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Abstract

Various concepts associated with quadratic algebras admit natural generalizations when the
quadratic algebras are replaced by graded algebras which are finitely generated in degree 1 with
homogeneous relations of degrée Such algebras are referred to lm@mogeneous algebras of
degreeN. In particular, it is shown that the Koszul complexes of quadratic algebras generalize as
N-complexes for homogeneous algebras of degree
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction and preliminaries

Our aim is to generalize the various concepts associated with quadratic algebras as
described in [27] when the quadratic algebras are replaced by the homogeneous algebras
of degreeV with N > 2 (N = 2 is the case of quadratic algebras). Since the generalization
is natural and relatively straightforward, the treatment of [25-27] will be directly adapted
to homogeneous algebras of degréeln other words we dispense ourselves to give a
review of the case of quadratic algebras (i.e., the ¢ase 2) by referring to the above
guoted nice treatments.

Besides the fact that it is natural to generalize for other degrees what exists for quadratic
algebras, this paper produces a very natural clagg-obmplexes which generalize the

* Corresponding author.
E-mail addressegoland.berger@univ-st-etienne.fr (R. Berger), michel.dubois-violette @th.u-psud.fr
(M. Dubois-Violette), wambst@math.u-strasbg.fr (M. Wambst).

0021-8693/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0021-8693(02)00556-2


https://core.ac.uk/display/82101274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

R. Berger et al. / Journal of Algebra 261 (2003) 172-185 173

Koszul complexes of quadratic algebras [19,25-27,33] and which are not of simplicial
type. By N-complexes of simplicial type we here meahrcomplexes associated with
simplicial modules an@Vth roots of unity in a very general sense [12] which cover cases
considered, e.g., in [11,16,20,21,28] the generalized homology of which has been shown
to be equivalent to the ordinary homology of the corresponding simplicial modules [12].
This latter type of constructions and results has been recently generalized to the case of
cyclic modules [35]. In spite of the fact that they compute the ordinary homology of
the simplicial modules, the usefulness of thegéeeomplexes of simplicial type comes
from the fact that they can be combined with otldércomplexes [17,18]. In fact, the
BRS-like construction [4] of [18] shows that spectral sequences arguments (e.g., in the
form of a generalization of the homological perturbation theory [31]) are still working
for N-complexes. Other nontrivial classes Bfcomplexes which are not of simplicial

type are the universal construction of [16] and tiiecomplexes of [14,15] (see also in

[13] for a review). It is worth noticing here that elements of homological algebra/for
complexes have been developed in [21] and that several resuNs¢omplexes and more
generallyN -differential modules like Lemma 1 of [12] have no nontrivial counterpart for
ordinary complexes and differential modules. It is also worth noticing that besides the
above mentioned examples, various problems connected with theoretical physics implicitly
involve exoticN-complexes (see, e.g., [23,24]).

In the course of the paper we shall point out the possibility of generalizing the approach
based on quadratic algebras of [27] to quantum spaces and quantum groups by replacing
the quadratic algebras hy-homogeneous ones. Indeed one also has in this framework
internalend, etc., with similar properties.

Finally we shall revisit in the present context the approach of [8,9] to Koszulity for
N-homogeneous algebras. This is in order since as explained below, the generalization
of the Koszul complexes introduced in this paper férhomogeneous algebras is a
canonical one. We shall explain why a definition based on the acyclicity dfthemplex
generalizing the Koszul complex is inappropriate and we shall identify the ordinary
complex introduced in [8] (the acyclicity of which is the definition of Koszulity of [8])
with a complex obtained by contraction from the above Kog¢tdomplex. Furthermore
we shall show the uniqueness of this contracted complex among all other ones. Namely we
shall show that the acyclicity of any other complex (distinct from the one of [8]) obtained
by contraction of the KoszuV-complex leads foiV > 3 to an uninteresting (trivial) class
of algebras.

