking if G ′ is lean that we know is coNP. �
4. RDF query languages

Let V be a set of variables (disjoint from UB). Individual variables will be denoted ?X,?Y ,?Person, etc.
As query language, we will use the notion of tableau borrowed from the database literature (see for example [2]) but

slightly extended to allow also a set of tuples in the head. A tableau is a pair (H, B) where H, B are RDF graphs with some
elements of UBs replaced by variables in V , B has no blank nodes, and all variables of H occur also in B . We often write a
tableau in the form H ← B to indicate the similarity with logic programming and Datalog.

For example, a tableau such as

(?A, creates,?Y ) ← (?A, type, Flemish), (?A,paints,?Y ), (?Y ,exhibited,Uffizi)

where identifiers preceded by ? are variables, intuitively defines the artifacts created by Flemish artists being exhibited at
Uffizi Gallery.

Definition 4.1. A query is a tableau (H, B) plus a set of premises P and a set of constraints C , where P is a graph over UB
(i.e. with no variables) and C is a subset of the variables occurring in H . In other words, a query is a tuple (H, B, P , C).

When P is omitted we assume the premise is empty, i.e. write (H, B, C) instead of (H, B,∅, C). Similarly for the set of
constraints C or both.

The set of constraints C gives the user the possibility to discriminate between blank and ground nodes in answers and
plays the same role as IS NOT NULL in SQL. For example, the tableau above is a query with no constraints. We can add to it
the constraint {?A}; intuitively, as we will formalize in the next subsection, this means that the ?A variable must be bound
to a non-blank element in each answer to the query.

The premise P represents information the user supplies to the database to be queried in order to answer the query. For
example, the query:

(?X, relative,Peter) ← (?X, relative,Peter)

with premise P = {(son,sp, relative)} ask for all relatives of Peter knowing that “son” is a subproperty of “relative”.
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Note 4.2. The condition var(H) ⊆ var(B) avoids the presence of free variables in the head of the query. The presence of
blank nodes in the body of the query is unnecessary, because—as we will see—a variable plays exactly the same role in this
position. However, we do allow blank nodes in the head of the query to permit some features which will clear in what
follows.

4.1. Answers to a query

Let q = (H, B, P , C) be a query, D a database, and V a set of variables. This section defines the semantics of the query q
over the database D .

A valuation is a function v : V → UB. For a set C ⊆ V of variables, the valuation v satisfies the constraint C (denoted
v |
 C ) if for all x ∈ C , v(x) is not blank.2 We define v(B) as the graph obtained after replacing every occurrence of a
variable x in B by v(x).

A matching of the graph B in database D is a valuation v such that v(B) ⊆ nf(D). The matchings that interest us are
those that satisfy the constraints C .

The semantics includes, for each blank node N occurring in H , a Skolem function f N : (UB)k → C , where k is the number
of distinct variables occurring in B and C a set of blank nodes disjoint with any appearing in the query or the database. For
each valuation v , v(H) is the graph obtained by replacing each variable ?X occurring in H by v(?X) and each blank node
N occurring in H by f N (v(?X1), . . . , v(?Xk)) where ?X1, . . . ,?Xk are the variables occurring in B .

Definition 4.3. Let q = (H, B, P , C) be a query and D a database. A pre-answer to q over D is the set

preans(q, D) = {
v(H)

∣∣ v is a matching of B in D + P and v |
 C, and v(H) is a well-formed RDF graph
}
.

A graph v(H) in preans(q, D) is called a single answer of the query q over D .

Note 4.4. Some clarifications about the notion of matching are in order. We would like to preserve the semantics of answers
under equivalence of datasets, that is if D ≡ D ′ , then the answer of q against D should be the same as the answers of q
against D ′ .

For this, we need to query nf(D) instead of just D in order to deal with rdfs vocabulary because entailment in this case
is characterized in terms of nf (cf. Theorem 3.19). Recall that using simply a closure D ′ of D instead of nf(D) would not
give unique answers as shown by the RDF graphs in Example 3.17.

A more general definition of matching obtained by replacing “v(B) ⊆ nf(D)” by “D |
 v(B)” does not work properly be-
cause it could give infinite answers. For example, given D = {(a,b, c)} and the query defined as (?X,?Y ,?Z) ← (?X,?Y ,?Z),
the answers would be D union all triples of the form (N,b, M) with N, M blank nodes.

