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Abstract

Various concepts associated with quadratic algebras admit natural generalizations when the
quadratic algebras are replaced by graded algebras which are finitely generated in degree 1 with
homogeneous relations of degreeN . Such algebras are referred to ashomogeneous algebras of
degreeN . In particular, it is shown that the Koszul complexes of quadratic algebras generalize as
N-complexes for homogeneous algebras of degreeN .
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction and preliminaries

Our aim is to generalize the various concepts associated with quadratic algebras as
described in [27] when the quadratic algebras are replaced by the homogeneous algebras
of degreeN with N � 2 (N = 2 is the case of quadratic algebras). Since the generalization
is natural and relatively straightforward, the treatment of [25–27] will be directly adapted
to homogeneous algebras of degreeN . In other words we dispense ourselves to give a
review of the case of quadratic algebras (i.e., the caseN = 2) by referring to the above
quoted nice treatments.

Besides the fact that it is natural to generalize for other degrees what exists for quadratic
algebras, this paper produces a very natural class ofN -complexes which generalize the
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Koszul complexes of quadratic algebras [19,25–27,33] and which are not of simplicial
type. By N -complexes of simplicial type we here meanN -complexes associated with
simplicial modules andN th roots of unity in a very general sense [12] which cover cases
considered, e.g., in [11,16,20,21,28] the generalized homology of which has been shown
to be equivalent to the ordinary homology of the corresponding simplicial modules [12].
This latter type of constructions and results has been recently generalized to the case of
cyclic modules [35]. In spite of the fact that they compute the ordinary homology of
the simplicial modules, the usefulness of theseN -complexes of simplicial type comes
from the fact that they can be combined with otherN -complexes [17,18]. In fact, the
BRS-like construction [4] of [18] shows that spectral sequences arguments (e.g., in the
form of a generalization of the homological perturbation theory [31]) are still working
for N -complexes. Other nontrivial classes ofN -complexes which are not of simplicial
type are the universal construction of [16] and theN -complexes of [14,15] (see also in
[13] for a review). It is worth noticing here that elements of homological algebra forN -
complexes have been developed in [21] and that several results forN -complexes and more
generallyN -differential modules like Lemma 1 of [12] have no nontrivial counterpart for
ordinary complexes and differential modules. It is also worth noticing that besides the
above mentioned examples, various problems connected with theoretical physics implicitly
involve exoticN -complexes (see, e.g., [23,24]).

In the course of the paper we shall point out the possibility of generalizing the approach
based on quadratic algebras of [27] to quantum spaces and quantum groups by replacing
the quadratic algebras byN -homogeneous ones. Indeed one also has in this framework
internalend, etc., with similar properties.

Finally we shall revisit in the present context the approach of [8,9] to Koszulity for
N -homogeneous algebras. This is in order since as explained below, the generalization
of the Koszul complexes introduced in this paper forN -homogeneous algebras is a
canonical one. We shall explain why a definition based on the acyclicity of theN -complex
generalizing the Koszul complex is inappropriate and we shall identify the ordinary
complex introduced in [8] (the acyclicity of which is the definition of Koszulity of [8])
with a complex obtained by contraction from the above KoszulN -complex. Furthermore
we shall show the uniqueness of this contracted complex among all other ones. Namely we
shall show that the acyclicity of any other complex (distinct from the one of [8]) obtained
by contraction of the KoszulN -complex leads forN � 3 to an uninteresting (trivial) class
of algebras.

Some examples of Koszul homogeneous algebras of degree> 2 are given in [8],
including a certain cubic Artin–Schelter regular algebra [1]. Recall that Koszul quadratic
algebras arise in several topics as algebraic geometry [22], representation theory [5],
quantum groups [26,27,33,34], Sklyanin algebras [30,32]. A classification of the Koszul
quadratic algebras with two generators over the complex numbers is performed in [7].
Koszulity of nonquadratic algebras and each of the above items deserve further attention.

