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Abstract

The mammalian RACK1 protein binds activated protein kinase C, acting as an intracellular receptor to anchor the
activated PKC to the cytoskeleton. Genes encoding RACK1-like proteins have been isolated from a wide range of
eucaryotic organisms; we report the isolation of a Drosophila member of this family. This Drosophila RACK1-like protein
shows 76% identity to the mammalian RACK1 proteins, but only about 60% identity to related proteins from plants and
fungi. The Drosophila rack1 gene has a dynamic pattern of expression during early embryogenesis with the highest
expression in the mesodermal and endodermal lineages. q 1997 Elsevier Science B.V.
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Ž .After activation, protein kinase C PKC translo-
cates in the cell to its proper sites for function. This
process is believed to be mediated by a set of pro-

Žteins termed RACKs receptors for activated C-
w x.k inase, 1 . One such protein, RACK1, has been

implicated in the anchoring of activated b PKC to the
w xcytoskeleton 2 . RACK1 binds specifically to acti-
Žvated b PKC or other related PKCs but not other

.kinases in a stochiometric manner, stimulating PKC
w xkinase activity after RACK1 binding 2 . The RACK1

protein contains seven imperfect WD40-repeats,
where sequences in repeats III and VI have been
implicated in the binding of RACK1 with activated

w xPKC 2–5 . Injection of a synthetic fragment of
ŽRACK1 containing a PKC binding site peptide rVI
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.from repeat VI into Xenopus oocytes is sufficient to
induce b PKC translocation from the cell membrane

w xand induce oocyte maturation 3 , suggesting that
RACK1 functions to modulate PKC activity, possibly
by stabilizing the active configuration of the protein

w xkinase 4 . RACK1 binds to the C2 domain present in
the a , b and g isoforms of PKC. This C2 domain is
also present in several other proteins involved in

Žsignal transduction phospholipases C and A2, GT-g

.Pase activating protein and synaptotagmin , which
can also compete for RACK1-binding with b PKC
w x4,5 .

Homologous rack1-like genes have been identified
from numerous other eucaryotes, including

w x w xSchizosaccharomyces 6 , Chlamydomonas 7 , Neu-
w x w xrospora 8 , and plants 9,10 , but the ability of these

proteins to interact with PKC has not been investi-
gated. These proteins share approximately 60% amino
acid identity and contain repeated WD40 motifs.
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These RACK1-like proteins have high sequence simi-
larity to the three isoforms of the b-subunit of G-pro-

w xtein, which also contain WD40 repeats 11 . How-
ever, this similarity to G -proteins does not appear tob

reflect a common ‘signal transduction’ function, since
RACK1 and the other RACK1-like proteins show a
similar degree of similarity to other WD40-repeat

Žproteins, such as TBF-associated factors Drosophila
w x w xTAF80 12 , mammalian TAF100 13 , and yeast
w x. w xMet30p 14 and the yeast splicing factor PRP4 15 ,

which have no known function in signal transduction.
We isolated the Drosophila rack1 gene during a

screen for Drosophila maf genes in an embryonic
Ž0–24 h cDNA library obtained commercially from

Clontech, Palo Alto, CA; G. Yang, unpublished re-
.sults . As a result of an apparent cloning artefact, the

7Q2 clone contained a head-to-head fusion of a
maf2-containing cDNA with a rack1 cDNA. The
sequence of the non-maf2 portion of the clone, shown

in Fig. 1, is a full-length cDNA encoding a 318
amino acid RACK1-like protein. In situ hybridization
of the rack1-portion of this cDNA to polytene chro-
mosomes revealed the rack1 locus resides on chro-
mosome arm 2L at 28D1-5, distinct from the locus

Žfor maf2 at 57A on chromosome arm 2R data not
.shown .

The predicted Drosophila RACK1-like protein has
76% identity and 93% amino acid similarity to rat

Ž .RACK1 Fig. 2 . This Drosophila RACK1-like pro-
tein is highly similar to the other RACK1-like pro-

w xteins: 67% identity to Chlamydomonas Cblp 7 , 66%
w xidentity to Neurospora cpc-2 8 , 59% identity with
w xSchizosaccharomyces ED616 6 , and 61% identity

w x w x Ž .with tobacco arcA 9 and rice RWD 15 not shown .
Importantly, the Drosophila protein retains the do-
mains in repeats III and VI that are important for the
PKC-binding activity of the rat RACK1 protein: the

Žpeptide rIII and rVI sequences aa 108–114

Fig. 1. Sequence of the portion of the 7Q2 clone containing the rack1 cDNA. Predicted protein sequence is indicated above the DNA
Ž .sequence. This sequence has been deposited in the GenBank database accession no. U96491 .
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.DVLSVAF and aa 235–242 DIINALCF which con-
w xfer PKC binding and activation 2,3 and two other

Žsequences adjacent to the PKC binding sites aa
.129–134 TIKLWN and aa 256–261 SIKIWD be-

lieved to compete against a ‘pseudo-RACK’ site
within the regulatory region of PKC for the RACK-

w xbinding site of PKC 2,4 .
In situ hybridization of anti-sense RNA digoxi-

genin-labeled probes to early Drosophila embryos
reveals a dynamic pattern of expression of this RNA
Ž .Fig. 3 . Maternally supplied rack1 RNA is present
ubiquitously throughout the cytoplasm of syncytial-

Ž .stage embryos into nuclear cycle 14 Fig. 3A . Dur-
ing cellularization, maternal RNA is degraded
throughout the embryo, and de novo transcription
occurs in the mesoderm and cephalic furrow just

Ž .prior to gastrulation stage 6, Fig. 3B . RNA expres-
sion continues in the mesoderm and dorsal cephalic

Ž .furrow through stage 8 Fig. 3C, Fig. 3E , along with
low level expression in the posterior midgut and in
the dorsal anterior region of the embryo. During stage
7, segmentally restricted expression in mesoderm can

Ž .be resolved Fig. 3D . During stage 9, expression
increases in the posterior midgut, while decreasing in

Ž .mesoderm and cephalic furrow Fig. 3F and is acti-
Ž .vated in late stage 9 in the anterior midgut Fig. 3G .

