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A b s t r a c t - - I n  this article, we implement a relatively new numerical technique, the Adomian de- 
composition method, for solving linear and nonlinear systems of ordinary differential equations. The 
method in applied mathematics can be an effective procedure to obtain analytic and approximate 
solutions for different types of operator equations. In this scheme, the solution takes the form of 
a convergent power series with easily computable components. This paper will present a numerical 
comparison between the Adomian decomposition and a conventional method such as the fourth-order 
Runge-Kutta method for solving systems of ordinary differential equations. The numerical results 
demonstrate that the new method is quite accurate and readily implemented. (~) 2004 Elsevier Ltd. 
All rights reserved. 

K e y w o r d s - - A d o m i a n  decomposition method, Fourth-order Runge-Kutta method, System of or- 
dinary differential equations. 

1. I N T R O D U C T I O N  

Many scientific and technological problems are modeled mathemat ical ly  by systems of ordinary 

differential equations, for example, mathematical  models of series circuits and mechanical systems 

involving severM springs attached in series can lead to a system of differential equations. Fur- 

thermore, such systems are often encountered in chemical, ecological, biological, and engineering 

applications. A s tandard  class of problems, for which considerable l i terature and software exists, 

is tha t  of initial  value problems for first=order systems of ordinary differential equations. 

Most realistic systems of ordinary differential equations do not  have exact analytic solutions, so 

approximation and numerical techniques must  be used. Adomian 's  decomposition method [1,2] 

is a relatively new approach to provide an analytical approximation to linear and nonlinear prob- 

lems, and it is particularly valuable as a tool for scientists and applied mathematicians, because 

0893-9659/04/$ - see front matter (~) 2004 Elsevier Ltd. All rights reserved. Typeset by ~4jk4S-TEX 
doi: 10.1016/S0893-9659 (04)00014-X 



324 N. SHAWAGFEH AND D. KAYA 

it provides immediate and visible symbolic terms of analytic solutions, as well as numerical ap- 
proximate solutions to both linear and nonlinear differential equations without linearization or 
discretization [1,2]. In this paper, the Adomian decomposition method is implemented to derive 
analytic approximate solutions to general systems of ordinary differential equations, and then a 
numerical comparison with the Runge-Kutta method is demonstrated through some examples. 
In the literature, this method has been used to obtain approximate analytic solutions of a large 
class of linear or nonlinear differential equations [1-11]. Additionally, it is used to get numeri- 
cal solutions in terms of the decomposition series [12,13]. Furthermore, Bellomo and Sarafyan 
[14], Bellomo and Monaco [15], and Wazwaz [16] implemented the method in a comparative 
way. In order to make a numerical comparison, Kaya [17] and Tonningen [18] have recently 
used the decomposition method to solve linear and nonlinear differential equations using com- 
puter. Shawagfeh and Adomian [3] implemented the decomposition method to solve the system 
of Lotka-Volterra equations. 

2. A N  A N A L Y S I S  O F  T H E  M E T H O D  

F O R  T H E  N O N L I N E A R  S Y S T E M  

Consider the initial value problem 

L X  = B X  + F(X)  + g(t), X(a)  = C, 

where L = d B is n × n matrix function of t, 

x2 f 2 ( x l ,  x 2 , . . . ,  x,O 
X = , F(X)  = . , g(t) = 

,~ \ f , ~ (x l , x2 , .  . . ,x ,O 

All vectors are assumed to be in Hilbert space H.  
Applying the inverse operator L -1 on both sides, we obtain 

X -- C + L - I ( B X )  ÷ L - I ( F ( X ) )  + L - l ( g ( t ) ) .  

Now we write the solution in the decomposition form 

X = X 0  ÷ X l ÷ X 2  ÷ . - -  ÷ X m  ÷ - . .  , 

then F(X)  can be expanded as 

r ( x ) =  . , 

(I) 

:I 
\ g ,~ i t )  

(3) 

(4)  

(5)  

X = lim UK. (8) 
K--*oo 

The decomposition method provides a reliable technique that  requires less work if compared with 
the traditional techniques. 

and the exact solution is 

K-I 

uK = (7)  
rn=0 

The K-term approximate solution is 

where A~ ) are Adomian polynomials for the function of several variables f j  (xl, m2,. . . ,  ran) [1]. 
We define the components of the solution as follows: 

X0 = C ÷ L-*(g( t ) ) ,  X,~ = L - I ( B X , ~ _ I )  + L - I ( A m _ I ) ,  m > 1. (6) 
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. 
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LX -= B X  + g(t), 

where B is a constant matrix, is encountered in many applications in various different scientific 
fields. In this case, (6) gives 

Xo = C + L-Z(g(t)),  X,~ = BL-I(X,~_I) ,  m > 1. 