The plan of the paper is the following.
In Section 2 we define the duality and the two (tensor) products which are exchanged by

the duality for homogeneous algebras of degreeN (N -homogeneous algebras). These are
the direct extension to arbitraryN of the concepts defined for quadratic algebras (N = 2)
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[25–27], and our presentation here as well as in Section 3 follows closely the one of
Ref. [27] for quadratic algebras.

In Section 3 we elaborate the categorical setting and we point out the conceptual reason
for the occurrence ofN -complexes in the framework ofN -homogeneous algebras. We also
sketch in this section a possible extension of the approach of [27] to quantum spaces and
quantum groups in which relations of degreeN replace the quadratic ones.

In Section 4 we define theN -complexes which are the generalizations for homogeneous
algebras of degreeN of the Koszul complexes of quadratic algebras [26,27]. The definition
of the cochainN -complexL(f ) associated with a morphismf of N -homogeneous
algebras follows immediately from the structure of the unit object

∧
N {d} of one of the

(tensor) products ofN -homogeneous algebras. We give three equivalent definitions of the
chainN -complexK(f ): A first one by dualization of the definition ofL(f ), a second one
which is an adaptation of [25] by using Lemma 1, and a third one which is a component-
wise approach. It is pointed out in this section that one cannot generalize naively the notion
of Koszulity forN -homogeneous algebras withN � 3 by the acyclicity of the appropriate
KoszulN -complexes.

In Section 5, we recall the definition of Koszul homogeneous algebras of [8] as well as
some results of [8,9] which justify this definition. It is then shown that this definition of
Koszulity for homogeneousN -algebras is optimal within the framework of the appropriate
KoszulN -complex.

Let us give some indications on our notations. Throughout the paper all vector spaces,
algebras, coalgebras are over a fixed fieldK. Furthermore, unless otherwise specified, the
algebras are unital associative and the coalgebras are counital coassociative. The symbol
⊗ denotes the tensor product over the basic fieldK. Concerning the generalized homology
of N -complexes we shall use the notation of [20] which is better adapted than other ones
to the case of chainN -complexes, that is ifE = ⊕

n En is a chainN -complex withN -
differentiald , its generalized homology is denoted bypH(E)= ⊕

n∈Z pHn(E) with

pHn(E)= Ker(dp :En →En−p)
/

Im
(
dN−p :En+N−p →En

)

for p ∈ {1, . . . ,N − 1} (n ∈ Z).

2. Homogeneous algebras of degree N

Let N be an integer withN � 2. A homogeneous algebra of degreeN or N -homoge-
neous algebrais an algebra of the form

A=A(E,R)= T (E)/(R) (1)

whereE is a finite-dimensional vector space (overK), T (E) is the tensor algebra ofE
and (R) is the two-sided ideal ofT (E) generated by a linear subspaceR of E⊗N . The
homogeneity of(R) implies thatA is a graded algebraA = ⊕

n∈N
An with An = E⊗n

for n < N andAn = E⊗n/
∑
r+s=n−N E⊗r ⊗ R ⊗ E⊗s for n � N where we have set

E⊗0 = K as usual. ThusA is a graded algebra which is connected (A0 = K), generated in
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degree 1(A1 =E) with the ideal of relations among the elements ofA1 =E generated by
R ⊂E⊗N = (A1)

⊗N .
A morphism ofN -homogeneous algebrasf :A(E,R)→A(E′,R′) is a linear mapping

f :E→E′ such thatf⊗N (R)⊂R′. Such a morphism is a homomorphism of unital graded
algebras. Thus one has a categoryHNAlg of N -homogeneous algebras and the forgetful
functorHNAlg → Vect, A �→E, from HNAlg to the categoryVect of finite-dimensional
vector spaces (overK).

Let A = A(E,R) be aN -homogeneous algebra. One definesits dual A! to be the
N -homogeneous algebraA! = A(E∗,R⊥) whereE∗ is the dual vector space ofE and
whereR⊥ ⊂ E∗⊗N = (E⊗N )∗ is the annihilator ofR, i.e., the subspace{ω ∈ (E⊗N )∗ |
ω(x)= 0, ∀x ∈ R} of (E⊗N )∗ identified withE∗⊗N . One has canonically

(
A!)! =A (2)

and iff :A→ A′ = A(E′,R′), is a morphism ofHNAlg, the transposed off :E→E′ is
a linear mapping ofE′ ∗ into E∗ which induces the morphismf ! : (A′)! → A! of HNAlg
so(A �→A!, f �→ f !) is a contravariant (involutive) functor.

