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Abstract

The classical polynomials of Meixner’s type—Hermite, Charlier, Laguerre, Meixner, and

Meixner–Pollaczek polynomials—are distinguished through a special form of their generating

function, which involves the Laplace transform of their orthogonality measure. In this paper,

we study analogs of the latter three classes of polynomials in infinite dimensions. We fix as an

underlying space a (non-compact) Riemannian manifold X and an intensity measure s on it.

We consider a Jacobi field in the extended Fock space over L2ðX ; sÞ; whose field operator at a
point xAX is of the form @w

x þ l@w
x@x þ @x þ @w

x@x@x; where l is a real parameter. Here, @x and

@w
x are, respectively, the annihilation and creation operators at the point x: We then realize the

field operators as multiplication operators in L2ðD0; mlÞ; where D0 is the dual of D :¼ CN

0 ðXÞ;
and ml is the spectral measure of the Jacobi field. We show that ml is a gamma measure for

jlj ¼ 2; a Pascal measure for jlj > 2; and a Meixner measure for jljo2: In all the cases, ml is a
Lévy noise measure. The isomorphism between the extended Fock space and L2ðD0; mlÞ is
carried out by infinite-dimensional polynomials of Meixner’s type. We find the generating

function of these polynomials and using it, we study the action of the operators @x and @w
x in

the functional realization.
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1. Introduction

In his classical work [26], Meixner considered the following problem: Suppose that
functions f ðzÞ and CðzÞ can be expanded in a formal power series of zAC and

suppose that f ð0Þ ¼ 1; Cð0Þ ¼ 0; and C0ð0Þ ¼ 1: Then, the equation

Gðx; zÞ :¼ expðxCðzÞÞ f ðzÞ ¼
XN
n¼0

PðnÞðxÞ
n!

zn ð1:1Þ

generates a system of polynomials PðnÞðxÞ; nAZþ; with leading coefficient 1. (These
polynomials are now called Sheffer polynomials.) Find all polynomials of such type
which are orthogonal with respect to some probability measure m on R: To solve this
problem, Meixner essentially used the two following facts. First, by the Favard

theorem, a system of polynomials PðnÞðxÞ; nAZþ; with leading coefficient 1 is
orthogonal if and only if these polynomials satisfy the recurrence formula

xPðnÞðxÞ ¼ Pðnþ1ÞðxÞ þ anPðnÞðxÞ þ bnPðn�1ÞðxÞ;

nAZþ;Pð�1ÞðxÞ :¼ 0 ð1:2Þ

with real numbers an and positive numbers bn; or equivalently, the polynomials

PðnÞðxÞ determine the infinite Jacobi matrix with the elements an on the main

diagonal and the elements
ffiffiffiffiffi
bn

p
on the upper and lower diagonals. And second, as

follows from (1.1),

C�1ðDÞPðnÞðxÞ ¼ nPðn�1ÞðxÞ; nAN; ð1:3Þ

where C�1 is the inverse function of C and D :¼ d
dx
: Meixner showed that the

solution of this problem is completely determined by the equations

l ¼ an � an�1; nAN; k ¼ bn

n
� bn�1

n � 1
; nX2;

where l and k are some parameters. If k ¼ 0; we have to distinguish the two
following cases:

(I) l ¼ 0; without loss of generality, we then get an ¼ 0 and bn ¼ n in (1.2), PðnÞðxÞ
are the Hermite polynomials, m is the standard Gaussian distribution on R:

(II) la0; so that an ¼ ln; bn ¼ n; PðnÞðxÞ are the Charlier polynomials, m is a
centered Poisson distribution on R:

Let now ka0 and we set k ¼ 1 for simplicity of notations. We then get an ¼ ln

and bn ¼ n2: We introduce two quantities a and b through the equation

1þ lz þ z2 ¼ ð1� azÞð1� bzÞ: ð1:4Þ
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We now have to distinguish the three following cases:

(III) jlj ¼ 2; so that a ¼ b ¼ 71; PðnÞðxÞ are the Laguerre polynomials, m is a
centered gamma distribution.

(IV) jlj > 2; so that aab; both real, PðnÞðxÞ are the Meixner polynomials (of the
first kind), which are orthogonal with respect to a centered Pascal (negative
binomial) distribution.

(V) jljo2; so that aab; both complex conjugate, PðnÞðxÞ are the Meixner
polynomials of the second kind, or the Meixner–Pollaczek polynomials in
other terms. These are orthogonal with respect to a measure m obtained by

centering a probability measure of the form C expðaxÞjGð1þ im xÞj2 dx;
where aAR; m > 0; and C is the normalizing constant. We will call it a
Meixner measure, though there seems to be no commonly accepted name
for it.

In all the above cases, the generating function Gðx; zÞ defined in (1.1) can be

represented as Gðx; zÞ ¼ expðxCðzÞÞ=LmðCðzÞÞ; where LmðzÞ :¼
R
R

ezx mðdxÞ is the

extension of the Laplace transform of the measure m defined in a neighborhood of
zero in C:
In the present paper, we will study analogs of polynomials of Meixner’s type

and their orthogonality measures in infinite dimensions. In the case of the Gaussian
and Poisson measures, such a theory is, of course, well studied; we refer to e.g.
[6,17] for the Gaussian case and to e.g. [20,22] for the Poisson case. Notice that, in
both cases, the Fock space and the corresponding Jacobi fields of operators in it
play a fundamental role (see [3,7,25] for the notion of a Jacobi field in the Fock
space). In particular, the field operator at a point xAX ; where X is an underlying

space, has the form @w
x þ @x in the Gaussian case, and @w

x þ l@w
x@x þ @x in the Poisson

case. Here, @x and @w
x are the annihilation and creation operators at the point x;

respectively.
Concerning the gamma case (III), an infinite-dimensional analog of the Laguerre