Noting that L - z  = f t ( . ) d t ,  then recursively we have 

X1 -- BL-I (Xo)  = B C ( t  - a) + B L - 2 g ( t ) ,  

: (9) 

a)______~ ~ B-~L-(-~+m)g(t). X,~ = B'~C (t m!  + 

Using the well-known identity 

f f f  i f  L-('~+l)g(t) . . . .  g(t) (dt) m+l - F(m + 1) (t - ~-)'~g(t) dT, 

and summing up the components, we obtain that the exact solution is 

X =  E B m C ( t - a ) ' ~  1---B'~ t m! + m! (t - ~-)'~g(t) dw 
m=O m=O 

that can be written in the form 

/J X = Ce B(t-~) + eB(t- 'r)g( t )  dT, 

which is the well-known exact solution. 

4.  E X A M P L E S  

To give a clear overview of the methodology as a numerical tool, we consider two examples in 
this section. We apply the fourth-order Runge-Kutta [19] and Adomian decomposition methods 
on these examples so that the comparisons are made numerically. 

For numerical approximate solution we truncate the series solution (7) up to a few terms, and 
this will be enough to give an accurate result, as the following example shows. 

EXAMPLE 1. For comparison purposes, we consider the simple system 

= x + y ,  z(0 ) = 0 ,  
= - x  + v ,  y ( 0 )  = 1, (10)  

whose exact solution is 

Comparing (i0) with (I) we have 

(1 1) 
B =  1 1 

( ~ )  = (~ i s in t~ .  (11) 
cos t /  

and 
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Table 1. The decompositions solution (¢K and CK, K ---- 5, 10) and the Runge-Kutta 
solution (¢RK and ¢RK). 

x -- ¢5 Y -- ¢5 x -- ¢10 Y -- ¢10 x -- CRK Y -- CRK 

0.2 7.31405E-07 2.13559E-08 1.63758E-14 1.47097E-14 1.13921E-05 1.06453E-05 

0.4 4.80992E-05 2.87222E-06 3.35512E-11 3.59346E-11 3.24548E-05 1.99544E-05 

0.6 5.62334E-04 5.15406E-05 2.89381E-09 3.21264E-09 6.55388E-05 2.40168E-05 

0.8 3.23866E-03 4.05297E-04 6.82297E-08 7.86056E-08 1.122376E-04 1.71278E-05 

1.0 1.26447E-02 2.02727E-03 7.89824E-07 9.45446E-07 1.73346E-04 8.45776E-06 

thus  (7) gives t he  K - t e r m  a p p r o x i m a t e  solut ion of  (10) for any  in i t ia l  po in t  a, 

K - 1  
= 

m : O  

In Table 1, a comparison of the numerical results of the absolute errors obtained by using the 
fourth-order Runge-Kutta method (eRE and CRK), and the decomposition series solution with 
two different  n u m b e r  of  t e r m s  (¢K and  C g ,  K = 5, 10) w i t h  t h e  exac t  so lu t ions  (11) are g iven 

for t he  same  s tep sizes h. 

For  large values  of  t, we m a y  increase t he  accuracy  of t h e  series so lu t ion  by  c o m p u t i n g  more  

te rms ,  which  i s  qu i te  easy  using one of  t he  symbol ic  p r o g r a m m i n g  packages MATHEMATICA, 

MATLAB, MAPLE, etc.  

Al te rna te ly ,  for large values  of  t, we can still  use on ly  t h e  f ive - te rm a p p r o x i m a t e  so lu t ion  (12) 

by d iv id ing  the  t in te rva l  in to  subin terva ls  [ tk, tk+l]  and t h e n  use t he  same  formula  (9) bu t  

t ak ing  a = tk and C = U ( t k )  to  eva lua te  U ( t k + l ) .  A compar i son  w i t h  t he  exac t  so lu t ion  X ( t )  

in (9) and  t h e  numer i ca l  so lu t ion  ob t a ined  using the  fou r th -o rde r  R u n g e - K u t t a  m e t h o d  and the  

a p p r o x i m a t e  so lu t ion  U5 in Tab le  2 d e m o n s t r a t e s  t he  accuracy  of  th is  approach .  

Table 2. Comparison between the exact solution (x, y), the Runge-Kutta solution 
( ¢ R K ,  C R K ) ,  and the decomposition solution (¢5, ¢5). 

X Y (~RK CRK ¢5 ¢5 

.05 .0525417 1.04996 .0525417 1.04996 .0525417 1.04996 

.50 .790439 1.44689 .790439 1.44689 .790436 1.44688 

1.0 2.28736 1.46869 2.28736 1.46869 2.28733 1.46868 

1.5 4.47046 .317022 4.47046 .317021 4.4704 .317013 

2.0 6.71885 -3.07493 6.71885 -3.07494 6.71872 -3.07488 

2.5 7.29088 -9.75993 7.29088 -9.75994 7.29069 --9.7597 

3.0 2.83447 -19.8845 2.83446 --19.8845 2.83435 --19.884 

3.5 -11.6163 -31.0112 -11.6164 --31.0112 --11.616 --31.0101 

4.0 --41.3200 --35.6877 -41.3201 -35.6877 --41.3185 --35.6862 

4.5 --87.9945 --18.9752 -87.9946 -18.9752 -87.99907 --18.9741 

5.0 --142.317 42.0992 --142.317 42.0994 -142.31 42.0977 

EXAMPLE 2. As an application of the decomposition method 

differential equations, we consider the system 

tt = A ( T x  - y )  - Ax 3, 

d y  

dt 

x ( 0 )  = y ( 0 )  = 

to a system of nonlinear ordinary 

(13) 