LetA =A(E,R) andA′ =A(E′,R′) beN -homogeneous algebras; one definesA ◦A′
andA •A′ by setting

A ◦A′ =A(
E ⊗E′, πN

(
R⊗E′⊗N +E⊗N ⊗R′)),

A •A′ =A(
E ⊗E′, πN(R⊗R′)

)
,

whereπN is the permutation

(1,2, . . . ,2N) �→ (1,N + 1,2,N + 2, . . . , k,N + k, . . . ,N,2N) (3)

belonging to the symmetric groupS2N acting as usually on the factors of the tensor
products. One has canonically

(A ◦A′)! =A! •A′ !, (A •A′)! =A! ◦A′ ! (4)

which follows from the identity{R⊗E′⊗N +E⊗N ⊗R′}⊥ =R⊥ ⊗R′⊥. On the other hand,
the inclusionR⊗R′ ⊂R⊗E′⊗N +E⊗N ⊗R′ induces a surjective algebra homomorphism
p :A •A′ →A ◦A′ which is of course a morphism ofHNAlg.

It is worth noticing here that in contrast with what happens for quadratic algebras ifA
andA′ are homogeneous algebras of degreeN with N � 3 then the tensor product algebra
A⊗A′ is no more aN -homogeneous algebra. IndeedA⊗A′ is generated in degree 1 by
E ⊕E′ with the relation

R+R′ ⊂ (E ⊕E′)⊗N

and the quadratic relation

[E,E′] = {e⊗ e′ − e′ ⊗ e | e ∈E, e′ ∈E′} ⊂ (E ⊕E′)⊗2
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so thatA ⊗ A′ is homogeneous if and only ifN = 2 in which case it is quadratic.
Nevertheless there still exists (forN � 2) an injective homomorphism of unital algebra
i :A ◦ A′ → A ⊗ A′ doubling the degree which we now describe. Letı̃ :T (E ⊗ E′)→
T (E)⊗ T (E′) be the injective linear mapping which restricts as

ı̃ = π−1
n : (E ⊗E′)⊗n →E⊗n ⊗E′⊗n

on T n(E ⊗ E′) = (E ⊗ E′)⊗n for any n ∈ N. It is straightforward that̃ı is an algebra
homomorphism which is an isomorphism onto the subalgebra

⊕
n E

⊗n ⊗E′⊗n of T (E)⊗
T (E′). The following proposition is not hard to verify.

Proposition 1. Let A = A(E,R) andA′ = A(E′,R′) be twoN -homogeneous algebras.
Thenı̃ passes to the quotient and induces an injective homomorphismi of unital algebras
of A ◦A′ into A⊗A′. The image ofi is the subalgebra

⊕
nAn ⊗A′

n of A⊗A′.

The proof is almost the same as for quadratic algebras [27].

Remark. As pointed out in [27], any finitely related and finitely generated in degree 1
graded algebra (so in particular anyN -homogeneous algebra) gives rise to a quadratic
algebra. Indeed ifA = ⊕

n�0An is a graded algebra, defineA(d) by settingA(d) =⊕
n�0And . Then it was shown in [3] that ifA is generated by the finite-dimensional

subspaceA1 of its elements of degree 1 with the ideal of relations generated by its
components of degree� r, then the same is true forA(d) with r replaced by 2+ (r−2)/d .

3. Categorical properties

Our aim in this section is to investigate the properties of the categoryHNAlg. We
follow again closely [27] replacing the quadratic algebras considered there by theN -ho-
mogeneous algebras.