During stage 10 and 11, expression in the mesoderm
and midgut primordia cycle: in early stage 10 meso-
derm expression increases and midgut expression is

Ž .lower Fig. 3H , whereas in stage 11, mesoderm
Žexpression drops and midgut expression is high Fig.

.3I . Also during stages 10 and 11, the rack1 RNA is

w x w xFig. 2. Comparison of the predicted Drosophila RACK1-like protein with RACK1-like proteins from mammals 2 , Chlamydomonas 7 ,
w x w x w xNeurospora 8 , Schizosaccharomyces 6 and tobacco 9 . Amino acids identical to the predicted Drosophila protein are capitalized,

w xnon-identical amino acids are lower-case. The seven WD-repeats described for the rat RACK1 protein 2 are indicated above the
Ž . w xsequence. Fragments of rat RACK1 implicated in PKC-binding rIII, a.a. 107–113 and rVI, a.a. 234–241 2 and the adjacent
Ž . w xC RACK-like sequences with similarity to the C2 domain of b-PKC repeat III, a.a. 128–132 and repeat VI, a.a. 255–260 2 , as well as

the corresponding amino acids of the RACK1-like proteins, are indicated in italics.
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up-regulated in the ectodermal tracheal primordia
Ž . Ž .Fig. 3J and in dividing neuroblasts not shown in
comparison to the surrounding ectoderm, although
lower than peak mesodermal and endodermal expres-
sion.

The dynamic expression pattern of rack1 RNA
during early Drosophila development suggests a
complex regulation of the transcription of this gene.
Although most if not all Drosophila tissues appear to
contain rack1 RNA at low levels during early em-

Ž . Ž .Fig. 3. Drosophila rack1 RNA expression during early embryogenesis. Figures A-C and G-J are shown anterior-left, dorsal-up.
Ž . Ž . Ž . Ž . Ž .Structures identified are: mesoderm ms , cephalic furrow cf , anterior midgut AMG , posterior midgut PMG , labral segment lr ,

Ž . Ž . Ž . Ž .tracheal pit primordia tp . A syncytial blastoderm embryo cycle 13 , ubiquitous expression. B stage 6, cephalic furrow and mesoderm
Ž . Ž .expression. C stage 8, dorsal cephalic furrow, mesoderm and weak dorsal anterior expression. D stage 7, enlarged view of segmented

Ž . Ž . Ž .mesodermal expression anterior-left, ventral-up . E stage 7 ventral view, cephalic furrow and mesodermal expression. F stage 9 dorsal
Ž .view, posterior midgut, dorsal cephalic furrow and labral expression. G early stage 10, strong midgut and weak mesoderm expression.

Ž . Ž . Ž .H early stage 11, strong mesoderm expression. I late stage 11, strong midgut and weak ventral neuroblast expression. J mid-stage 11,
Ž .lateral surface view showing expression in tracheal pits tp .
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Žbryogenesis as judged by prolonged staining for
.rack1 probes, not shown , individual tissues activate

this rack1 RNA at specific stages of embryonic
development. Regulated transcription of other
RACK1-like genes has been observed in tobacco and
Neurospora, where transcription of these genes is

w xup-regulated by auxin 8 and elevated amino-acid
w xlevels 9 , respectively. Similarly RACK1 expression

is high in embryonic mouse brain and decreases
differentially in different areas of the brain during

w xpost-natal development 16 . In contrast, transcription
Ž .of the rice RACK1-like gene RWD has been de-

scribed as constitutive because all tissues express this
w xgene 10 , although potential internal tissue variation

was not examined.
Unfortunately, because the requirements for PKC-

signalling in the early Drosophila embryo have not
been examined, it is not clear whether this differential
regulation of rack1 RNA expression is relevant to
any aspect of PKC-signalling during Drosophila em-
bryogenesis. However, in vertebrate development,
PKC activity is important for modulating proper FGF
signalling in many tissues, including mesoderm in-

w xduction during early Xenopus development 17 my-
w xoblast differentiation 18 , and endothelial prolifera-

w xtion 19 . It is interesting to note that the tissues that
express the Drosophila RACK1 RNA during early
embryogenesis include those expressing the two
known FGF-receptors: breathless, expressed in the
tracheal primordia and required for tracheal branch-

w xing 20 and heartless, expressed in the early meso-
derm and required for post-gastrulation mesoderm

w xmigration 21–23 . Assuming that PKC is similarly
required for FGF-signalling in both vertebrates and
Drosophila, the overlapping expression of RACK1
and the FGF-receptors suggests that the differential
regulation of RACK1 might be an important feature
in PKC-mediated signalling.
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