polynomials and the corresponding Jacobi field was studied in [21,23]. The
polynomials are now orthogonal with respect to the (infinite-dimensional)
gamma measure, which is a special case of a compound Poisson measure.
Since such a measure does not possess the chaotic decomposition property,
instead of the usual Fock space one has to use the so-called extended Fock
space. This space, on the one hand, extends the usual Fock space and, on the
other hand, still has some similarities with it. The field operator at a point xAX

has the form @w
x þ 2@w

x@x þ @x þ @w
x@x@x: In [8], the structure of the extended

Fock space was discussed in detail, and in [9], it was shown that the extended Fock
space decomposition of the Gamma process can be thought of as an expansion of

any L2-random variable in multiple integrals constructed by using a family of
resolutions of the identity in the extended Fock space. We also refer to the recent
paper [30] and the references therein, where many other properties of the gamma
measure are discussed in detail.
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As for cases (IV) and (V), the role of the orthogonality measure should be played
by (infinite-dimensional) Pascal and Meixner measures (processes). These processes
in the case X ¼ Rþ; both Lévy, were introduced in [11,29], respectively. In [16], the
Meixner process was proposed for a model for risky asserts and an analog of
the Black–Sholes formula was established. In [27] (see also the recent book [28]), the
gamma, Pascal, and Meixner processes served as main examples of a chaotic
representation for every square-integrable random variable in terms of the
orthogonalized Teugels martingales related to the process. Though the one-
dimensional polynomials of Meixner’s type were used in this work in order to carry
out the orthogonalization procedure of the Teugels martingales (which, in turn, are
the centered power jump processes related to the original process), infinite-
dimensional polynomials corresponding to these processes have not appeared in
this work; furthermore, they were mentioned as an open problem in [28].

The contents of the present paper is as follows. In Section 2, we fix as an
underlying space X a smooth (non-compact) Riemannian manifold and an intensity

measure s on it. We consider a Jacobi field in the extended Fock space over L2ðX ; sÞ;
whose field operator at a point xAX has the form @w

x þ l@w
x@x þ @x þ @w

x@x@x; where l
is a fixed real parameter. Using ideas of [7,21,25], we construct via the projection
spectral theorem [6] a Fourier transform in generalized joint eigenvectors of the
Jacobi field. This gives us a unitary operator Il between the extended Fock space and

the space L2ðD0; mlÞ; where D0 is the dual space of D :¼ CN

0 ðX Þ with respect to the

zero space L2ðX ; sÞ; and ml is the spectral measure of the Jacobi field, i.e., the image
of any field operator under Il is a multiplication operator in L2ðD0; mlÞ: The ml is a
gamma measure for jlj ¼ 2; a Pascal measure for jlj > 2; and a Meixner measure for
jljo2; in the sense that, for any bounded DCX ; the (naturally defined) random
variable /	; wDS has a corresponding one-dimensional distribution. Furthermore,
for jljX2 ml is a compound Poisson measure, and for jljo2 ml is a Lévy noise
measure. In particular, for X ¼ R we obtain the gamma, Pascal, and Meixner
processes, respectively.

Next, under the unitary Il; the image of any vector f ðiÞAD
##i
C is a continuous

polynomial / : o#i :l; f ðiÞS of the variable oAD0; which may be understood as an

infinite-dimensional polynomial of Meixner’s type, since / : o#i :l; w
#i
D S ¼

P
ðiÞ
l;Dð/o; wDSÞ; where P

ðiÞ
l;Dð	Þ is a one-dimensional polynomial of Meixner’s type.

In Section 3, we identify the generating function Glðo;jÞ :¼
P

N

n¼0
1
n!/ : o#n :l;

j#nS; oAD0; jADC; and show that Glðo;jÞ ¼ expð/o;ClðjÞSÞ=clðClðjÞÞ;
where cl is the extension of the Laplace transform of the measure ml defined in a
neighborhood of zero in DC; and Cl is the same function as C in (1.1).

Finally, in Section 4, using results of [22,24], we introduce a test space ðDlÞ
consisting of those functions on D0 which may be extended to entire functions on D0

C

of first order of growth and of minimal type. This space is densely and continuously

embedded into L2ðD0; mlÞ: We then study the action of the operators @x :

ðDlÞ-ðDlÞ and @w
x : ðDlÞ-ðDlÞn; where ðDlÞn is the dual of ðDlÞ: We note that,
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analogously to (1.3), we have @x ¼ C�1
l ðrxÞ; where rx is the Gâteaux derivative in

direction dx: We obtain explicit formulas for the operators @x and
R

X
sðdxÞ xðxÞ@w

x;

xAD: It should be stressed that, for the latter operator in the case jljo2; the

possibility of a (unique) extension of a test function on D0 to a function on D0
C plays

a principle role.
In a forthcoming paper, we will study a connection between the extended Fock

space decomposition of L2ðD0; mlÞ obtained in this paper and the chaotic
decomposition of this space in the case X ¼ R as in [27]. Finally, we note that one
can also study a more general model where, in the field operator at a point xAX ; the
value of the parameter l depends on x: Then, the corresponding noise will be with
independent values and at each point xAX its properties will be the same as the
properties of the noise at the point x under mlðxÞ:

2. Meixner’s Jacobi field and its spectral measures

Let X be a complete, connected, oriented CN (non-compact) Riemannian
manifold and let BðXÞ be the Borel s-algebra on X : Let s be a Radon measure on
ðX ;BðXÞÞ that is non-atomic, i.e., sðfxgÞ ¼ 0 for every xAX and non-degenerate,
i.e., sðOÞ > 0 for any open set OCX : (We note the assumption of the non-
degeneracy of s is non-essential and the results below may be generalized to the case
of a degenerate s:) Note that sðLÞoN for each LAOcðXÞ—the set of all open sets in
X with compact closure.
We denote by D the space CN

0 ðXÞ of all real-valued infinite differentiable

functions on X with compact support. This space may be naturally endowed with a

topology of a nuclear space, see e.g. [10] for the case X ¼ Rd and e.g. [14] for the case
of a general Riemannian manifold. We recall that