A desirable property a query language for RDF should have is compositionality, i.e., the property that complex queries
can be composed from simpler ones [6]. For this, we need to output results in the same format as input data. In our case,
we can combine single answers in several different ways to obtain as final answer an RDF graph. We concentrate on two
approaches to do this:

1. ans∪(q, D) is the union of all single answers. With this approach, queries properly capture the information carried by
blank nodes inside D (in particular when blank nodes play the role of bridges between two single answers).

2. An alternative approach, ans+(q, D), is to merge all single answers, which means to rename blank nodes if necessary to
avoid name clashes.

Note that if there are no blank nodes in D , both approaches are the same.
The merge-semantics could be useful when querying several sources (e.g. several different files of metadata correspond-

ing to different web pages). In this case we do not want clashes of blank nodes of different specifications. One important
drawback of the merge-semantics is that there could be no data-independent query that retrieves the whole database. An
approach similar to merge-semantics can be found in query languages for semistructured data [33].

The union-semantics is more intuitive. First, there exists an identity query (see Note 4.7 below). As another il-
lustration, consider a database D which has a blank node N with several properties, i.e., there exist in D several
triples (N, p1, z1), (N, p2, z3), . . . . If we follow the merge-semantics, we cannot retrieve the properties of N with a data-
independent query. On the other hand, if we follow the union-semantics, the query (?X, feature,?Y ) ← (?X,?Y ,?Z) will do
it.

Proposition 4.5. Let q = (H, B, C, P ) be a query. Assume that when querying any database, the same Skolem function f N is used for
every blank node N in H. Then:

2 This constraint is called a must-bind variable in DQL [43].



534 C. Gutierrez et al. / Journal of Computer and System Sciences 77 (2011) 520–541
1. For both semantics, if D ′ |
 D then ans(q, D ′) |
 ans(q, D).
2. For all D, ans∪(q, D) |
 ans+(q, D).

Proof. 1. Note that from D ′ |
 D follows that D ′ + P |
 D + P and then by Theorem 3.19 there is map μ with μ(nf(D + P )) ⊆
nf(D ′ + P ). In the proof we will use a map μ′ equal to μ in the blanks of D + P and the identity outside. The restriction
on μ′ to be the identity outside the blanks of D is to ensure that μ′ do not change the value of any Skolem function used
in the answer.

For merge semantics is enough to show that for every graph G ∈ preans(q, D), there is a graph G ′ in preans(q, D ′) such
that G ′ |
 G . Let G ∈ preans(q, D), then G = v(H) for some valuation v that satisfies the conditions C and v(B) ⊆ nf(D + P ).
Note that the function μ′v : V → UB is a valuation that satisfies the conditions C (because μ′ is the identity over U ) and
(μ′v)(B) ⊆ μ(nf(D + P )) ⊆ nf(D ′ + P ), and then (μ′v)(H) ∈ preans(q, D ′) because (μ′v)(N) = v(N) for any blank node N
in H . Finally, let G ′ = (μ′v)(H) = μ′(G), then G ′ |
 G and G ′ ∈ preans(q, D ′) completing this part of the proof.

For union semantics, let t ∈ μ′(ans∪(q, D)), then t ∈ μ′(v(H)) for a valuation v that satisfies C and such that v(B) ⊆
nf(D + P ). This last statement implies that (μ′v)(B) ⊆ nf(D ′ + P ), and because μ′v : V → UB is a valuation that satisfies the
conditions C and (μ′v)(N) = v(N) for any blank node N in H , we have that (μ′v)(H) ∈ preans(q, D ′), and then (μ′v)(H) ⊆
ans∪(q, D ′). Finally t ∈ ans∪(q, D ′) and then μ′(ans∪(q, D)) ⊆ ans∪(q, D ′) which implies that ans∪(q, D ′) |
 ans∪(q, D).

2. It follows from the general fact G1 ∪ G2 |
 G1 + G2. �
Theorem 4.6. Let q = (H, B, C, P ) be a query, if D ≡ D ′ then ans(q, D) ∼= ans(q, D ′).

Proof. From D ′ ≡ D follows that D ′ + P ≡ D + P and then by Theorem 3.19 there nf(D + P ) ∼= nf(D ′ + P ). Consider an
isomorphism μ : nf(D + P ) → nf(D ′ + P ) such that μ is the identity outside the blanks of D ∪ D ′ . Then μ witnesses the
desired isomorphism. The restriction on μ to be the identity outside the blanks of D ∪ D ′ is to ensure that μ do not change
the value of any Skolem function used in the answer. �
Note 4.7 (The identity query). The identity query is defined as (H, B) with H = B = {(?X,?Y ,?Z)}.

