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Abstract

We propose algorithms to perform two new operations on an arrangement of line segments in the plane,
represented by a trapezoidal map: the split of the map along a given vertical lineD, and the union of two trapezoidal
maps computed in two vertical slabs of the plane that are adjacent through a vertical lineD. The data structure we
use is a modified Influence Graph, still allowing dynamic insertions and deletions of line segments in the map. The
algorithms for both operations run in O(sD logn+ log2n) time, wheren is the number of line segments in the map,
andsD is the number of line segments intersected byD.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let us assume that we are computing the arrangement of a set of line segments in the plane in
parallel, under the following framework: the plane is partitioned into vertical slabs, and each processor
is associated with a slabV , namelyV =]a, b[×] −∞,+∞[, wherea, b ∈ R ∪ {−∞,+∞}, anda < b.
Such a slab will be denoted asVa,b, and its associated processorPa,b. We call the linex = a the left
boundary lineof V and the linex = b its right boundary line. A processor computes the trapezoidal
map formed by the line segments intersecting its associated slabV . In addition, the construction of the
arrangement must be dynamically maintained, which means that line segments can be inserted or deleted,
and the arrangement must be consequently updated.

This can lead to a bad balancing of the data between the processors, some of them being overloaded,
while others are under-loaded. We must thus perform load-balancing between the processors. The vertical
slabVa,b associated to an overloaded processorP will be split into two disjoint slabs,Va,b = Va,c ∪ Vc,b,
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c ∈]a, b[. ThenP will be associated for example with the vertical slabVa,c, andVc,b will be united to
the adjacent slabVb,d . While these split/union operations are performed on the slabs, the corresponding
split/union operations must be performed on the arrangements by the associated processors.

As previously stated, the possibility of inserting and deleting segments dynamically and efficiently in
each slab must be preserved. As the Influence Graph [2] allowed us to construct the trapezoidal map for a
set of line segments in the plane in a dynamic way, we try here to modify this structure in such a way that
split and union operations along vertical lines can be handled. Moreover, locating points or more general
objects in trapezoidal maps appears to be useful, and the Influence Graph is naturally adapted to efficient
location queries. With a similar motivation, Duboux and Ferreira study the reorganization of a dictionary
and its implementation on a multicomputer [15,16].

In Section 2, we adapt the basic definitions about trapezoidal maps to our problem, then in Section 3
we show how the Influence Graph can be modified to permit the split and union operations, for which
algorithms are given in Sections 4 and 5, respectively. A randomized analysis of the algorithms is
proposed in Section 6.

2. The trapezoidal map

Trapezoidal maps are often used to compute the intersecting pairs among a setS of n line segments.
The trapezoidal mapT (S) is defined as follows: from each endpoint of a line segment inS, or each
intersection point of two line segments inS, extend a vertical segment to the first segment inS above,
and to the first segment below (or to infinity if there is no such segment inS). We obtain in this way
a subdivision of the plane into trapezoids, some of them being degenerate (Fig. 1). A trapezoid is
determined by at most 4 segments ofS, it has afloor, aceiling, and two verticalwalls, through which it
can have at most 4 adjacent trapezoids (at most 2 per wall), calledhorizontal neighbors(Fig. 2).

The definition of a trapezoidal map can be adapted to our problem: a processorP computes the
trapezoidal map in its associated slabV = Va,b. Then we must distinguish different types of trapezoids:
• Usual trapezoids, also called complete trapezoids (Fig. 3(a)).
• Simply incomplete trapezoids, that are bounded on one side by a boundary linew of V . Such a

trapezoidT has a floor and a ceiling that both intersectw, T is left-incompleteif w is the left boundary

Fig. 1. A trapezoidal map.
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Fig. 2. A trapezoid.

Fig. 3. Trapezoids in a slab.

line of V , right-incompleteotherwise (Fig. 3(b,c)). The floor and the ceiling ofT also determine a
trapezoid in the slab adjacent toV with the same boundary linew. This trapezoid would completeT
to form a usual trapezoid if we were considering the trapezoidal map in the whole plane. A simply
incomplete trapezoid has one wall, thus at most two horizontal neighbors, that are the at most two
trapezoids adjacent to it in the same slabV , and it is determined by at most 3 segments. Inversely, we
will also use the termsleft-completeandright-complete.
• Doubly incompletetrapezoids are determined by two segments traversingV , they are bounded by the

two boundary lines ofV (Fig. 3(d)), they have no wall, and no horizontal neighbor.