D ¼ proj lim
tAT

Ht: ð2:1Þ

Here, T denotes the set of all pairs ðt1; t2Þ with t1AZþ and t2ACNðXÞ; t2ðxÞX1 for
all xAX ; and Ht ¼ Hðt1;t2Þ is the Sobolev space on X of order t1 weighted by the

function t2; i.e., the scalar product in Ht; denoted by ð	; 	Þt; is given by

ðf ; gÞt ¼
Z

X

f ðxÞgðxÞ þ
Xt1
i¼1

/rif ðxÞ;rigðxÞSTxðXÞ#i

 !
t2ðxÞ dx; ð2:2Þ

where ri denotes the ith (covariant) gradient, and dx is the volume measure on X :
For t; t0AT ; we will write t0Xt if t01Xt1 and t02ðxÞXt2ðxÞ for all xAX :

The space D is densely and continuously embedded into L2ðX ; sÞ: As easily seen,
there always exists t0AT such that Ht0 is continuously embedded into L2ðX ; sÞ: We
denote T 0 :¼ ftAT : tXt0g and (2.1) holds with T replaced by T 0: In what follows,
we will just write T instead of T 0: Let H�t denote the dual space of Ht with respect
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to the zero space H :¼ L2ðX ; sÞ: Then D0 ¼ ind limtAT H�t is the dual of D with
respect to H; and we thus get the standard triple

D0*H*D:

The dual pairing between any oAD0 and xAD will be denoted by /o; xS:
Following [21], we define, for each nAN; an n-particle extended Fock space over

H; denoted by F
ðnÞ
extðHÞ: Under a loop k connecting points x1;y; xm; mX2; we

understand a class of ordered sets ðxpð1Þ;y; xpðmÞÞ; where p is a permutation of

f1;y; ng; which coincide up to a cyclic permutation. We put jkj ¼ m: We will also
interpret a set fxg as a ‘‘one-point’’ loop k; i.e., a loop that comes out of x; jkj ¼ 1:
Let an ¼ fk1;y; kjanjg be a collection of loops kj that connect points from the set

fx1;y; xng so that every point xiAfx1;y; xng goes into one loop kj ¼ kjðiÞ from an:

Here, janj denotes the number of the loops in an; evidently n ¼
Pjanj

j¼1 jkjj: Let An

stand for the set of all possible collections of loops an over the points fx1;y; xng:
(We note that the set An contains n! elements [21, Remark 2.1].) Every anAAn

generates the following continuous mapping

D
##n
C U f ðnÞ ¼ f ðnÞðx1;y; xnÞ

/ f ðnÞ
an

ðx1;y; x1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
jk1j times

; x2;y; x2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
jk2j times

;y; xjanj;y; xjanj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
jkjan j j times

ÞAD
#janj
C ; ð2:3Þ

where the lower index C denotes complexification of a real space and the symbol ##

stands for the symmetric tensor power. We define a scalar product on D
##n
C by

ðf ðnÞ; gðnÞÞ
F

ðnÞ
extðHÞ ¼

X
anAAn

Z
X jan j

ðf ðnÞgðnÞÞan
ds#janj; ð2:4Þ

where f ðnÞ is the complex conjugate of f ðnÞ: LetF
ðnÞ
extðHÞ be the closure of D ##n

C in the

norm generated by (2.4).
The extended Fock space FextðHÞ over H is defined as a weighted direct sum of

the spaces F
ðnÞ
extðHÞ:

FextðHÞ ¼ "
N

n¼0
F

ðnÞ
extðHÞn!; ð2:5Þ

where F
ð0Þ
extðHÞ ¼ C and 0! ¼ 1: That is, FextðHÞ consists of sequences f ¼

ðf ð0Þ; f ð1Þ; f ð2Þ;yÞ such that f ðnÞAF
ðnÞ
extðHÞ and

jj f jj2FextðHÞ ¼
XN
n¼0

jj f ðnÞjj2
F

ðnÞ
extðHÞn!oN:
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We will always identify any f ðnÞAF
ðnÞ
extðHÞ with the element ð0;y; 0; f ðnÞ; 0;yÞ of

FextðHÞ:
Note that the usual Fock space FðHÞ can be considered as a subspace of

FextðHÞ generated by functions f ðnÞAD
##n
C such that f ðnÞðx1;y; xnÞ ¼ 0 if xi ¼ xj

for some i; jAf1;y; ng; iaj:

Let FfinðDÞ denote the topological direct sum of the spaces D
##n
C ; i.e., FfinðDÞ

consists of all sequences f ¼ ðf ð0Þ; f ð1Þ;y; f ðmÞ; 0; 0;yÞ such that f ðnÞAD
##n
C and

the convergence in FfinðDÞ means uniform finiteness and the coordinate-wise

convergence. Since each spaceD
##n
C is nuclear, so isFfinðDÞ: As easily seen, the space

FfinðDÞ is densely and continuously embedded into FextðHÞ:
For each xAD; let aþðxÞ be the standard creation operator defined on FfinðDÞ:

aþðxÞ f ðnÞ ¼ x ##f ðnÞ; f ðnÞAD
##n
C ; nAZþ:

A simple calculation shows that the adjoint operator of aþðxÞ in FextðHÞ; restricted
to FfinðDÞ; is given by the formula

a�ðxÞ ¼ ðaþðxÞÞnpFfinðDÞ ¼ a�
1 ðxÞ þ a�

2 ðxÞ;

where a�
1 ðxÞ is the standard annihilation operator:

ða�
1 ðxÞ f ðnÞÞðx1;y; xn�1Þ ¼ n

Z
X

xðxÞ f ðnÞðx; x1;y; xn�1ÞsðdxÞ;

and a�
2 ðxÞ is given by

ða�
2 ðxÞ f ðnÞÞðx1;y; xn�1Þ ¼ nðn � 1Þðxðx1Þ f ðnÞðx1; x1; x2;y; xn�1ÞÞB;

where ð	ÞB denotes the symmetrization of a function.