Observe that this query works as identity modulo equivalence only with the union-semantics. Consider the database
D = {(X,b, c), (X,b,d)}. Then ans∪(q, D) ≡ D , but ans+(q, D) = {(X,b, c), (Y ,b,d)}, which is not equivalent to D because
there is no map from D to ans+(q, D). This shows also that the converse of Proposition 4.5, item 2, does not hold.

In the sequel, unless stated otherwise, we will assume the union-semantics.

4.2. Premises

Having premises in queries extends classical querying in several aspects: The possibility of simulating if-then queries
while still remaining within the expressiveness of the language; hypothetical analysis of information; and the ability to
query incomplete information by supplying information not in the database. This is particularly relevant when querying
sources which use external ontologies.

Our definition of premises differs from Bonner’s [7] in that we have one fixed premise for the whole query. We also
allow blank nodes, but not variables, in the premise.

It is important to remark that premises cannot be simulated with Datalog programs. For example consider the following
query:

(?X, relative,Mary) ← (?X, relative,Mary)

with premise P = {(son,sp,descendant)}.
It is not possible to write a data-independent Datalog-like query equivalent to it. The reason is that we do not know

in advance the existence, in a given database, of triples like (descendant,sp, relative) that could indirectly link “son” with
“relative” via the transitive relation sp.

5. Query containment

In this section we explore different notions of query containment and their characterizations. In Section 5.1, we introduce
two different notions of query containment for RDF queries. In Section 5.2 we give characterizations for the two notions in
terms of mappings between the queries involved, for the case of queries without premises. Finally, in Sections 5.3 and 5.4,
respectively, we study the containment problem under premises and constraints.

5.1. Notions of query containment

Any reasonable notion of query containment q � q′ should embody the idea that ans(q′, D) comprises all the informa-
tion of ans(q, D). In relational databases, set-theoretical inclusion of tuples captures this requirement. When databases are
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viewed as knowledge bases having a notion of entailment (denoted in what follows by |
), the information comprised by
a database is all that can be entailed from it. Hence the right notion of q � q′ is ans(q′, D) |
 ans(q, D) for all D . In the
relational case both notions coincide. This is not the case in our context. In what follows we will discuss these two versions
of containment.

Given sets S, S ′ of RDF graphs, we write that S ⊆iso S ′ iff for each G ∈ S , there is G ′ ∈ S ′ with G ′ ∼= G .

Definition 5.1 (Containment). Let q,q′ be queries.

1. (Standard containment). q �p q′ iff for all databases D , preans(q, D) ⊆iso preans(q′, D).
2. (Entailment-based containment). q �m q′ iff for all databases D , ans(q′, D) |
 ans(q, D).

Proposition 5.2. �p implies �m.

Proof. Let q = (H, B, P , C) and q′ = (H ′, B ′, P ′, C ′) two queries. Suppose that q �p q′ , then given a simple answer v(H) ∈
preans(q, D), there must exist v ′(H ′) ∈ preans(q, D) with v ′(H ′) ∼= v(H) via a map μ that preserves blank nodes of D .
Otherwise we replace blanks of D by fresh constants obtaining a contradiction. Now the union of such maps

⋃
μ is a map

from ans(q, D) to ans(q′, D). �
The converse of this proposition is not true as the following examples show.

Example 5.3. When working with rdfs vocabulary, containment characterizations are more complex. In the following queries,
the head (not depicted) is assumed to be the same as the body.

B: ?Y

?X
sc ?Z

sc

B ′: ?Y

?X

sc

sc ?Z

sc

Clearly, q′ �m q and q �m q′ . But q ��p q′ nor q′ ��p q.
Even if we do not allow rdfs vocabulary in queries, the two notions are not equivalent. Consider two queries q = (H, B)

and q′ = (H ′, B ′), where B = B ′ , and the heads are as follows:

H : c

?X

q

H ′: Y

?X

q

where Y is a blank node, and ?X is a variable. Clearly, q′ �m q but q′ ��p q.
For queries without rdfs vocabulary and blank nodes we can still find examples for which the two containment notions

disagree. Consider two queries q = (H, B) and q′ = (H ′, B ′), where B = B ′ , and the heads are as follows:

H : ?Y

?X
q

?Z

p

H ′: ?Y

?Z

p

In this case, q′ �m q but q′ ��p q.