Some examples of Koszul homogeneous algebras of degr2eare given in [8],
including a certain cubic Artin—Schelter regular algebra [1]. Recall that Koszul quadratic
algebras arise in several topics as algebraic geometry [22], representation theory [5],
guantum groups [26,27,33,34], Sklyanin algebras [30,32]. A classification of the Koszul
guadratic algebras with two generators over the complex numbers is performed in [7].
Koszulity of nonquadratic algebras and each of the above items deserve further attention.

The plan of the paper is the following.

In Section 2 we define the duality and the two (tensor) products which are exchanged by
the duality for homogeneous algebras of degve@V-homogeneous algebras). These are
the direct extension to arbitragy of the concepts defined for quadratic algebrsis 2)
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[25-27], and our presentation here as well as in Section 3 follows closely the one of
Ref. [27] for quadratic algebras.

In Section 3 we elaborate the categorical setting and we point out the conceptual reason
for the occurrence aV-complexes in the framework &f-homogeneous algebras. We also
sketch in this section a possible extension of the approach of [27] to quantum spaces and
guantum groups in which relations of degméeeplace the quadratic ones.

In Section 4 we define th&¥-complexes which are the generalizations for homogeneous
algebras of degre¥ of the Koszul complexes of quadratic algebras [26,27]. The definition
of the cochainN-complex L(f) associated with a morphisni of N-homogeneous
algebras follows immediately from the structure of the unit obj&gt{d} of one of the
(tensor) products oV-homogeneous algebras. We give three equivalent definitions of the
chainN-complexK (f): A first one by dualization of the definition d@f( /), a second one
which is an adaptation of [25] by using Lemma 1, and a third one which is a component-
wise approach. It is pointed out in this section that one cannot generalize naively the notion
of Koszulity for N-homogeneous algebras with> 3 by the acyclicity of the appropriate
Koszul N-complexes.

In Section 5, we recall the definition of Koszul homogeneous algebras of [8] as well as
some results of [8,9] which justify this definition. It is then shown that this definition of
Koszulity for homogeneoul -algebras is optimal within the framework of the appropriate
Koszul N-complex.

Let us give some indications on our notations. Throughout the paper all vector spaces,
algebras, coalgebras are over a fixed figld=urthermore, unless otherwise specified, the
algebras are unital associative and the coalgebras are counital coassociative. The symbol
® denotes the tensor product over the basic fieldConcerning the generalized homology
of N-complexes we shall use the notation of [20] which is better adapted than other ones
to the case of chaiv-complexes, that is it = ), E, is a chainN-complex with N -
differentiald, its generalized homology is denoted pif (E) = D, p H.(E) with

pHu(E)=Ker@d? E, — E,—p)/IM(d" P Eyyn_p — Ey)

forpe{l,...,N -1} (n€Z).

2. Homogeneous algebras of degree N

Let N be an integer withV > 2. A homogeneous algebra of degr&eor N-homoge-
neous algebras an algebra of the form

A=A(E,R)=T(E)/(R) 1)

whereE is a finite-dimensional vector space (o\¥g€), T (E) is the tensor algebra of
and (R) is the two-sided ideal of (E) generated by a linear subspakeof E®" . The
homogeneity of( R) implies thatA is a graded algebral = @, Ax With A, = E®"
forn <N andA, =E® /Y, . . yvE® ® R® E® for n > N where we have set
E®° =K as usual. Thusl is a graded algebra which is connectety & K), generated in
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degree (A1 = E) with the ideal of relations among the elementstaf= E generated by
RcC E®" =(4)®".

A morphism ofV-homogeneous algebrgs. A(E, R) — A(E’, R) is a linear mapping
fi:E— E’such thatf®N (R) C R’. Such a morphism is a homomorphism of unital graded
algebras. Thus one has a categbiryAlg of N-homogeneous algebras and the forgetful
functorH yAlg — Vect, A— E, from HyAlg to the categoryect of finite-dimensional
vector spaces (ovéf).