Finally, we define on FfinðDÞ the neutral operator a0ðxÞ; xAD; in a standard way:

ða0ðxÞ f ðnÞÞðx1;y;xnÞ ¼ nðxðx1Þ f ðnÞðx1;y; xnÞÞB:

One easily checks that a0ðxÞ is a Hermitian operator in FextðHÞ:
Now, we fix a parameter lA½0;NÞ and define operators

alðxÞ :¼ aþðxÞ þ la0ðxÞ þ a�ðxÞ þ cl/xSid; xAD:

Here, /xS :¼
R

X
xðxÞ sðdxÞ; id denotes the identity operator, and the constant

cl > 0 is given by

cl :¼
l=2 if lA½0; 2�;

2=ðlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4

p
Þ if l > 2:

(
ð2:6Þ
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(The special choice of this constant will become clear later on, however it is not of a
real importance.) Each alðxÞ with domain FfinðDÞ is a Hermitian operator in
FextðHÞ:
By construction, the family of operators ðalðxÞÞxAD has a Jacobi field structure in

the extended Fock space FextðHÞ (cf. [3,7,25]). We will call this family Meixner’s
Jacobi field corresponding to the parameter l:

Lemma 2.1. The operators alðxÞ; xAD; with domain FfinðDÞ are essentially self-

adjoint in FextðHÞ; and their closures aB
l ðxÞ constitute a family of commuting self-

adjoint operators, where the commutation is understood in the sense of the commutation

of their resolutions of the identity.

Proof. The lemma follows directly from [3, Theorem 4.1] whose proof admits a
direct generalization to the case of the extended Fock space. &

Theorem 2.1. For each lA½0;NÞ; there exist a unique probability measure ml on

ðD0;CsðD0ÞÞ; where CsðD0Þ is the cylinder s-algebra on D0; and a unique unitary

operator

Il : FextðHÞ-L2ðD0; mlÞ

such that, for each xAD; the image of aB
l ðxÞ under Il is the operator of multiplication

by the function /	; xS in L2ðD0; mlÞ and IlO ¼ 1; where O :¼ ð1; 0; 0;yÞ: The Fourier

transform of the measure ml is given, in a neighborhood of zero, by the following

formula: for l ¼ 2

Z
D0

ei/o;jS dm2ðoÞ ¼ exp �
Z

X

logð1� ijðxÞÞsðdxÞ
� �

;

jAD; jjjjj
N

:¼ sup
xAX

jjðxÞjo1; ð2:7Þ

and for la2

Z
D0

ei/o;jS dmlðoÞ

¼ exp � 1

ab

Z
X

log
ae�ibjðxÞ � be�iajðxÞ

a� b

� �
sðdxÞ þ icl/jS

� �
ð2:8Þ

for all jAD satisfying

aðe�ibj � 1Þ � bðe�iaj � 1Þ
a� b

����
����

����
����
N

o1; ð2:9Þ
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a; b defined by (1.4). The unitary operator Il is given on the dense set FfinðDÞ by the

formula

FfinðDÞ U f ¼ ðf ðnÞÞNn¼0/Ilf ¼ ðIlf ÞðoÞ ¼
XN
n¼0

/ : o#n :l; f ðnÞS

(the series is, in fact, finite), where : o#n :l AD
0 ##n is defined by the recurrence formula

: o#ðnþ1Þ :l¼: o#nþ1 :l ðx1;y; xnþ1Þ ¼ ð: o#n :l ðx1;y; xnÞoðxnþ1ÞÞB

� nð: o#ðn�1Þ :l ðx1;y; xn�1Þdðxnþ1 � xnÞÞB

� nðn � 1Þð: o#ðn�1Þ :l ðx1;y; xn�1Þdðxn � xn�1Þdðxnþ1 � xnÞÞB

� lnð: o#n :l ðx1;y; xnÞdðxnþ1 � xnÞÞB

� clð: o#n :l ðx1;y; xnÞ1ðxnþ1ÞÞB;

: o#0 :l¼ 1; : o#1 :l¼ o� cl: ð2:10Þ

Remark 2.1. It can be shown that ml is the spectral measure of the commutative
family of self-adjoint operators aB

l ðxÞ; xAD (see [6, Chapter 3] for the notion of a

spectral measure).

Remark 2.2. Note that taking a parameter lo0 would lead us to the measure ml
obtained from the measure m�l by the transformation o/� o of the space D0;
which is why we have excluded this choice.

Proof of Theorem 2.1. As easily seen, for any xAD and nAN; the operators aþðxÞ;
a0ðxÞ; and a�ðxÞ act continuously from D

##n
C into D

##ðnþ1Þ
C ; D

##n
C ; D

##ðn�1Þ
C ;

respectively. Therefore, for any xAD; alðxÞ acts continuously on FfinðDÞ:
Furthermore, for any fixed fAFfinðDÞ; the mapping D U x/alðxÞ fAFfinðDÞ is
linear and continuous. Finally, the vacuum O is evidently a cyclic vector for the

operators aþðxÞ; xAD; in FfinðDÞ; and hence in FextðHÞ: Then, using the Jacobi
filed structure of alðxÞ; it is easy to show that O is a cyclic vector for alðxÞ; xAD; in
FextðHÞ: Thus, analogously to [7,21, Theorem 3.1, 25], we deduce, by using the
projection spectral theorem [6, Chapter 3, Theorem 2.7, Subsection 3.3.1], the

existence of a unique probability measure ml on ðD0;CsðD0ÞÞ and a unique unitary

operator Il : FextðHÞ-L2ðD0; mlÞ such that, for each xAD; the image of aB
l ðxÞ

under Il is the operator of multiplication by the function /	; xS and IlO ¼ 1:

Let us dwell upon the explicit form of Il: Let F
n

finðDÞ denote the dual space of
FfinðDÞ: Fn

finðDÞ is the topological direct sum of the dual spaces ðD ##n
C Þn of D ##n

C : It

will be convenient for us to realize each ðD ##n
C Þn as the dual of D ##n

C with respect to
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the zero space H
##n
C n!; so that ðD ##n

C Þn becomes D0 ##n
C : Thus, Fn

finðDÞ consists

of infinite sequences F ¼ ðF ðnÞÞNn¼0; where F ðnÞAD0 ##n
C ; and the dualization with

f ¼ ðf ðnÞÞNn¼0AFfinðDÞ is given by

0F ; fT ¼
XN
n¼0

/F ðnÞ; f ðnÞSn!; ð2:11Þ

where /	; 	S denotes the dualization generated by the scalar product in H
##n; which

is supposed to be linear in both dots.