Let A = A(E,R), A′ = A(E′,R′) and A′′ = A(E′′,R′′) be three homogeneous
algebras of degreeN . Then the isomorphismsE ⊗ E′ � E′ ⊗ E and(E ⊗ E′) ⊗ E′′ �
E ⊗ (E′ ⊗ E′′) of Vect induce corresponding isomorphismsA ◦ A′ � A′ ◦ A and
(A ◦ A′) ◦ A′′ � A ◦ (A′ ◦ A′′) of N -homogeneous algebras (i.e., ofHNAlg). Thus
HNAlg endowed with◦ is a tensor category [10] and furthermore to the one-dimensional
vector spaceKt ∈ Vect which is a unit object of(Vect,⊗) corresponds the polynomial
algebraK[t] = A(Kt,0)� T (K) as unit object of (HNAlg,◦). In fact the isomorphisms
K[t] ◦ A � A � A ◦ K[t] are obvious inHNAlg. Thus one has part (i) of the following
theorem.

Theorem 1. The categoryHNAlg of N -homogeneous algebras has the following
properties:

(i) HNAlg endowed with◦ is a tensor category with unit objectK[t].
(ii) HNAlg endowed with• is a tensor category with unit object

∧
N {d} = K[t]!.
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Part (ii) follows from (i) by the dualityA �→ A!. In fact (i) and (ii) are equivalent in
view of (2) and (4).

The N -homogeneous algebra
∧
N {d} = K[t]! � T (K)/K⊗N is the (unital) graded

algebra generated in degree one byd with relationdN = 0. Part (ii) of Theorem 1 is the
very reason for the appearance ofN -complexes in the present context, remembering the
obvious fact that graded

∧
N {d}-module andN -complexes are the same thing.

Theorem 2. The functorial isomorphism inVect

HomK(E ⊗E′,E′′)∼= HomK

(
E,E′ ∗ ⊗E′′)

induces a corresponding functorial isomorphism

Hom(A •B,C)∼= Hom(A,B! ◦ C)

in HNAlg, (settingA =A(E,R), B =A(E′,R′) andC =A(E′′,R′′)).

Again the proof is the same as for quadratic algebras [27]. It follows that the tensor
category(HNAlg,•) has an internalHom [10] given by

Hom(B,C)= B! ◦ C (5)

for two N -homogeneous algebrasB andC. SettingA = A(E,R), B = A(E′,R′), and
C = A(E′′,R′′) one verifies that the canonical linear mappings(E∗ ⊗E′)⊗E→ E′ and
(E′ ∗ ⊗E′′)⊗ (E∗ ⊗E′)→E∗ ⊗E′′ induce products

µ : Hom(A,B) •A → B, (6)

m : Hom(B,C) • Hom(A,B)→ Hom(A,C) (7)

these internal products as well as their associativity properties follow more generally from
the formalism of tensor categories [10].

Following [27], definehom(A,B) = Hom(A!,B!)! = A! • B. Then one obtains by
duality from (6) and (7) morphisms

δ◦ :B → hom(A,B) ◦A, (8)

∆◦ : hom(A,C)→ hom(B,C) ◦ hom(A,B) (9)

satisfying the corresponding coassociativity properties from which one obtains by
composition with the corresponding homomorphismsi the algebra homomorphisms

δ :B → hom(A,B)⊗A, (10)

∆ : hom(A,C)→ hom(B,C)⊗ hom(A,B). (11)
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Theorem 3. LetA =A(E,R) be aN -homogeneous algebra. Then the(N -homogeneous)
algebra end(A) = A! • A = hom(A,A) endowed with the coproduct∆ becomes a
bialgebra with counitε :A! • A → K induced by the dualityε = 〈· , ·〉 :E∗ ⊗E → K and
δ defines onA a structure of leftend(A)-comodule.