Let A = A(E, R) be aN-homogeneous algebra. One defilitssdual A’ to be the
N-homogeneous algebtd' = A(E*, R*) where E* is the dual vector space @& and
where R+ ¢ E*®" = (E®")* is the annihilator ofR, i.e., the subspacgo € (E®")* |
w(x) =0,Vx e R} of (E®")* identified with E*®" . One has canonically

(A) = A )
andif f: A— A = A(E’, R'), is a morphism of yAlg, the transposed of : E — E’ is
a linear mapping of’* into E* which induces the morphisni': (4)' — A' of HyAlg
so(A~ A', f— f')is a contravariant (involutive) functor.

LetA=A(E, R) and A’ = A(E’, R’) be N-homogeneous algebras; one defiges A’
and.A e A’ by setting

Ao A =A(EQE, an(R®E'® +E®" @ R)),
Ae A =A(EQE' an(R®R))),
wherery is the permutation
1,2,....2N)» (LN+1,2N+2,....k,N+k,...,N,2N) (3)

belonging to the symmetric groufpy acting as usually on the factors of the tensor
products. One has canonically

(Ao Ay =Ae A’  (AeA)=AoA" 4)

which follows from the identity R® E'®" + E®" @ R’}* = RL ® R’+. On the other hand,
the inclusionR ® R’ ¢ R E'®" + E®" ® R’ induces a surjective algebra homomorphism
p:Ae A — Ao A which is of course a morphism &f yAlg.

It is worth noticing here that in contrast with what happens for quadratic algeh#as if
and.A’ are homogeneous algebras of degvewith N > 3 then the tensor product algebra
A® A’ is no more avV-homogeneous algebra. Indedd® A’ is generated in degree 1 by
E @ E’ with the relation

R+R c(E®E)®"
and the quadratic relation

[E,El={e®c —¢ ®ec|ecE, ¢ cE')C(E®E)®
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so thatA ® A’ is homogeneous if and only iV = 2 in which case it is quadratic.
Nevertheless there still exists (farf > 2) an injective homomorphism of unital algebra
i:AoA - A® A doubling the degree which we now describe. LT (E ® E') —
T(E) ® T(E’) be the injective linear mapping which restricts as

l~=7'[;l:(E®E/)®n N E®" ®E/®n

onT"(E @ E') = (E ® E)®" for anyn € N. It is straightforward thaf is an algebra
homomorphism which is an isomorphism onto the subalg@dra®" ® E'®" of T(E) ®
T(E"). The following proposition is not hard to verify.

Proposition 1. Let A = A(E, R) and A’ = A(E’, R’) be two N-homogeneous algebras.
Theni passes to the quotient and induces an injective homomorphi$mnital algebras
of Ao A" into A® A". The image of is the subalgebrgb,, A, ® A, of A® A'.

The proof is almost the same as for quadratic algebras [27].

Remark. As pointed out in [27], any finitely related and finitely generated in degree 1
graded algebra (so in particular anrhomogeneous algebra) gives rise to a quadratic
algebra. Indeed itd = B,qA, is a graded algebra, defing® by setting A =
EB,,>0 Anq. Then it was shown in [3] that if4 is generated by the finite-dimensional
subspaceAd; of its elements of degree 1 with the ideal of relations generated by its
components of degre€ r, then the same is true fot¥) with r replaced by 2- (r — 2)/d.

3. Categorical properties

Our aim in this section is to investigate the properties of the catebignilg. We
follow again closely [27] replacing the quadratic algebras considered there by-tie
mogeneous algebras.

Let A= A(E,R), A = A(E’,R") and A” = A(E”,R"”) be three homogeneous
algebras of degre#’. Then the isomorphismE @ '~ E' ® E and(EQ E')  E" ~
E ® (E' ® E") of Vect induce corresponding isomorphisréo A" ~ A o A and
(Ao A)o A"~ Ao (A o A”) of N-homogeneous algebras (i.e., dfyAlg). Thus
H yAlg endowed witho is a tensor category [10] and furthermore to the one-dimensional
vector spacer € Vect which is a unit object ofVect, ®) corresponds the polynomial
algebraK[:] = A(K¢, 0) >~ T (K) as unit object of fl yAlg, o). In fact the isomorphisms
K[t] o A~ A~ Ao K]t] are obvious irH yAlg. Thus one has part (i) of the following
theorem.