3. The data structure

In this section, we first recall the definition of the Influence Graph and the way it can be used to
compute the trapezoidal map of a setS of line segments in the plane, then we show how the structure
must be modified to allow us to perform splits and unions of trapezoidal maps.
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Fig. 4. Insertion of segments.

3.1. The Influence Graph for trapezoidal maps

The Influence Graph [2,21] is based on the idea of maintaining thehistory of the construction by an
incremental algorithm [3,4]. It allows semi-dynamic constructions, with only insertions, and dynamic
constructions, with insertions and deletions, in particular cases [11], and in a general setting, it can be
augmented toobtain such dynamic constructions [14]. However, for the trapezoidal map, it has been
shown that a standard Influence Graph was sufficient (see [12,21], or [5,6] for a revised algorithm) to
allow deletions.

We have a special interest in trapezoids determined by segments of a set of line segmentsS, as we
defined them in Section 2. We will say that such trapezoids aredefined byS. The Influence Graph
is a rooted directed acyclic graph, whose nodes are associated with trapezoids defined byS. Its root
corresponds to the whole plane, which is the trapezoid defined by an empty set of line segments. If we
compute a trapezoidal map incrementally, each new segments will intersect some of the trapezoids
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defined by the segments inserted before it. Those trapezoids must be removed from the updated
trapezoidal map, and replaced by new ones. But they will remain stored in the Influence Graph as
trapezoidskilled by s. In this way, the Influence Graph stores the wholehistory of the construction.
The new trapezoids are said to becreatedby s. In the Influence Graph, a trapezoid killed bys becomes
parent of a trapezoid created bys if, and only if, they overlap (Fig. 4). Thus, a trapezoid can have at most
four children, but it may have an arbitrary number of parents.

For each node, we store
• the at most 4 segments determining it (its creator is one of them),
• its at most 4 horizontal neighbors,
• its killer,
• its at most 4 children.
The Influence Graph allows one to locate a segments to be inserted: since a child is contained in the
union of its parents, we will find all the trapezoids of the current trapezoidal map that are intersected by
s by recursively traversing the Influence Graph from the root to the leaves (though the graph is not a tree,
we call leavesits nodes without children), visiting all the trapezoids intersected bys.

3.2. The modified Influence Graph

A processorP computes the trapezoidal map in its associated slabV = Va,b, by constructing
incrementally an Influence Graph, with the following modifications in each node.
• We store a mark “complete, left-incomplete, right-incomplete, doubly-incomplete”.
• We need to store not only the links from a node to its children, but also to its parents. The number

of parents of a node is arbitrary, but it can be noticed that the parents of a node are naturally sorted
from left to right along the segment that created it. This allows us to store pointers to the parents of
each node in a concatenable queue [1], enabling the splitting of a set of parents, or the concatenation
of two consecutive (sorted along the same segment) lists of parents of two adjacent trapezoids in time
logarithmic in the total number of parents. Such a structure can be implemented as a 2–3 tree. The
root of a tree corresponds to a node of the Influence Graph, its leaves correspond to the parents of this
node.

In the 2–3 tree, the links between nodes will not be uni-directional as usual: we need bi-directional links
to be able to reach the root from the leaves as well as to reach the leaves from the root. With these
bi-directional links, when an Influence Graph is traversed, the children of a nodeN will be obtained
by accessing to the roots of the 2–3 treesN belongs to. Since a node of the Influence Graph has up to
four children, it appears as a leaf in up to four 2–3 trees. So, findingN ’s children can be done in time
logarithmic in the number of elements of the 2–3 trees it appears in, which is itself bounded by the total
number of parents of the (at most four) children ofN . This will result in a O(logn) term in the complexity
of locating a new segment in the modified Influence Graph, wheren is the total number of segments.

Note that this structure does not change the time of creating a new node: as previously noticed, the set
of parents is sorted, so the structure can be constructed in time proportional to the number of parents.

Notice that a complete trapezoid can have incomplete children, and that incomplete trapezoids usually
have both complete and incomplete children.
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4. Splitting a trapezoidal map

Let D be a vertical line, included in a vertical slabV . Let us assume that the trapezoidal map of the
set of line segments intersectingV , together with the corresponding Influence Graph, have already been
computed. We want to construct the two Influence Graphs corresponding to the slabsVl (on the left hand
side ofD) andVr (on the right hand side ofD), respectively, which are obtained by splittingV alongD.
Both of the two new Influence Graphs must be the same as what would have been obtained by directly
constructing them in the new slabs. Of course, moreover, we do not want to compute them from scratch.