We prove next that blank nodes in databases do not play any role in the containment problem, when queries do not
have constraints. We need the following auxiliary notions.

Let D be a set of databases. We write that q �p q′ in D if and only if for all databases D ∈ D, preans(q, D) ⊆iso

preans(q′, D). We write that q �m q′ in D iff for all databases D ∈ D, ans(q′, D) |
 ans(q, D).

Proposition 5.4. Let q,q′ be queries without constraints and let G be the set of ground databases. Then:

1. q′ �m q in G if and only if q′ �m q.
2. q′ �p q in G if and only if q′ �p q.
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Proof.

1. The “if” direction is trivial. For “only if”, assume it is not true. Then there is a database D such that ans(q′, D) �|

ans(q, D) (*). Consider the database D g = μ(D), where μ is the map sending blank nodes N of D to constants cN .
Then D g |
 D , and ans(q′, D g) |
 ans(q, D g), that is, there is δ : ans(q, D g) → ans(q′, D g). Then we can build a map
θ : ans(q, D) → ans(q′, D) defined as follows: θ(x) = x if x is a blank node in D , and θ(x) = δ(x) elsewhere (URIs or
blank nodes generated by Skolem functions). It is not difficult to show that θ is a map, yielding a contradiction with (*).

2. The “if” direction is trivial. For “only if”, assume it is not true. Then there is a database D such that ans(q′, D) �
ans(q, D). Consider the database D g = μ(D), where μ is the map sending blank nodes N of D to constants cN . Then
ans(q′, D g) ⊆ ans(q, D g). Now, we replace each constant cN in D g with N , and it can be easily verified that ans(q′, D) ⊆
ans(q, D), a contradiction. �

5.2. Testing containment

In this section we study the notions of containment for queries without premises and without constraints.
Testing standard containment of queries without premises resembles containment of conjunctive relational queries.

A characterization of entailment-based containment is more subtle. The next theorem gives characterizations for both no-
tions.

Define G1 |
 G2 for graphs G1, G2 containing variables, as v(G1) |
 v(G2), where v is a valuation sending the variables
to fresh constants.

Theorem 5.5. Consider the queries q = (H, B) and q′ = (H ′, B ′). Then:

1. q �p q′ if and only if there is a substitution of variables θ such that (a) θ(B ′) ⊆ nf(B) and (b) θ(H ′) ∼= H.
2. q �m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θ j(B ′) ⊆ nf(B) and (b)

⋃
j θ j(H ′) |
 H.

Proof.

1. (If) Let D be a database, and v a substitution with v(H) ∈ preans(q, D), that is, v(B) ⊆ nf(D). Hence nf(v(B)) ⊆ nf(D).
But it can be easily verified (by structural induction on derivation rules) that v(nf(B)) ⊆ nf(v(B)). Therefore, we obtain
v(nf(B)) ⊆ nf(D). Now, let μ = v(θ( )), using condition (a) of the theorem, we obtain v(θ(B ′)) ⊆ nf(D), that is μ(H ′) ∈
preans(q′, D). But condition (b) of the theorem states that θ(H ′) ∼= H . Then v(θ(H ′)) ∼= v(H), hence, μ(H ′) ∼= v(H).
Therefore q �p q′ .
(Only if) Assume q �p q′ . Consider the database D = μ(B), where μ(x) = x if x is a constant and μ(x) = cx if x is a
variable. Clearly, μ(H) ∈ preans(q, D), then there is μ′(H ′) ∈ preans(q′, D) such that μ(H) ∼= μ′(H ′). Therefore, μ′(B ′) ⊆
nf(D). Now, let θ = μ−1(μ′( )). It can be easily verified that θ satisfies conditions (a) and (b) of the theorem.