Theorem 1. The categoryHyAlg of N-homogeneous algebras has the following
properties

(i) HyAlgendowed with is a tensor category with unit objel[¢].
(i) HyAlgendowed with is a tensor category with unit obje¢t , {d} = K[t]'.
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Part (i) follows from (i) by the duality4 — A'. In fact (i) and (ii) are equivalent in
view of (2) and (4).

The N-homogeneous algebra y{d} = K[t]' ~ T(K)/K®N is the (unital) graded
algebra generated in degree onedowith relationd”™ = 0. Part (ii) of Theorem 1 is the
very reason for the appearanceMfcomplexes in the present context, remembering the
obvious fact that gradefl, , {d}-module andV-complexes are the same thing.

Theorem 2. The functorial isomorphism iwect
Homg (E ® E', E”) = Homk (E, E'* ® E")
induces a corresponding functorial isomorphism
Hom(A e B,C) = Hom(A, B' 0 C)
in HyAlg, (settingA = A(E, R), B= A(E’, R') andC = A(E", R")).

Again the proof is the same as for quadratic algebras [27]. It follows that the tensor
category(H yAlg, ¢) has an internaHom [10] given by

Hom(B,C)=B'oC (5)

for two N-homogeneous algebrd® andC. Setting.A = A(E, R), B = A(E’, R’), and
C = A(E”, R") one verifies that the canonical linear mappiigé ® E') ® E — E’ and
(E'*®E")®(E*® E') — E* ® E” induce products
w:Hom(A, B)e A— B, (6)
m:Hom(B,C) e Hom(A, B) — Hom(A, C) @)
these internal products as well as their associativity properties follow more generally from
the formalism of tensor categories [10].
Following [27], definehom(A, B) = Hom(A', B')' = A' e B. Then one obtains by
duality from (6) and (7) morphisms
8o:B—hom(A,B)o A, (8)
A, :hom(A, C) — hom(B, C) o hom(A, B) (9)

satisfying the corresponding coassociativity properties from which one obtains by
composition with the corresponding homomorphisrige algebra homomorphisms

§:B— hom(A, B)® A, (10)
A:hom(A,C) — hom(B,C) ® hom(A, B). (12)
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Theorem 3. Let A= A(E, R) be aN-homogeneous algebra. Then ttié-homogeneoys
algebraend(A) = A' ¢ A = hom(A, A) endowed with the coproduct becomes a
bialgebra with counit : A' ¢ A — K induced by the duality = (-, -): E* ® E — K and
§ defines ond a structure of lefend(A4)-comodule.

4. The N-complexes L(f) and K (f)
Let us apply Theorem 2 witll = A , {d} and use Theorem 1(ii). One has

Hom(B, C) = Hom(/\N{d}, B oc) (12)

and we denote by B' o C the image ofd corresponding to the morphisni €
Hom(B, C). One has(sf)N = 0 and by using the injective algebra homomorphism
i:B'oC — B ®C of Proposition 1 we led be the left multiplication byi(&,) in

B'® C. One hasiV = 0 so, equipped with the appropriate graduatid,® C, d) is a
N-complex which will be denoted b¥(f). In the case whergl = B = C and wheref

is the identity mappind 4 of A onto itself, thisN-complex will be denoted by.(A).
TheseN-complexes are the generalizations of the Koszul complexes denoted by the same
symbols for quadratic algebras and morphisms [27]. Note tBa® C, d) is a cochain
N-complex of rightC-modules, i.e.d : B, ® C - B, ; ® C is C-linear.

Similarly the Koszul complexek ( f) associated with morphismg of quadratic
algebras generalize as-complexes for morphisms a¥V-homogeneous algebras. Let
B=A(E,R)andC = A(E’, R) be two N-homogeneous algebras and fetB — C be a
morphism ofN-homogeneous algebrag (€ Hom(B3, C)). One can define th& -complex
K(f) = (C ® B*,d) by using partial dualization of th&/-complexL(f) generalizing
thereby the construction of [26] or one can defiief) by generalizing the construction
of [25,27].