4. The N -complexes L(f ) and K(f )

Let us apply Theorem 2 withA= ∧
N {d} and use Theorem 1(ii). One has

Hom(B,C)∼= Hom
(∧

N
{d},B! ◦ C

)
(12)

and we denote byξf ∈ B! ◦ C the image ofd corresponding to the morphismf ∈
Hom(B,C). One has(ξf )N = 0 and by using the injective algebra homomorphism
i :B! ◦ C → B! ⊗ C of Proposition 1 we letd be the left multiplication byi(ξf ) in
B! ⊗ C. One hasdN = 0 so, equipped with the appropriate graduation,(B! ⊗ C, d) is a
N -complex which will be denoted byL(f ). In the case whereA = B = C and wheref
is the identity mappingIA of A onto itself, thisN -complex will be denoted byL(A).
TheseN -complexes are the generalizations of the Koszul complexes denoted by the same
symbols for quadratic algebras and morphisms [27]. Note that(B! ⊗ C, d) is a cochain
N -complex of rightC-modules, i.e.,d :B!

n ⊗ C → B!
n+1 ⊗ C is C-linear.

Similarly the Koszul complexesK(f ) associated with morphismsf of quadratic
algebras generalize asN -complexes for morphisms ofN -homogeneous algebras. Let
B = A(E,R) andC = A(E′,R′) be twoN -homogeneous algebras and letf :B → C be a
morphism ofN -homogeneous algebras (f ∈ Hom(B,C)). One can define theN -complex
K(f ) = (C ⊗ B!∗, d) by using partial dualization of theN -complexL(f ) generalizing
thereby the construction of [26] or one can defineK(f ) by generalizing the construction
of [25,27].

The first way consists in applying the functor HomC(−,C) to each rightC-module of the
N -complex(B! ⊗ C, d). We get a chainN -complex of leftC-modules. SinceB!

n is a finite-
dimensional vector space, HomC(B!

n ⊗ C,C) is canonically identified to the left module
C ⊗ (B!

n)
∗. Then we get theN -complexK(f ) whose differentiald is easily described in

terms off . In the caseA = B = C andf = IA, this complex will be denoted byK(A).
We shall follow hereafter the second more explicit way. We shall make use of the

following slight elaboration of an ingredient of the presentation of [25].

Lemma 1. Let A be an associative algebra with product denoted bym, let C be a co-
associative coalgebra with coproduct denoted by∆ and let HomK(C,A) be equipped
with its structure of associative algebra for the convolution product(α,β) �→ α ∗ β =
m ◦ (α ⊗ β) ◦ ∆. Then one defines an algebra-homomorphismα �→ dα of HomK(C,A)

into the algebraEndA(A⊗ C)= HomA(A⊗ C,A⊗ C) of endomorphisms of the leftA-
moduleA⊗C by definingdα as the composite

A⊗C IA⊗∆−−−−−→A⊗C ⊗C IA⊗α⊗IC−−−−−−→A⊗A⊗C m⊗IC−−−−−→A⊗C
for α ∈ HomK(C,A).
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The proof is straightforward,dα ◦ dβ = dα∗β follows easily from the coassociativity
of ∆ and the associativity ofm. As pointed out in [25] one obtains a graphical
version (“electronic version”) of the proof by using the usual graphical version of the
coassociativity of∆ combined with the usual graphical version of the associativity ofm.
The leftA-linearity ofdα is straightforward.

Let us associate withf ∈ Hom(B,C) the homogeneous linear mapping of degree zero
α : (B!)∗ → C defined by settingα = f :E→E′ in degree 1 andα = 0 in degrees different
from 1. The dual(B!)∗ of B! defined degree by degree is a graded coassociative counital
coalgebra and one has

α∗N = α ∗ · · · ∗ α︸ ︷︷ ︸
N

= 0.

Indeed it follows from the definition thatα∗N is trivial in degreesn �= N . On the other
hand in degreeN , α∗N is the composition

R
f⊗N
−→E′⊗N →E′⊗N /R′

which vanishes sincef⊗N (R) ⊂ R′. Applying Lemma 1 it is easily checked that theN -
differential

dα :C ⊗ B!∗ → C ⊗ B!∗

coincides withd of the first way.
Let us give an even more explicit description ofK(f ) and pay some attention to the

degrees. Recall that by(B!)∗ we just mean here the direct sum
⊕
n(B!

n)
∗ of the dual spaces

(B!
n)

∗ of the finite-dimensional vector spacesB!
n. On the other hand, withB =A(E,R) as

above, one has

B!
n =



E∗⊗n if n <N,

E∗⊗n/ ∑
r+s=n−N

E∗⊗r ⊗R⊥ ⊗E∗⊗s if n�N.