The idea of the algorithm consists in recursively traversingV ’s Influence Graph, in order to find all
trapezoids in the history that are split byD. While performing this traversal, the two new Influence
Graphs will be constructed.

First a new root is created, that will, for example, be the root of the right Influence Graph, and the old
root will be the root of the left Influence Graph. The following operations are then recursively performed:
each nodeN visited must be split into two parts, calledNl , which is the part ofN on the left ofD, and
which will be a node of the left Influence Graph, and similarlyNr, on the right hand side.

Fig. 5. Splitting a nodeN .
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• If N was right-incomplete, thenNr is doubly-incomplete, and ifN was left-incomplete, thenNl is
doubly-incomplete; ifN was doubly-incomplete, bothNr andNl are doubly-incomplete; otherwise,
N was complete,Nl is right-incomplete, andNr is left-incomplete.
• A child that is not split byD becomes a child ofNl orNr according to its position with respect toD.
• A child T split byD is recursively examined. It will be split into two trapezoidsTl , child ofNl andTr,

child ofNr.
• The parents ofN that are not split byD must also be updated: the ordered set of parents ofN is

split byD forming the two sets of parents ofNl andNr. This is performed by splitting in logarithmic
time the concatenable queue storing the set of parents ofN into two concatenable queues, storing the
parents ofNl andNr, respectively.

The preceding operations update the children ofN . However, the Influence Graphs thus created are only
temporary ones, and in order to create correct Influence Graphs, the following improvements must be
done.
• If Nr andNl both have 2 or 3 children, the modified part of the structure is correct.
• If Nr only has one childTr, then it is easy to see that in factNr andTr are two identical trapezoids. The

link parent–child between them has no reason to exist, it would not have been created if the Influence
Graph for the slabVr had directly been constructed, because it does not correspond to any insertion of
a segment in this slab. The two nodes must then be merged. (In fact, this could have been detected and
solved while performing the operations described just above.)
• The same holds forNl andTl .

See Fig. 5 for the illustration of the whole process.

5. Union of two trapezoidal maps

In fact, this operation is nothing but the exact inverse of a split. We are given the Influence Graphs for
two slabsVr andVl , adjacent along a vertical lineD. The Influence Graph in slabV = Vr ∪ Vl must be
deduced from these two given Influence Graphs.

To this aim, both Influence Graphs will be simultaneously traversed starting from their root, by visiting
all left-incomplete nodes inVr and all right-incomplete nodes inVl , which will be appropriately merged.
The other nodes are not modified and need not to be traversed. The new Influence Graph is constructed
during the recursive traversal.

More precisely, the roots of the two Influence Graphs must be first merged. Then, at each step of the
recursion, letNr andNl be nodes of the Influence Graphs ofVr andVl , respectively, to be merged to form
a trapezoidN = Nr ∪ Nl in the new Influence Graph. They have the same ceiling and the same floor.
A new nodeN is thus created. The ceiling and the floor of this new node are the same asNr’s andNl ’s.
Its horizontal neighbors on the right (respectively left) are those ofNr (respectivelyNl ), if they exist,
otherwiseN is right-incomplete ifNr was, and left-incomplete ifNl was, doubly-incomplete ifNr was
right-incomplete andNl was left-incomplete.
• If Nr andNl had been killed by the same segment, thenN can receive their children. And the recursion

goes on, for the two children that must be merged among all children ofN : two respective children
Tl andTr of Nl andNr must be merged if they have the same ceiling and the same floor. The set of
parents of the new nodeT thus created is obtained by concatenating, from left to right, the parents of
Tl , the new trapezoidN , and the parents ofTr.
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Fig. 6. Merging two nodesNl andNr.

• Otherwise, ifNr was killed by a segmentsr beforeNl was killed bysl . In this case,N is killed by sr
in the new Influence Graph, its children are the left-complete children ofNr, and a new trapezoidT
formed by the union ofNl (which is not dead yet whensr is inserted) with the childTr of Nr that is
left-incomplete. The total set of parents ofT is obtained by addingN to the set of parents ofTr.
The recursion then goes on with the merge ofNl andTr.
• The symmetric case whenNl was killed beforeNr is handled in the same way.

6. Analysis

Let S denote a set ofn line segments. We perform a randomized analysis of the algorithm. We refer
to Clarkson’s introduction to this method of analysis in computational geometry [7,8]. Other articles or
books present the analysis differently [9,10,18,20]. Dynamic cases were also studied in the literature [11,
17,19]. We assume that then line segments are inserted in random order, i.e., that then! possible orders
of insertion are equally likely. For a deletion, we also assume that any segment is chosen with the same
probability. Then a randomized analysis shows the following.