(14) 
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which represents the Zeeman model for the beating action of the human heart [20]. Here x ( t )  is 
the length of the muscle fiber at time t, and y ( t )  is the amount  of the chemical:control agent at 
time t. The constant )~ is a positive constant of proportionality, and T is the constant tension in 

the muscle fiber. 
Writing the system in the s tandard form (2), we have 

x : ( : )  :)  
Substituting in (3), considering a as initial point, we obtain the five-term approximate solution 

( ¢ K )  ~ - X o - } - X l ~ - X 2 - - ~ X 3 - } - X 4 ,  u s ( ~ )  = C K  

where 

X o = C = ( c l )  X l = ( " / 1 ) ( t - a ) ,  X 2 = ( " / 2 )  ( t - a ) 2  
c2 ~ cl "/1 2! ' 

x4 4 
"/'/2 3! ' "/3 • ' 

where V1 = /~(Tc l  - c2 - c3), "/2 = A(Tv1 - cl - 3c~v1), V3 = A(T72 - ./1 - 3c~"/2 - 6c1"/12), and 
"/4 = ~ ( T . / 3  - "/2 - 3 c ~ . / 3  - l s C l . / 1 . / 2  - 6 . / ~ ) .  

Actual physiological data  [20] are the values A = 40, T = 0.1575, Cl = 0.45, and c2 = --0.02025. 
In this case, we have ./1 = 0.0, "/2 = -18 ,  "/3 = 324, and "/4 = -5112.  

Substituting in the above formulas, we obtain the approximate solution 

¢5 = 0.45 -- 9t 2 + 54t 3 -- 213t 4, ¢5 = --0.02025 + 0.45t -- 3t 3 + 13.5t 4. 

For values of t < 1, this gives excellent agreement with the numerical solution. To accelerate 
the convergence for large values of t, we divide the t interval into subintervals [tk, tk+l]  and use 
the same approximate solution formula (7) by taking C = U(tk),  a = tk to compute U(tk+l) .  
Although this involves discretization, the nonlinearity is still preserved, and therefore the decom- 
position solution compares well with the Runge-Kut ta  numerical solution, which by definition is 
numerical linearization of the original system of equations. This is clear in Table 3, which shows 
a comparison between the two solutions in the interval [0,5]. 

Table 3. The Runge-Kutt a solution (¢RK,¢RK) and the decomposition solution 
(¢5, ¢~). 

t ¢RK CRK ¢5 ¢~ 

.05 . 4 3 2 7 8 5  .00195655  . 4 3 2 9 1 9  .00195938 

.50 --.455848 .0328329  --.457448 .0328475 

1.0 . 4 3 6 2 3 5  -.0448053 . 4 3 5 8 7 6  --.0446845 

1.5 -.390065 .0558809  --.388992 .0556261 

2.0 . 3 1 3 9 5 3  -.0653096 . 3 1 6 1 2 4  --.0650413 

2.5 --.216529 .0724026  -.2200838 .0722067 

3.0 . 1 1 4 4 2  --.0768059 .118777 -.0767065 

3.5 -.0207792 . 0 7 8 5 8 2  -.0247071 .0785796 

4.0 --.0594135 -.0780391 -.0558401 --.0781363 

4.5 . 1 2 6 5 7 6  . 0 7 5 5 3 8 2  . 1 2 3 2 7 0 0  .0757390 

5.0 -.182987 --.0713976 --,1798830 --.0717079 
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5. C O N C L U S I O N S  

In this paper, we compare between the Adomian decomposition method and the Runge-Kutta 
method applied to systems of ordinary differential equations. For illustration purposes, we con- 
sider two examples, one is linear and the other is nonlinear, to show the computational accuracy. 
It  may be concluded that  the Adomian methodology is very powerful and efficient in finding 
analytical as well as numerical solutions for wide classes of systems "of differential equations. 

As expected, the numerical solutions in the tables clearly indicate that  the decomposition 
scheme obtains efficient results much closer to the actual solutions and also easier to use than the 
conventional method. Numerical approximations show a high degree of accuracy, and in most 
cases UK, the K- te rm approximation, is accurate for quite low values of K.  It is also worth noting 
that  the advantage of the decomposition method is that  it does not require linearization, dis- 
cretization, or perturbation, and it does not need closure approximation, smallness assumptions, 
or physically unrealistic white noise assumption in the nonlinear stochastic case [1,2,21]. 
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