Next, according to the projection spectral theorem, for ml-a.e. oAD0; there exists a

generalized joint vector PðoÞ ¼ ðPðnÞðoÞÞNn¼0AFn

finðDÞ of the family aðxÞ; xAD:

8fAFfinðDÞ : 0PðoÞ; aðxÞ fT ¼ /o; xS0PðoÞ; fT; ð2:12Þ

and for each f ¼ ðf ðnÞÞNn¼0AFfinðDÞ the action of Il onto f is given by

Ilf ¼ ðIlf ÞðoÞ ¼ 0PðoÞ; fT ¼
XN
n¼0

/PðnÞðoÞ; f ðnÞSn!: ð2:13Þ

We denote : o#n :l:¼ PðnÞðoÞn!; which is an element of D
0 ##n
C for ml-a.e. oAD0: By

(2.12) and (2.13), we have, for ml-a.e. oAD0;

/o; xS/ : o#n :l; x
#nS ¼ / : o#ðnþ1Þ :l; x

#ðnþ1ÞS

þ/ : o#n :l; lnðx2Þ ##x#ðn�1Þ þ cl/xSx
##nS

þ/ : o#ðn�1Þ :l; n/x2Sx#ðn�1Þ þ nðn � 1Þðx3Þ ##x#ðn�2ÞS ð2:14Þ

for all xAD: Therefore, for ml-a.e. oAD0; the : o#n :l’s are given by the recurrence

relation (2.10). As easily seen, : o#n :l is even well defined as an element of D
0 ##n
C for

each oAD0:
Let us calculate the Fourier transform of ml: Let DAOcðXÞ and let wD denote the

indicator of D: One easily checks that each of the vectors w#n
D ; nAZþ; w#0

D ¼ O;
belongs to FextðHÞ; and let KD be the subspace of FextðHÞ spanned by these
vectors. Let aB

l ðwDÞ denote the operator in FextðHÞ whose image under the unitary
Il is the operator of multiplication by the function

/o; wDS :¼ / : o#1 :l; wDSþ clsðDÞ ¼ ðIlwDÞðoÞ þ clsðDÞ:

We approximate the indicator function wD by functions jnAD; nAN; such thatS
nAN supp jn is precompact in X ; jn’s are uniformly bounded, and jnðxÞ-wDðxÞ as

n-N for each xAX : By using the definitions of FextðHÞ and aB
l ðjÞ and the
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majorized convergence theorem, we get

aB
l ðwDÞw#n

D ¼ w#ðnþ1Þ
D þ ðln þ clsðDÞÞw#n

D þ nðn � 1þ sðDÞÞw#ðn�1Þ
D :

Therefore, KD is an invariant subspace for the operator aBðwDÞ: Hence,
analogous to [21, pp. 315–316], we may conclude that the distribution of the
random variable /	; wDS is the probability measure ml;D on ðR;BðRÞÞ whose

orthogonal polynomials ðPðnÞ
l;DðxÞÞ

N

n¼0 with leading coefficient 1 satisfy the recurrence

relation

xP
ðnÞ
l;DðxÞ ¼P

ðnþ1Þ
l;D ðxÞ þ ðln þ clsðDÞÞPðnÞ

l;DðxÞ

þ nðn � 1þ sðDÞÞPðn�1Þ
l;D ðxÞ ð2:15Þ

(the measure ml;D being defined uniquely through this condition). Thus, ðPðnÞ
l;Dð	ÞÞ

N

n¼0
is a system of Laguerre polynomials for l ¼ 2; and a system of Meixner polynomials
for la2: We will now consider only the case la2; the case l ¼ 2 being considered
analogously (see also [21]). By Meixner [26], the Fourier transform of the measure
ml;D in a neighborhood of zero in R is given by

Z
R

eiuxml;DðdxÞ ¼ a� b
ae�ibu � be�iau

� �sðDÞ=ðabÞ
exp½iclusðDÞ�: ð2:16Þ

Therefore, for any uAR satisfying

aðe�ibu � 1Þ � bðeiau � 1Þ
a� b

����
����o1; ð2:17Þ

we getZ
D0

eiu/o;wDSmlðdoÞ ¼ exp � sðDÞ
ab

log
ae�ibu � be�iau

a� b

� �
þ iclusðDÞ

� �

¼ exp � 1

ab

Z
X

log
ae�ibuwDðxÞ � be�iauwDðxÞ

a� b

� �
sðdxÞ

�

þ icl

Z
X

uwDðxÞsðdxÞ
�
: ð2:18Þ

Now, let D1;y;DnAOcðX Þ be disjoint. Then the spaces KD1
~F0ðHÞ;y;

KDn
~F0ðHÞ are orthogonal in FextðHÞ: Therefore, the random variables

/	; wD1
S;y;/	; wDn

S are independent. Hence, for any step function j ¼Pn
i¼1 uiwDi

such that all ui’s satisfy (2.17) with u ¼ ui; formula (2.8) holds.
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Finally, fix any jAD satisfying (2.8). Choose any sequence of step functions
fjngnAN such that

sup
nAN;xAX

aðe�ibjnðxÞ � 1Þ � bðeiajnðxÞ � 1Þ
a� b

����
����o1;

S
nAN supp jnAOcðX Þ; and jn converges pointwisely to j as n-N: Then, by the

majorized convergence theorem, we conclude that the right-hand side of (2.8) with
j ¼ jn converges to the right-hand side of (2.8). On the other hand, /	;jnS
converges to /	;jS in L2ðD0; mÞ; and therefore also in probability. Hence, again by
the majorized convergence theorem, the left-hand side of (2.8) with j ¼ jn converges
to the left-hand side of (2.8). &