So one has for the dual spaces

(
B!
n

)∗ ∼=


E⊗n if n <N,⋂
r+s=n−N

E⊗r ⊗R⊗E⊗s if n�N. (13)

In view of (13), one has canonical injections

(
B!
n

)∗
↪→ (

B!
k

)∗ ⊗ (
B!
*

)∗
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for k + *= n and one sees that the coproduct∆ of (B!)∗ is given by

∆(x)=
∑
k+*=n

xk*

for x ∈ (B!
n)

∗ where thexk* are the images ofx into (B!
k)

∗ ⊗ (B!
*)

∗ under the above
canonical injections.

If f :B → C = A(E′,R′) is a morphism ofHNAlg, one verifies that theN -differential
d of K(f ) defined above is induced by the linear mappings

c⊗ (e1 ⊗ e2 ⊗ · · · ⊗ en) �→ cf (e1)⊗ (e2 ⊗ · · · ⊗ en) (14)

of C ⊗E⊗n into C ⊗E⊗n−1
. One hasd(Cs ⊗ (B!

r )
∗)⊂ Cs+1 ⊗ (B!

r−1)
∗ so theN -complex

K(f ) splits into subcomplexes

K(f )n =
⊕
m

Cn−m ⊗ (
B!
m

)∗
, n ∈ N

which are homogeneous for the total degree. Using (13), (14) one can describeK(f )0 as

· · · → 0→ K → 0 → ·· · (15)

andK(f )n as

· · · → 0 →E⊗n f⊗I⊗n−1
E−−−−−→E′ ⊗E⊗n−1 → ·· · I

⊗n−1

E′ ⊗f−−−−−→E′⊗n → 0 → ·· · (16)

for 1 � n�N − 1 whileK(f )N reads

· · ·0→ R
f⊗I⊗N−1

E−−−−−→E′ ⊗E⊗N−1 → ·· · →E′⊗N−1 ⊗E can−→ CN → 0 · · · (17)

where ’can’ is the composition ofI⊗N−1

E′ ⊗ f with canonical projection ofE′⊗N onto

E′⊗N /R′ = CN .
Let us seek for conditions of maximal acyclicity for theN -complexK(f ). Firstly, it is

clear thatK(f )0 is not acyclic, one haspH0(K(f )
0)= K for p ∈ {1, . . . ,N−1}. Secondly

if N � 3, it is straightforward that ifn ∈ {1, . . . ,N − 2} thenK(f )n is acyclic if and only
if E = E′ = 0. Next comes the following lemma.

Lemma 2. TheN -complexesK(f )N−1 andK(f )N are acyclic if and only iff is an
isomorphism ofN -homogeneous algebras.

Proof. FirstK(f )N−1 is acyclic if and only iff induces an isomorphismf :E
�−→ E′

of vector spaces as easily verified and then, the acyclicity ofK(f )N is equivalent to
f⊗N (R)= R′ which means thatf is an isomorphism ofN -homogeneous algebras.✷
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It is worth noticing here that forN � 3 the nonacyclicity of theK(f )n for n ∈
{1, . . . ,N − 2} wheneverE orE′ is nontrivial is easy to understand and to possibly cure.
Let us assume thatK(f )N−1 andK(f )N are acyclic. Then by identifying through the
isomorphismf the twoN -homogeneous algebras, one can assume thatB = C = A =
A(E,R) and thatf is the identity mappingIA of A onto itself, that is with the previous
notation that one is dealing withK(f ) = K(A). Trying to makeK(A) as acyclic as
possible one is now faced to the following result forN � 3.

Proposition 2. Assume thatN � 3, then one has

Ker
(
dN−1 :A2 ⊗ (

A!
N−1

)∗ → AN+1
) = Im

(
d :A1 ⊗ (

A!
N

)∗ →A2 ⊗ (
A!
N−1

)∗)

if and only if eitherR =E⊗N or R = 0.