The first way consists in applying the functor He(w, C) to each righC-module of the
N-complex(B' ® C, d). We get a chaiN-complex of leftC-modules. Sincé;, is a finite-
dimensional vector space, H@l(nBil ® C,C) is canonically identified to the left module
C® (B,z)*. Then we get thev-complexK (f) whose differentiali is easily described in
terms of f. In the cased = B=_C and f = I 4, this complex will be denoted bk (A).

We shall follow hereafter the second more explicit way. We shall make use of the
following slight elaboration of an ingredient of the presentation of [25].

Lemma 1. Let A be an associative algebra with product denotedrbylet C be a co-
associative coalgebra with coproduct denoted dyand let Homg (C, A) be equipped
with its structure of associative algebra for the convolution prodéctg) — o * B =
mo (¢ ® B) o A. Then one defines an algebra-homomorphism d, of Homg (C, A)
into the algebraEnds (A ® C) = Homy (A ® C, A ® C) of endomorphisms of the left-
moduleA ® C by definingd, as the composite

AQC 82 Agcec 12 s a0c L2 AagC

fora e Homg (C, A).
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The proof is straightforwardj, o dg = du+p follows easily from the coassociativity
of A and the associativity ofn. As pointed out in [25] one obtains a graphical
version (“electronic version”) of the proof by using the usual graphical version of the
coassociativity ofA combined with the usual graphical version of the associativity: of
The left A-linearity of d,, is straightforward.

Let us associate witlf e Hom(B, C) the homogeneous linear mapping of degree zero
o (BY* — C defined by setting = f : E — E’ in degree 1 and = 0 in degrees different
from 1. The dualB")* of B' defined degree by degree is a graded coassociative counital
coalgebra and one has

N =ax---xa=0.

——
N

Indeed it follows from the definition thai*¥ is trivial in degrees: # N. On the other
hand in degre&/, o*" is the composition

f®N N N
R~— E'® = E'® /R

which vanishes sinc¢“®N (R) C R'. Applying Lemma 1 it is easily checked that the
differential

dy:C®B* > C®B*

coincides withd of the first way.

Let us give an even more explicit description&f /) and pay some attention to the
degrees. Recall that y8')* we just mean here the direct sy, (B})* of the dual spaces
(B})* of the finite-dimensional vector spacBs. On the other hand, with = A(E, R) as
above, one has

E*®" if n <N,
! J— n r S .
B, = E*®/ Y E¥@R'QE® if nxN.
r+s=n—N

So one has for the dual spaces

E®" ifn<N,
Ty* ~ r s .
(B,)" = ﬂ E® Q RQE® ifn>N. (13)
r+s=n—N

In view of (13), one has canonical injections

(B,)" = (B) @ (B)"
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for k + ¢ = n and one sees that the coproducbf (B')* is given by

A= Y e

k+l=n

for x € (B,i)* where thex;, are the images of into (B,’{)* ® (B,’z)* under the above
canonical injections.

If f:B— C=A(E’, R")is amorphism oH yAlg, one verifies that th&/-differential
d of K (f) defined above is induced by the linear mappings

cREI®e® - ®e)>cf(e1) (2@ ®ep) (14)

of C® E®" intoC ® E®" . One hasi(C, ® (B)*) C Cs41® (BL_;)* so theN-complex
K (f) splits into subcomplexes

K" =PC-m®(B))". neN

which are homogeneous for the total degree. Using (13), (14) one can des¢rib@as
o> 0->K—>0—--. (15)

andK (f)" as

-1 n—1
£ reIrf" 18" of
—_———

o> 00— E/®E®'1_1—>---—>E/®n—>0—>--- (16)

for1<n <N —1whileK(f)N reads

®I®N_1 _ _
0o REE L peE Tt L E® T e ey 0. (17)

where 'can’ is the composition OE?Nfl ® f with canonical projection of’®" onto
E'® /R =Cy.