2. Because of Proposition 5.4, we need to show the statement for q �m q′ in G , for G being the set of ground databases.
(If) Let D be a ground database and ans(q, D) = ⋃

vi(H) and ans(q′, D) = ⋃
ui(H ′) (the vi(H) and ui(H) are pre-

answers), we will prove that there is a map ω : ans(q, D) → ans(q′, D). Since D is a ground database the pre-answers do
not share blank nodes and therefore it is enough to prove that there are maps ωi : vi(H) → ans(q′, D), for each vi(H) ∈
preans(q, D). Consider the maps θ1, . . . , θ j . For each j, θ j(B ′) ⊆ nf(B), hence vi(θ j(B ′)) ⊆ vi(nf(B)) ⊆ nf(D). Hence,
vi(θ j(H ′)) ∈ preans(q′, D). Therefore,

⋃
j vi(θ j(H ′)) ⊆ ans(q′, D). Let α be the map of condition (b), that is α(H) ⊆⋃

j θ j(H ′). Notice that α only replace blank nodes, but the variables are preserved. Now let define ωi as follows: ωi(x) =
α(x) for each blank node x in v(H), and ωi(x) = x for each constant. From condition (b), it follows that ωi(vi(H)) ⊆⋃

j vi(θ j(H ′)), and hence ωi : vi(H) → ans(q′, D).
(Only if) Consider the database D B = v(B), where v is the 1–1 valuation assigning x to a fresh constant ax . By hy-
pothesis, we have ans(q′, D B) |
 v(H). So, there are maps v ′

1, . . . , v ′
n : B ′ → nf(D B), such that

⋃
j v ′

j(H ′) |
 v(H). Now,

applying v−1 to both sides of the expression, and using that (a) v−1 is 1–1 and works only over ground elements, and
(b) considering variables resulting from the application of v−1 as ground elements, we have that v−1(

⋃
j v ′

j(H ′)) |
 H .

Then
⋃

j v−1(v ′
j(H ′)) |
 H . Thus, let θ j = v−1 ◦ v ′

j , and we have conditions (1) and (2) of the theorem. �
We end the section by giving complexity bounds for the containment problem (for queries without premises).

Theorem 5.6. Consider the queries q = (H, B) and q′ = (H ′, B ′). Then:

1. Testing whether q �p q′ is NP-complete.
2. Testing whether q �m q′ is NP-complete.
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Proof.

1. NP-hardness: we can encode the problem of deciding G |
 G ′ , where G, G ′ are simple graphs. From Theorem 2.9 this
problem is NP-complete. We just construct the queries q : (a,b, c) ← B and q′ : (a,b, c) ← B ′ , where a,b, c are constants,
and B, B ′ are obtained from G, G ′ , respectively, by replacing blanks with variables. From Theorems 2.8 and 5.5 it can be
easily verified that the two problems are equivalent, that is q ⊆p q′ (i.e., there is a substitution of variables θ such that
θ(B ′) ⊆ B) iff G |
 G ′ (i.e., there is a map from G ′ to G). Membership in NP follows directly from Theorem 5.5: just use
θ as a certificate.

2. NP-hardness: notice that, for the queries q,q′ given in the item 1 of this proof, Theorem 5.5(2) becomes: q ⊆m q′ iff
there is a substitution θ j such that θ j(B ′) ⊆ nf(B) (because q,q′ have the same head). Therefore, for q,q′ the two
containment problems are equivalent, and we can use the encoding from the previous proof. For proving membership
in NP just notice that, from the proof of Theorem 5.5(2), the number of maps θ j is at most the number of triples of H .
Then, the witness is the set {θ j} and the map that witness the entailment of condition (b) of Theorem 5.5(2). �

5.3. Containment of queries with constraints

The results of Section 5.2 can be easily generalized to handle constraints. Next, we extend Theorem 5.5 to handle con-
straints.

Theorem 5.7. Consider the queries q = (H, B) and q′ = (H ′, B ′). Then:

1. q �p q′ if and only if there is a substitution of variables θ such that (a) θ(B ′) ⊆ nf(B) and (b) θ(H ′) ∼= H, and (c) θ(C ′) ⊆ C.
2. q �m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θ j(B ′) ⊆ nf(B) and (b)

⋃
j θ j(H ′) |
 H, and

(c) θ j(C ′) ⊆ C.

Proof. Given a query q = (H, B, C), we define qc as the query (H, Bc,∅), where Bc is obtained from B by adding a triple
(?X,is,ground) (which we will refer to as a constraint triple) for each ?X ∈ C .

Now, for a database D , we define Dc as D union a set including a triple (c,is,ground) for each constant c that appears
in D . We define Dc as the set containing Dc for all databases D .

Notice that for all queries q: ans(q, D) = ans(qc, Dc) and preans(q, D) = ans(qc, Dc). Therefore we have that: q �p q′ iff
qc �p q′

c in Dc and q �m q′ iff qc �m q′
c in Dc .