Proof. One has

A2 ⊗ (
A!
N−1

)∗ =E⊗2 ⊗E⊗N−1 �E⊗N+1
, AN+1 �E⊗N+1/

E ⊗R +R⊗E

anddN−1 identifies here with the canonical projection

E⊗N+1 →E⊗N+1/
E ⊗R +R⊗E

so its kernel isE ⊗ R + R ⊗ E. On the other hand one hasA1 ⊗ (A!
N)

∗ = E ⊗ R

and d :E ⊗ R → E⊗N+1
is the inclusion. So Im(d) = Ker(dN−1) is here equivalent to

R ⊗ E = E ⊗ R +R ⊗E and thus toR ⊗E = E ⊗ R since all vector spaces are finite-
dimensional. It turns out that this holds if and only if eitherR = E⊗N or R = 0 (see
Appendix A). ✷
Corollary 1. Assume thatN � 3 and letA =A(E,R) be aN -homogeneous algebra. Then
theK(A)n are acyclic forn�N − 1 if and only if eitherR = 0 or R =E⊗N .

Proof. In view of Proposition 2,R = 0 or R = E⊗N is necessary for the acyclicity of
K(A)N+1; on the other hand, ifR = 0 orR = E⊗N then the acyclicity of theK(A)n for
n�N − 1 is obvious. ✷

Notice thatR = 0 means thatA is the tensor algebraT (E) whereasR = E⊗N means
thatA = T (E∗)!. Thus the acyclicity of theK(A)n for n�N − 1 is stable by the duality
A �→A! as for quadratic algebras (N = 2). However, forN � 3 this condition does not lead
to an interesting class of algebras contrary to what happens forN = 2 where it characterizes
the Koszul algebras [29]. This is the very reason why another generalization of Koszulity
has been introduced and studied in [8] forN -homogeneous algebras.
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5. Koszul homogeneous algebras

Let us examine more closely theN -complexK(A):

· · · → A⊗ (
A!
i

)∗ d−→A⊗ (
A!
i−1

)∗ → · · · →A⊗ (
A!

1

)∗ d−→A → 0.

TheA-linear mapd :A⊗ (A!
i )

∗ →A⊗ (A!
i−1)

∗ is induced by the canonical injection (see
in last section)

(
A!
i

)∗
↪→ (

A!
1

)∗ ⊗ (
A!
i−1

)∗ =A1 ⊗ (
A!
i−1

)∗ ⊂A⊗ (
A!
i−1

)∗
.

The degreei ofK(A) asN -complex has not to be confused with the total degreen. Recall
that, whenN = 2, the quadratic algebraA is said to be Koszul ifK(A) is acyclic at any
degreei > 0 (clearly it is equivalent to saying that each complexK(A)n is acyclic for any
total degreen > 0).

For anyN , it is possible to contract theN -complexK(A) into (2-)complexes by putting
together alternatelyp or N − p arrowsd in K(A). The complexes so obtained are the
following ones:

· · · dN−p−−−→ A⊗ (
A!
N+r

)∗ dp−→A⊗ (
A!
N−p+r

)∗ dN−p−−−→A⊗ (
A!
r

)∗ dp−→ 0,

which are denoted byCp,r . All the possibilities are covered by the conditions 0� r �
N −2 andr +1 � p �N −1. Note that the complexCp,r at degreei isA⊗ (A!

k)
∗, where

k = jN + r or k = (j + 1)N − p+ r, according toi = 2j or i = 2j + 1 (j ∈ N).
In [8], the complexCN−1,0 is called theKoszul complexof A, and the homogeneous

algebraA is said to beKoszulif this complex is acyclic at any degreei > 0. A motivation
for this definition is that Koszul property is equivalent to a purity property of the minimal
projective resolution of the trivial module. One has the following result [8,9]:

Proposition 3. LetA be a homogeneous algebra of degreeN . For i = 2j or i = 2j + 1,
j ∈ N, the graded vector spaceTorAi (K,K) lives in degrees� jN or � jN + 1,
respectively. Moreover,A is Koszul if and only if eachTorAi (K,K) is concentrated in
degreejN or jN + 1, respectively( purity property).