Let us seek for conditions of maximal acyclicity for thecomplexK (f). Firstly, it is
clear thatk (f)? is not acyclic, one hasHo(K (f)°) = K for p € {1, ..., N —1}. Secondly
if N> 3,itis straightforwardthatif € {1,..., N — 2} thenK (f)" is acyclic if and only
if E= E’=0.Next comes the following lemma.

Lemma 2. The N-complexesk (f)V~1 and K (f)V are acyclic if and only iff is an
isomorphism ofV-homogeneous algebras.

Proof. First K(f)N~1 is acyclic if and only if f induces an isomorphisnfi: E = E
of vector spaces as easily verified and then, the acyclicitk of)" is equivalent to
f®N (R) = R’ which means thaf is an isomorphism oiN-homogeneous algebrasto
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It is worth noticing here that fotv > 3 the nonacyclicity of theK (f)" for n €
{1,..., N — 2} wheneverE or E’ is nontrivial is easy to understand and to possibly cure.
Let us assume thak (f)¥—1 and K (/)N are acyclic. Then by identifying through the
isomorphismy the two N-homogeneous algebras, one can assumeAhatC = A =
A(E, R) and thatf is the identity mappind 4 of A onto itself, that is with the previous
notation that one is dealing witlk (/) = K(A). Trying to makeK (A) as acyclic as
possible one is now faced to the following result fér> 3.

Proposition 2. Assume thatv > 3, then one has
Ker(@"=1: A ® (Ay_1)" = Av1) =Im(d: A1 @ (AYy)" — A2 ® (Ay_1)7)
if and only if eitherk = E®” or R = 0.
Proof. One has
MA@ (Ay ) =E@E®" '~ """, Ay 1~E®" JEQR+RQE
andd™ 1 identifies here with the canonical projection
E®"" 5 E®"" JEQR+RQE

so its kernel iSE ® R + R ® E. On the other hand one hat; ® (A}))* = E ® R
andd:E ® R — E®"*" is the inclusion. So Ial) = Ker(@dV—1) is here equivalent to
R®E=E®R+ RQ®E andthus toR ® E = E ® R since all vector spaces are finite-
dimensional. It turns out that this holds if and only if eithRr= E® orR=0 (see
Appendix A). O

Corollary 1. Assume thatv > 3and letA = A(E, R) be aN-homogeneous algebra. Then
the K (A)" are acyclic forn > N — 1if and only if eitherR =0or R = E®"

Proof. In view of Proposition 2R =0 or R = E®" is necessary for the acyclicity of
K (A)N+1; on the other hand, iR = 0 or R = E®" then the acyclicity of thek (A)" for
n> N — 1isobvious. O

Notice thatR = 0 means tha# is the tensor algebré(E) whereask = E®" means
that.A = T(E*)". Thus the acyclicity of th& (A)" for n > N — 1 is stable by the duality
A A as for quadratic algebrad/(= 2). However, forN > 3 this condition does not lead
to an interesting class of algebras contrary to what happené fo2 where it characterizes
the Koszul algebras [29]. This is the very reason why another generalization of Koszulity
has been introduced and studied in [8] féthomogeneous algebras.
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5. Koszul homogeneous algebras

Let us examine more closely thé-complexk (A):
o A (A) 5 AB (A ) >~ AR (A) 5 A0

The A-linear mapd: A® (Ai.)* - A® (A}_l)* is induced by the canonical injection (see
in last section)

(A)" = (A1) @ (Ai_g) =A@ (A1) CA® (A,)"

The degree of K (A) asN-complex has not to be confused with the total degreRecall
that, whenN = 2, the quadratic algebrd is said to be Koszul ifK (A) is acyclic at any
degree > 0 (clearly it is equivalent to saying that each compkég4)” is acyclic for any
total degree: > 0).

For anyN, itis possible to contract thi&-complexk (A) into (2-)complexes by putting
together alternately or N — p arrowsd in K(A). The complexes so obtained are the
following ones:

L A (Ayy) D A (A, ) D A (A) Do,

which are denoted by, . All the possibilities are covered by the conditionsG <
N —2andr+1< p < N —1. Note that the compleX, , at degreé is A® (A}{)*, where
k=jN+rork=(+1N—p+r,accordingtd =2jori=2j+1(j €N).