Now, Theorem 5.5 also applies for qc �p q′
c in Dc and qc �m q′

c in Dc . The new conditions (c) of both parts of the
theorem make explicit that the maps of Theorem 5.5 should include the new constraint triples. �
5.4. Containment of queries with premises

In this section, we present a first study of containment for queries with premises. We tackle the containment problem
in the realm of RDF graphs over non-interpreted vocabulary, that is, rdfs graphs are treated as simple graphs wherever they
appear, that is in bodies, heads, and premises and databases. We refer to this class of queries as simple queries.

We prove that simple queries with premises can be transformed into union of queries without premises, which yields a
characterization and complexity bounds for testing entailment. This result does not hold if the semantics of rdfs vocabulary
is considered, even if premises are simple RDF graphs. The results here can also be extended to include constraints using
the trick in the proof of Theorem 5.7, but for the sake of simplicity, we omit constraints in this section.

We start by proving that, when testing q �p q′ or testing q �m q′ , a mild extension of Theorem 5.5 can handle a premise
in q′ .

Theorem 5.8. Consider the simple queries q = (H, B,∅) and q′ = (H ′, B ′, P ′). Then:

1. q �p q′ if and only if there is a substitution (of variables and blank nodes) θ such that (a) θ(B ′) ⊆ P ′ + B and (b) θ(H ′) ∼= H.
2. q �m q′ if and only if there are substitutions θ1, . . . , θn (of variables) such that (a) θ j(B ′) ⊆ P ′ + B and (b)

⋃
j θ j(H ′) |
 H.

Proof. The proof mirrors closely that of Theorem 5.5 and we write it down for the sake of completeness.

1. (If) Let D be a database, and v a substitution with v(H) ∈ preans(q, D), that is, (a) v(B) ⊆ D . Let μ = v(θ( )). From (a)
and (1) we obtain v(θ1(B ′)) ⊆ P ′ + D , and hence μ(H ′) ∈ preans(q′, D). But (2) states that θ1(H ′) ∼= H . Then v(θ1(H ′)) ∼=
v(H), hence, μ(H ′) ∼= v(H). Therefore q �p q′ .
(Only if) Assume q �p q′ . Consider the database D = μ(B), where μ(x) = x if x is a constant and μ(x) = cx if x is a
variable. Clearly, μ(H) ∈ preans(q, D), then there is μ′(H ′) ∈ preans(q′, D) such that μ(H) ∼= μ′(H ′). Therefore, μ′(B ′) ⊆
P ′ + D . Now, let θ = μ−1(μ′( )). It can be easily verified that θ satisfies conditions (a) and (b) of the theorem.
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2. Because of Proposition 5.4, we need to show the statement for q �m q′ in G , for G being the set of ground databases.
(If) Let D be a ground database and ans(q, D) = ⋃

vi(H) and ans(q′, D) = ⋃
ui(H ′) (the vi(H) and ui(H) are pre-

answers), we will prove that there is a map ω : ans(q, D) → ans(q′, D). Since D is a ground database the pre-answers do
not share blank nodes and therefore it is enough to prove that there are maps ωi : vi(H) → ans(q′, D), for each vi(H) ∈
preans(q, D). Consider the maps θ1, . . . , θ j . For each j, θ j(B ′) ⊆ P ′ + B , hence vi(θ j(B ′)) ⊆ P ′ + vi(B) ⊆ P ′ + D . Hence,
vi(θ j(H ′)) ∈ preans(q′, D). Therefore,

⋃
j vi(θ j(H ′)) ⊆ ans(q′, D). Let α be the map of condition (b), that is α(H) ⊆⋃

j θ j(H ′). Notice that α only replace blank nodes, but the variables are preserved. Now let define ωi as follows: ωi(x) =
α(x) for each blank node x in v(H), and ωi(x) = x for each constant. From condition (b), it follows that ωi(vi(H)) ⊆⋃

j vi(θ j(H ′)), and hence ωi : vi(H) → ans(q′, D).
(Only if) Consider the database D B = v(B), where v is the 1–1 valuation assigning to each variable X a fresh
constant aX . By hypothesis, we have ans(q′, D B) |
 v(H). So, there are maps v ′

1, . . . , v ′
n : B ′ → nf(D B), such that⋃

j v ′
j(H ′) |
 v(H). Now, applying v−1 to both sides of the expression, and using that (a) v−1 is 1–1 and works only

over ground elements, and (b) considering variables resulting from the application of v−1 as ground elements, we have
that v−1(

⋃
j v ′

j(H ′)) |
 H . Then
⋃

j v−1(v ′
j(H ′)) |
 H . Thus, let θ j = v−1 ◦ v ′

j , and we have conditions (1) and (2) of
the theorem. �

Next, we prove that, if the semantics rdfs vocabulary is not taken into account, a query with premises can be transformed
into a union of queries without premises.