Theorem 6.1. Using the modified Influence Graph, an arrangement of n line segments can he computed
on-line with O(n + a) expected space andO(log2n + (a/n) logn) expected update time, wherea
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is the complexity of the arrangement. The deletion ofa line segment can be performed in expected
O(log2n+ (a/n) logn log logn) time.

Proof. The expected complexity given for the usual Influence Graph in [2,21] revised in [5,6] are the
following: O(logn+ a/n) update time for an insertion, and O(logn+ (a/n) log logn) update time for
a deletion. The modification of the structure, introduced in Section 3.2, consisting in using concatenable
queues to link a node to its children, results in an additional logn factor in the time complexity of the
traversal of the Influence Graph (but they do not change the space complexity), which yields to the
result. 2
Remark. The algorithm for deleting a segment uses an efficient priority queue [23] and dynamic perfect
hashing [13], in order to achieve this running time. If we use only standard balanced trees, the time
complexity of a deletion is O((1+ (a/n)) log2n).

We can now analyze the complexity of the algorithms proposed for the split and union in the previous
sections. LetnV denote the number of segments intersecting a given slabV , andsD is the number of
segments intersected by the vertical lineD. We first show the following lemma.

Lemma 6.1. The expected number of nodes of the Influence Graph for slabV , that are split byD is
O(sD + lognV ).

Proof. After the insertion of thekth segment in slabV , the segments already inserted in the Influence
Graph form a random sample of sizek of thenV segments. The expected number of present segments that
are intersected byD is (k/nV ) · sD. Thus there are(k/nV ) · sD + 1 trapezoids of the current trapezoidal
map that are split byD. A trapezoid in this collection has been created by thekth insertion if, and only
if, the kth segment inserted is one of the at most four segments determining this trapezoid. The expected
number of trapezoids of the Influence Graph, split byD is thus

nV∑
k=1

(
k

nV
· sD + 1

)
· 4
k
=O(sD + lognV ). 2

Theorem 6.2. A split of a trapezoidal map along a lineD can be performed inO(sD lognV + log2nV )

expected time complexity.

Proof. The algorithm locates in the modified Influence Graph the expected O(sD + lognV ) nodes to be
split. When a node is split, we find its at most four children in O(lognV ) worst-case time by traversing the
at most four corresponding concatenable queues. We also find its neighbors in constant time. Each node
to be split is updated. Note that all the required operations are done in constant time, except the update
of the parents: the sorted set of parents of the split node is divided into two sorted sets corresponding to
the two new nodes. Since the links joining a node to its parents are organized in a concatenable queue,
this division can be achieved in O(lognV ) worst-case time, which implies the result.2

Since we noticed that computing the union of two Influence Graphs is the inverse of splitting an
Influence Graph, we have the following theorem.
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Theorem 6.3. Computing the union of two trapezoidal maps along a vertical lineD is done in
O(sD lognV + log2nV ) expected time complexity.

The logarithmic factor added in all the complexity results because of the links from each node to its
parents is probably overestimated for the practical implementation: since the number of children of a
node is constant, the average number of parents of a node will also be constant, though a given node can
have a linear number of parents. We can thus expect this factor to appear as a constant, in the observed
complexity of the implemented algorithms.

Note that our results are output-sensitive, since the complexity depends on the number of segments
intersected by the lineD. No assumption on the vertical lineD is made.

7. Concluding remarks

It must be noticed that this algorithm is very simple, as all algorithms using an Influence Graph are.
Though we have only been considering a vertical lineD throughout this paper, we can notice that the

algorithm would apply to a line with any direction. The description of the trapezoids resulting from a split
by a non-vertical line would of course be more complex, but the algorithm would run similarly. However,
an analysis similar to what was done in Section 6 would unfortunately be impossible: the number of
trapezoids intersected byD would no longer depend on the number of line segments intersected byD,
sinceD could traverse a trapezoid by intersecting only its two vertical walls and none of the segments
determining it.

The extension of this algorithm to more general curves could also be imagined, with the same
restriction on the analysis. It would provide a simple algorithm allowing a new kind of range-searching:
we could not only count or report the segments intersecting a given domain, but also return their
trapezoidal map, together with the corresponding Influence Graph, allowing further insertions and
deletions in the domain.
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