WhenN = 2, it is exactly Priddy’s definition [29]. Another motivation is that a certain
cubic Artin–Schelter regular algebra has the purity property, and this cubic algebra is a
good candidate for making noncommutative algebraic geometry [1,2]. Some other non-
trivial examples are contained in [8].

The following result shows how the Koszul complexCN−1,0 plays a particular role.
Actually all the other contracted complexes ofK(A) are irrelevant as far as acyclicity is
concerned.

Proposition 4. LetA=A(E,R) be a homogeneous algebra of degreeN � 3. Assume that
(p, r) is distinct from(N − 1,0) and thatCp,r is exact at degreei = 1. ThenR = 0 or

R =E⊗N .
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Proof. Assumer = 0, hence 1� p �N − 2. RegardingCp,0 at degree 1 and total degree
N + 1, one gets the exact sequence

E ⊗R dp−→E⊗N+1 dN−p−−−→E⊗N+1/
E ⊗R +R⊗E,

where the maps are the canonical ones. ThusE ⊗ R = E ⊗ R + R ⊗ E, leading to
R⊗E =E ⊗R. This holds only ifR = 0 orR =E⊗N (see Appendix A).

Assume now 1� r � N − 2 (hencer + 1 � p � N − 1). RegardingCp,r at degree 1
and total degreeN + r, one gets the exact sequence

(
A!
N+r

)∗ dp−→E⊗N+r dN−p−−−→E⊗N+r/
R⊗E⊗r ,

where the maps are the canonical ones. Thus(A!
N+r )∗ = R ⊗ E⊗r , andR ⊗ E⊗r is

contained inE⊗r ⊗R. SoR⊗E⊗r =E⊗r ⊗R, which implies againR = 0 orR = E⊗N

(see Appendix A). ✷
It is easy to check that, ifR = 0 orR =E⊗N , anyCp,r is exact at any degreei > 0. On

the other hand, for anyR, one has

H0(Cp,r )=
⊕

0�j�N−p−1

E⊗j ⊗E⊗r ,

which can be considered as a Koszul leftA-module ifA is Koszul.

Appendix A. A lemma on tensor products

Lemma 3. LetE be a finite-dimensional vector space. LetR be a subspace ofE⊗N ,N � 1.
If R⊗E⊗r =E⊗r ⊗R holds for an integerr � 1, thenR = 0 or R =E⊗N .

Proof. Fix a basisX = (x1, . . . , xn) of E, ordered byx1 < · · · < xn. The setXN of the
words of lengthN in the lettersx1, . . . , xn is a basis ofE⊗N which is lexicographically
ordered. Denote byS theXN -reduction operator ofE⊗N associated toR [6,7]. This means
the following properties:

(i) S is an endomorphism of the vector spaceE⊗N such thatS2 = S;
(ii) for any a ∈XN , eitherS(a)= a or S(a) < a (the latter inequality meansS(a)= 0, or

otherwise any word occurring in the linear decomposition ofS(a) onXN is < a for
the lexicographic ordering);

(iii) Ker(S)=R.
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Then S ⊗ IE⊗r and IE⊗r ⊗ S are theXN+r -reduction operators ofE⊗N+r
associated

respectively toR ⊗ E⊗r andE⊗r ⊗ R. By assumption these endomorphisms are equal.
In particular, one has

Im(S)⊗E⊗r =E⊗r ⊗ Im(S).

But the subspace Im(S) is monomial, i.e., generated by words. So it suffices to prove the
lemma whenR is monomial.

Assume thatR contains the wordxi1 . . . xiN . For any lettersxj1, . . . , xjr , the word
xi1 . . . xiN xj1 . . . xjr belongs toE⊗r ⊗ R. SinceR is monomialxir+1 . . . xiN xj1 . . . xjr
belongs toR. Continuing the process, we see that any word belongs toR. ✷
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