Proposition 5.9. Let q = (H, B, P ) be a simple query. And let Ωq be the set of queries defined as:

Ωq = {
qμ = (

μ(H),μ(B − R),∅) ∣∣ μ : R → P and R ⊆ B and μ(B − R) has no blanks
}
.

Then, q = ⋃
qμ∈Ωq

qμ , that is, for all databases D, ans(q, D) = ⋃
qμ∈Ωq

ans(qμ, D).

Proof. (⊆) Consider a database D , and v(H) ∈ preans(q, D). Then v(B) ⊆ D + P . Now, we can split B into R and B − R ,
such that v(R) ⊆ P and v(B − R) ⊆ D . Now let μ be the map obtained by restricting the domain of v to the variables in R .
And let w be the map obtained by restricting the domain of v to variables in B − R . If μ(B − R) has a blank, then there is a
variable x such that μ(x) is a blank in P and also μ(x) is a blank in D , contradicting the restriction that blanks of premises
are disjoint with blanks of databases. Therefore qμ is a query in the set given in the theorem. In addition, it can be easily
verified that w(μ(B − R)) ∈ D and hence w(μ(H)) ∈ preans(qμ, D), and hence v(H) ∈ preans(qμ, D).

(⊇) Consider a query qu , a database D and a pre-answer v(μ(H)) ∈ preans(qu, D). Then v(μ(B − R)) ∈ D and also from
the definition of qμ we have μ(R) ∈ P . Then, we have v(μ(R)) ∈ P (because v(μ(R)) = μ(R)). Therefore, v(μ(B)) ⊆ P + D ,
hence v(μ(H)) ∈ preans(q, D). We can encode containment of classical tableau into queries without premises. �
Example 5.10. As an example, the answer returned by the query q defined by:

q: (?X, p,?Y ) ← (?X,q,?Y ), (?Y , t, s), with P = {(a, t, s), (b, t, s)}

is the same as the union of the answers returned by the following queries:

q1: (?X, p,a) ← (?X,q,a), with P1 = ∅,
q1: (?X, p,b) ← (?X,q,b), with P2 = ∅,
q3: (?X, p,?Y ) ← (?X,q,?Y ), (?Y , t, s), with P3 = ∅.

Proposition 5.11. Let q1,q2 be queries without premises, and let q′ = (H ′, B ′, P ′). Then:

1. (q1 ∪ q2) �p q′ iff q1 �p q′ and q2 �p q′ .
2. (q1 ∪ q2) �m q′ iff q1 �m q′ and q2 �m q′ .

Proof.

1. It follows directly from the definition of �p .
2. (If) Then q1 �m q′ in G and q2 �m q′ in G , where G is the set of ground databases. Then for all constant databases D ,

we have maps: μ1 : ans(q1, D) → ans(q′, D) and μ2 : ans(q2, D) → ans(q′, D). But, because D is constant ans(q1, D) and
ans(q2, D) do not share blanks, and hence μ1 ∪ μ2 : (ans(q1, D) ∪ ans(2, D)) → ans(q′, D). Hence, (q1 ∪ q2) �m q′ in G .
The conclusion follows from Proposition 5.4.
The “only if” part is direct. �
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Propositions 5.9 and 5.11 yield the following algorithm for testing the containment q �p q′ (respectively q �m q′). First,
we transform q into Ωq and then for each query qμ ∈ Ωq we use Theorem 5.8 to test if qμ �p q′ (respectively qμ �m q′).
We end this section by given complexity bounds for the containment problems.

Theorem 5.12. Let q = (H, B, P ) and q′ = (H ′, B ′, P ′) be simple queries.

1. Testing whether q �p q′ is NP-hard and in Π2 P .
2. Testing whether q �m q′ is NP-hard and in Π2 P .
3. If P = ∅ then both testing q �p q′ and testing q �m q′ are NP-complete.