Corollary 2.1. For each DAOcðXÞ; the distribution ml;D of the random variable /	; wDS
under ml is given as follows: For l > 2; ml;D is the negative binomial (Pascal)

distribution

ml;D ¼ ð1� plÞsðDÞ
XN
k¼0

ðsðDÞÞk

k!
pk
ld ffiffiffiffiffiffiffiffi

l2�4
p

k
; ð2:19Þ

where

pl :¼
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4

p
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4

p ;

and for r > 0 ðrÞ0 :¼ 1; ðrÞk :¼ rðr þ 1Þ?ðr þ k � 1Þ; kAN: For l ¼ 2; m2;D is the

Gamma distribution

m2;DðdsÞ ¼ ssðDÞ�1e�s

GðsðDÞÞ w½0;NÞðsÞ ds: ð2:20Þ

Finally, for lA½0; 2Þ;

ml;DðdsÞ ¼ ð4� l2ÞðsðDÞ�1Þ=2

2pGðsðDÞÞ
� jGðsðDÞ=2þ ið4� l2Þ�1=2sÞj2

� exp½�s2ð4� l2Þ�1=2 arctanðlð4� l2Þ�1=2Þ� ds: ð2:21Þ

Proof. The result follows from (the proof of) [12, Theorem 2.1 Chapter VI, Section
3; 26] (see also [28, Subsection 4.3.5, 29]). &

For f ðnÞAF
ðnÞ
extðHÞ; let / : 	#n :l; f ðnÞS denote the element of L2ðD0; mlÞ defined

as Ilf ðnÞ:
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Corollary 2.2. For any DAOcðXÞ we have

/ : o#n :l; w#n
D S ¼ P

ðnÞ
l;Dð/o; wDSÞ ml-a:a: oAD0; ð2:22Þ

where ðPðnÞ
l;DÞ

N

n¼0 are the polynomials on R as in the proof of Theorem 2.1.

Proof. This result directly follows from the proof of Theorem 2.1. &

Remark 2.3. Let us state the one-dimensional analog of the results of Theorem 2.1

and Corollaries 2.1, 2.2. We consider the weighted c2-space F ¼ c2ðððn!Þ2ÞNn¼0Þ
consisting of all sequences f ¼ ðf ðnÞÞNn¼0; f ðnÞAC; such that jj f jj2F :¼P

N

n¼0 j f ðnÞj2ðn!Þ2oN: Let Ffin denote the set of all finite sequences in F: For

each lA½0;NÞ; we define a linear Hermitian operator al in F with domain Ffin by
setting

al ¼ aþ þ la0 þ a� þ cl id;

where ðaþf ðnÞÞðkÞ ¼ dk;nþ1f
ðnÞ; ða0f ðnÞÞðkÞ ¼ dk;nnf ðnÞ; ða�f ðnÞÞðkÞ ¼ dk;n�1n

2f ðnÞ: Here
di;j ¼ 1 if i ¼ j and di;j ¼ 0 otherwise, and cl is given by (2.6). We note that, under the

natural unitary mapping of the weighted c2-space F onto the usual c2; the operator
al goes over into the operator defined by the infinite Jacobi matrix J ¼ ðam;nÞNm;n¼0
with the elements an;n ¼ ln þ cl; nAZþ; an;nþ1 ¼ anþ1;n ¼ n þ 1; nAZþ; and am;n ¼ 0

for jm � nj > 1:
The operator al is essentially self-adjoint, and let aB

l denote its closure. By the

spectral theory of infinite Jacobi matrices (e.g. [2, Chapter VII, Section 1]), there
exist a unique probability measure ml on ðR;BðRÞÞ and a unique unitary operator

Il : F-L2ðR;mlÞ such that the image of the operator aB
l under Il is the operator

of multiplication by the variable x and Ilð1; 0; 0;yÞ ¼ 1: The mapping Il is given
on the dense set Ffin by

Ffin U f ¼ ðf ðnÞÞNn¼0/Ilf ¼
XN
n¼0

f ðnÞP
ðnÞ
l ðxÞ:

Here, ðPðnÞ
l ÞNn¼0 is the system of polynomials on R satisfying the following recurrence

relation: for nAZþ

xP
ðnÞ
l ðxÞ ¼P

ðnþ1Þ
l ðxÞ þ ðln þ clÞPðnÞ

l ðxÞ þ n2P
ðn�1Þ
l ðxÞ; P

ð�1Þ
l ðxÞ ¼ 0;

P
ð1Þ
l ðxÞ ¼ 1;

and ml is the unique probability measure on R with respect to which the polynomials

ðPðnÞ
l ÞNn¼0 are orthogonal. By Meixner [26], the Fourier transform of the measure ml

E. Lytvynov / Journal of Functional Analysis 200 (2003) 118–149130



in a neighborhood of zero in R is given by

Z
R

eiuxmlðdxÞ ¼
eicluð a�b

ae�ibu�be�iauÞ1=ðabÞ; la2;

ð1� iuÞ�1; l ¼ 2:

(
ð2:23Þ

Furthermore, the measure ml is explicitly given by the right-hand side of
formula (2.19), resp. (2.20), resp. (2.21), with sðDÞ ¼ 1: Thus ml is a Pascal
distribution for lA½0; 2Þ; a Gamma distribution for l ¼ 2; and a Meixner
distribution for l > 2:

We will now show that each ml is a compound Poisson, respectively, Lévy noise
measure.