In [8], the complexCx_1.0 is called theKoszul complexf 4, and the homogeneous
algebraA is said to beKoszulif this complex is acyclic at any degrée- 0. A motivation
for this definition is that Koszul property is equivalent to a purity property of the minimal
projective resolution of the trivial module. One has the following result [8,9]:

Proposition 3. Let.4 be a homogeneous algebra of degréeFori =2j ori =25 + 1,
j €N, the graded vector spac@or‘lA(K, K) lives in degrees> jN or > jN + 1,
respectively. Moreoverd is Koszul if and only if eaclTor;“(K, K) is concentrated in
degreej N or jN + 1, respectively purity property).

WhenN = 2, it is exactly Priddy’s definition [29]. Another motivation is that a certain
cubic Artin—Schelter regular algebra has the purity property, and this cubic algebra is a
good candidate for making noncommutative algebraic geometry [1,2]. Some other non-
trivial examples are contained in [8].

The following result shows how the Koszul compléx_1.0 plays a particular role.
Actually all the other contracted complexesKf.A) are irrelevant as far as acyclicity is
concerned.

Proposition 4. Let. A = A(E, R) be a homogeneous algebra of degiée 3. Assume that
(p, r) is distinct from(N — 1,0) and thatC,, is exact at degre¢ = 1. ThenR =0 or

R=E®",
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Proof. Assumer =0, hence K p < N — 2. Regarding’, o at degree 1 and total degree
N + 1, one gets the exact sequence

dr ah-r
E®RSE® T L L k¥ JEQR+RQE,

where the maps are the canonical ones. TBUB R =E ® R + R ® E, leading to
R®E = E ® R. This holds only ifR = 0 or R = E®" (see Appendix A).

Assume now K r < N — 2 (hencer + 1< p < N — 1). RegardingC,, , at degree 1
and total degre& + r, one gets the exact sequence

dr N+r dN—P
(Ay,) — E® " —

E®N+r/R ® E®r’

where the maps are the canonical ones. Thdig ,)* = R ® E®  andR ® E® is
contained inE® ® R. SOR ® E€ = E®" @ R, which implies agairR = 0 or R = E®"
(see Appendix A). O

Itis easy to check that, iR =0o0rR = E®N, anyC, , is exact at any degrée> 0. On
the other hand, for ang, one has

HoCp)= P E¥ oL,
0<j<N—p-1

which can be considered as a Koszul ldfimodule if A is Koszul.

Appendix A. A lemma on tensor products

Lemma 3. Let E be a finite-dimensional vector space. [Rebe a subspace @@ N> 1.
If R® E® = E® ® R holds for an integer > 1, thenR =0 or R = E®" .

Proof. Fix a basisX = (x1, ..., x,) of E, ordered byx; < --- < x,. The setX" of the
words of lengthN in the lettersxs, ..., x, is a basis ofE®" which is lexicographically

ordered. Denote by the XV -reduction operator aE®" associated t® [6,7]. This means
the following properties:

(i) S is an endomorphism of the vector spdE@N such thats? = ;

(ii) foranya e XV, eitherS(a) =a or S(a) < a (the latter inequality mean$(a) = 0, or
otherwise any word occurring in the linear decompositio @f) on X" is < a for
the lexicographic ordering);

(i) Ker(S)=R.
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Then S ® I e and e ® S are theXV+ -reduction operators of®" " associated
respectively toR ® E®" and E®" ® R. By assumption these endomorphisms are equal.
In particular, one has

Im(S) ® E® = E® @ Im(S).

But the subspace 165) is monomial, i.e., generated by words. So it suffices to prove the
lemma whenk is monomial.

Assume thatR contains the word;, ...x;,. For any lettersy;,,...,x; , the word
Xip .- XiyXj ...Xj, belongs toE® ® R. Since R is monomialx;,,, ...XiyXj, ...X;
belongs toR. Continuing the process, we see that any word belongs too
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