Proof.

1. NP-hardness: follows from the same encoding as in the proof of Theorem 5.6(1). From Proposition 5.9 and Theorem 5.5,
this can be solved by an NP machine with an NP oracle. The certificate is a query qμ in the set given by Proposition 5.9,
we use the oracle to test whether qμ ��p q′ . Hence the complement problem is in NPNP, and the problem is in coNPNP.

2. Similar to the previous proof.
3. Follows directly from Theorem 5.8: just use θ as a certificate to prove membership in NP. For NP-hardness the encoding

given in the proof of Theorem 5.6(1) works here. �
6. Complexity of query answering

6.1. Computing matchings

In order to understand the complexity of computing the set of matchings for a query over a database, we consider the
simpler problem of testing emptiness of the query answer set.

1. Query complexity version: For a fixed database D , given a query q, is q(D) non-empty?
2. Data complexity version: For a fixed query q, given a database D , is q(D) non-empty?

Theorem 6.1. The evaluation problem is NP-complete for the query complexity version, and polynomial for the data complexity version.

Proof. Reduction of 3SAT to the problem of evaluating a conjunctive query over a database. Membership in NP follows
immediately.

Data complexity version: This follows from the fact that the number of potential matchings of the body of q in nf(D) is
bounded by the number of subgraphs of nf(D) of size q, and the fact that the size of nf(D) is polynomial in D . �

From the proof of Theorem 6.1 follows that the size of the set of answers of a query q issued against a database D is
bounded by |D||q| , where |D| is the size of the normal form of the database (number of triples) and |q| is the number of
symbols in the query.

6.2. Redundancy elimination

We give some observations on redundancies in queries, databases and set of answers.
It is desirable and possible to have queries with lean heads. Otherwise, the answer generated will have redundancies

which could have been avoided.
On the contrary, it is not always possible to have lean graphs in body of queries. For example, consider the query

q = (H, B,∅), where H = (?Course, related, “DB”) and B = (?Dept,offers, “DB”), (?Dept,offers,?Course). B is not lean and is
equivalent to the lean graph B ′ = (?Dept,offers, “DB”). It turns out that there is no query equivalent to q with body B ′
(using any notion of equivalence).

Even having lean databases and queries with lean heads and bodies does not avoid redundancies in the answer set.
Consider the lean graph G2 in Example 3.8, and the query (?Z , p,?U ) ← (?Z , p,?U ). The answer set is G1 which is not
lean.

Answers to queries in RDF usually have redundancies. Ideally, the answer set ans(q, D) should reduce these redundancies
to the minimum, i.e. to an equivalent lean graph. The naive approach to eliminate redundancy in answers is to compute:
(1) ans(q, D), and (2) a lean equivalent to ans(q, D). The next theorem shows that in the worst case there is no better
approach.

Theorem 6.2. Given a lean database D and a query q, to decide whether ans∪(q, D) is lean is coNP-complete (in the size of D).
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The theorem follows from the fact that there is a query that computes the identity and from Theorem 3.12.
For merge-semantics redundancy elimination can be done much more efficiently:

Theorem 6.3. Given a lean database D and a query q, deciding whether ans+(q, D) is lean can be done in polynomial time in the size
of D.

Proof. Let A = ans+(q, D) and let us refer to maps from single answers to A as single maps. The key observation is that,
because single answers do not share variables in merge-semantics, maps μ : A → A are exactly unions of single maps
μ j : G j → A for each G j single answer. (Note that in the case of union-semantics the union of the μ j would not be a
function.)

Thus an algorithm for finding a proper map μ : A → A only needs to compute single maps and check whether (1) at
least a single map is proper, or (2) two of them share a blank node in their range. This can be done in time polynomial on
the set of single maps, whose size is polynomial in the size of D . Thus the complete test can be done in polytime. �
7. Conclusions and future work

We have shown in this paper that the RDF data model poses new challenges to the development of query languages, by
formalizing and studying some fundamental problems introduced by this model. The model presented establishes a good
common base to formally study and compare functionalities, features and limitations of RDF query languages. We think
that this streamlined formalization also establishes a solid ground from where to study theoretical properties of extensions
of the model. In fact, there are several extension either proposed or currently in use in working query languages for RDF
which deserve theoretical analysis. Among the most relevant we can mention connectedness, reachability, paths, recursion,
composition, subquerying, extended constraints, aggregation and views.
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