Corollary 2.3. For each lX2; ml is a compound Poisson measure on ðD0;CsðD0ÞÞ
whose Lévy–Khintchine representation of the Fourier transform reads as follows:Z

D0
ei/o;jSmlðdoÞ ¼ exp

Z
X�Rþ

ðeisjðxÞ � 1ÞsðdxÞnlðdsÞ
� �

; jAD; ð2:24Þ

where

n2ðdsÞ ¼ e�s

s
ds;

nlðdsÞ ¼
XN
k¼1

pk
l

k
d ffiffiffiffiffiffiffiffi

l2�4
p

k
; l > 2: ð2:25Þ

In particular, each ml is concentrated on the set of all Radon measures on ðX ;BðXÞÞ of

the form
P

N

n¼1 sndxn
; fxngCX ; sn > 0; nAN:

Proof. It follows from the general theory of compound Poisson measures (e.g. [19])
that there exists a compound Poisson measure *ml whose Fourier transform is given
by (2.24) with nl given by (2.25), and which is concentrated on the set of those Borel
measures on X as in the formulation of the theorem. Furthermore, it follows from
the general theory that, for any disjoint D1;y;DnAOcðXÞ; the random variables are
independent. Thus, it suffices to show that, for any fixed DAOcðXÞ; the distributions
of the random variable /o; wDS under ml and *ml coincide. But this can be easily
done by calculating the Fourier transformZ

D0
eiu/o;wDS *mlðdoÞ ¼ exp sðDÞ

Z
Rþ

ðeius � 1ÞnlðdsÞ
� �

; uAR;

and comparing it with the Fourier transform of the measure ml;D (see (2.16) for the

case l > 2). &
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In the case lA½0; 2Þ; the situation is a little bit more complicated, since the
corresponding Lévy measure nl to be identified does not have the first moment finite.

Corollary 2.4. For lA½0; 2Þ; ml is the Lévy noise measure whose Lévy–Khintchine

representation of the Fourier transform reads as follows:Z
D0

ei/o;jSmlðdoÞ ¼ exp

Z
X�R

ðeisjðxÞ � 1� isjðxÞÞsðdxÞnlðdsÞ þ icl/jS
� �

;

jAD; ð2:26Þ

where

nlðdsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� l2

p
2p

� jGð1þ ið4� l2Þ�1=2sÞj2 exp½�s2ð4� l2Þ�1=2

� arctanðlð4� l2Þ�1=2Þ� 1
s2

ds: ð2:27Þ

Proof. The existence of a probability measure *ml on D0 whose Fourier transform is
given by the right-hand side of (2.26) with nl given by (2.27) follows by, e.g. the
Bochner–Minlos theorem. Furthermore, as easily seen, for each DAOcðXÞ; one can
naturally define a random variable /	; wDS as an element of L2ðD0; *mlÞ: By (2.26), for
any disjoint D1;y;DnAOcðXÞ; the random variables /	; wD1

S;y;/	; wDn
S are

independent. Analogous to the proof of Corollary 2.3, we conclude the statement by

calculating the integral
R
R
ðeius � 1� iusÞnlðdsÞ; uAR; using [28, Subsection 4.3.5], see

also [29]. &

Remark 2.4. It follows from Corollaries 2.3 and 2.4 that s2nlðdsÞ is a Meixner
distribution for lA½0; 2Þ; gamma distribution for l ¼ 2; and Pascal distribution for

l > 2: Furthermore, for each lX0; s2 nlðdsÞ is a probability measure on R whose

orthogonal polynomials ðQðnÞ
l ÞNn¼0 with leading coefficient 1 satisfy the following

recurrence relation:

sQ
ðnÞ
l ðsÞ ¼Q

ðnþ1Þ
l ðsÞ þ lðn þ 1ÞQðnÞðsÞ þ nðn þ 1ÞQðn�1Þ

l ðsÞ; nAZþ;

Q�1
l ðsÞ :¼ 0:

We denote by PðD0Þ the set of continuous polynomials on D0; i.e., functions on D0

of the form

FðoÞ ¼
Xn

i¼0
/o#i; f ðiÞS; f ðiÞAD

##i
C ; o#0 :¼ 1; iAZþ:
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The greatest number i for which f ðiÞa0 is called the power of a polynomial. We

denote by PnðD0Þ the set of continuous polynomials of power pn:

Corollary 2.5. For each lX0; we have IlðFfinðDÞÞ ¼ PðD0Þ: In particular, PðD0Þ is a

dense subset of L2ðD0; mlÞ: Furthermore, let Pl;nðD0Þ denote the closure of PnðD0Þ in

L2ðD0; mlÞ; and let ðL2
l;nÞ denote the orthogonal difference Pl;nðD0Þ~Pl;n�1ðD0Þ in

L2ðD0; mlÞ: Then,

L2ðD0; mlÞ ¼ "
N

n¼0
ðL2

l;nÞ: ð2:28Þ

Finally, let Pl;n denote the orthogonal projection of L2ðD0; mlÞ onto ðL2
l;nÞ: Then, for

any f ðnÞAD
##n
C ;

Pl;nð/	#n; f ðnÞSÞ ¼ / : 	#n :l; f ðnÞS ml-a:e: ð2:29Þ

and

IlðFðnÞ
extðHÞÞ ¼ ðL2

l;nÞ: ð2:30Þ

Proof. Using recurrence relation (2.10), we obtain by induction the inclusion

IlðFfinðDÞÞCPðD0Þ and moreover, the equality

/ : o#n :l; f ðnÞS ¼ /o#n; f ðnÞSþ pn�1ðoÞ; f ðnÞAD
##n
C ; ð2:31Þ

where pn�1APn�1ðD0Þ: Using (2.31), we then obtain by induction also the

inverse inclusion PðD0ÞCIlðFfinðD0ÞÞ: That PðD0Þ is dense in L2ðD0; mlÞ
follows from the fact that FfinðDÞ is dense in FextðHÞ: Decomposition (2.28)
now becomes evident. Finally, (2.29) follows by (2.31), and (2.30) is a
consequence of (2.29). &

3. The generating function

Now, we will identify the generating function of the polynomials

/ : o#n :l;j#nS; jAD:
Let MðXÞ denote the set of signed Radon measures on ðX ;BðXÞÞ: We can

evidently identify any measure oAMðXÞ with an element *oAD0 by setting

/ *o;jS :¼
Z

X

jðxÞoðdxÞ; jAD:

In what follows, we will just write o instead of *o: Then, for DAOcðX Þ; the writing
/o; wDS will mean oðDÞ:

E. Lytvynov / Journal of Functional Analysis 200 (2003) 118–149 133



Proposition 3.1. We have, for la2;

Glðo;jÞ :¼
XN
n¼0

1

n!
/ : o#n :l;j#nS

¼ exp � 1

a� b
log

ð1� bjÞ1=b

ð1� ajÞ1=a

 !* +"

þ 1

a� b
o� cl; log

1� bj
1� aj

� �� �#
ð3:1Þ

and for l ¼ 2

G2ðo;jÞ :¼
XN
n¼0

1

n!
/ : o#n :2;j#nS

¼ exp �/logð1þ jÞSþ o;
j

jþ 1

� �� �
: ð3:2Þ

Formulas (3.1), (3.2) hold for each oAMðXÞ and for each jADC satisfying

jjjjj
N
oðmaxðjaj; jbjÞÞ�1 for (3.1) and jjjjj

N
o1 for (3.2). More generally,

for each fixed tAT ; there exists a neighborhood of zero in DC (depending

on l), denoted by Ot; such that (3.1), respectively (3.2), holds for all oAH�t and

all jAOt:

Remark 3.1. In the one-dimensional case (see Remark 2.3), the generating function

of the polynomials ðPðnÞ
l ð	ÞÞNn¼0 is given by (cf. [26])

Glðx; uÞ :¼
XN
n¼0

un

n!
P
ðnÞ
l ðxÞ

¼ ð1� buÞ1=b

ð1� auÞ1=a

 !�1=ða�bÞ
1� bu

1� au

� �ðx�clÞ=ða�bÞ
; la2;

G2ðx; uÞ :¼
XN
n¼0

un

n!
P
ðnÞ
2 ðxÞ ¼ 1

1þ u
eux=ðuþ1Þ

for u from a neighborhood of zero in C: &

Proof of Proposition 3.1. We only prove formula (3.1), corresponding to the

case la2: Let us fix oAMðX Þ: Then, as easily seen from (2.10), : o#n :l AMðX nÞ
for each nAN (if we identify MðX nÞ as a subset of D

0#nÞ: Fix DAOcðX Þ:
As follows from the proof of Theorem 2.1, the equality in (2.22) holds for each
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oAMðXÞ: Then,

XN
n¼0

1

n!
/ : o#n :l; ðuwDÞ#nS ¼

XN
n¼0

un

n!
/ : o#n :l; w

#n
D S

¼
XN
n¼0

un

n!
P
ðnÞ
l;Dð/o; wDSÞ:

Hence, it follows from [26] (see also Remark 3.1) that (3.2) holds with j ¼ uwD and

uAC such that jujoðmaxðjaj; jbjÞÞ�1:
We next prove the following lemma.

Lemma 3.1. For any oAMðX Þ and any disjoint D1;y;DlAOcðXÞ;

/ : o#n :l; w
#k1
D1

##? ##w#kl

Dl
S ¼

Yl

i¼1
/ : o#ki :l; w

#ki

Di
S

¼
Yl

i¼1
P
ðkiÞ
l;D ð/o; wDi

SÞ; ð3:3Þ

where k1;y; klAN; k1 þ?þ kl ¼ n:

Proof. We prove this lemma by induction in nAN: For n ¼ 1; formula (3.3)
trivially holds. Now, suppose that (3.3) holds for all npN: Let k1;y; klAN;

k1 þ?þ kl ¼ N þ 1: Applying recurrence formula (2.10) to : o#ðNþ1Þ :l; we

express / : o#ðNþ1Þ :l; w
#k1
D1

##y ##w#kl

Dl
S through /o; wDj

S; / : o#N :l; w
#k1
D1

##

? ##w#ðkj�1Þ
Dj

##? ##w#kl

Dl
S; / : o#ðN�1Þ :l; w

#k1
D1

##? ##w#ðkj�2Þ
Dj

##? ##w#kl

Dl
S; and

sðDjÞ; j ¼ 1;y; l: Applying formula (3.3) with n ¼ N and n ¼ N � 1 and then using

the recurrence relation (2.15) for the polynomials P
ðnÞ
l;D; we conclude the

statement. &

Fix any disjoint D1;y;DmAOcðX Þ and any u1;y; umAC satisfying

juijomaxðjaj; jbjÞ�1; i ¼ 1;y;m; and set f :¼
Pm

i¼1 uiwDi
: By Lemma 3.1,

we get

XN
n¼0

1

n!
/ : o#n :l; f #nS ¼

Ym
i¼1

XN
n¼0

un
i

n!
/ : o#n :l; w#n

Di
S

 !
:

Hence, (3.2) holds with j ¼ f :
Using (2.10), one easily shows by induction that, for each fixed LAOcðXÞ; there

exists a constant CL;o such that

8nAN : j : o#n :l pLnjpn!Cn
L;o; ð3:4Þ
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where j : o#n :l pLnj denotes the full variation of the signed measure : o#n :l on Ln:

Fix any jAD such that suppjCL and jjjjj
N
oC�1

L;o: Let ffk; kANg be a sequence
of step functions on X such that

C :¼ sup
kAN;xAX

j fkðxÞjoC�1
L;o;

S
kAN supp fkCL and fk-j as k-N uniformly on X : We then get by (3.4)

XN
n¼0

1

n!
/ : o#n :l; f #n

k S�
XN
n¼0

1

n!
/ : o#n :l;j#nS

�����
�����

p
XN
n¼0

1

n!
j : o#n :l pLnj sup

ðx1;y;xnÞAX n

j f #n
k ðx1;y; xnÞ � j#nðx1;y; xnÞj

p
XN
n¼0

Cn
L;onmaxðjjjjj

N
;CÞn�1 sup

xAX

j fkðxÞ � jðxÞj-0

as k-N: ð3:5Þ

Let G̃lðo;jÞ denote the right-hand side of (3.2). Then, if

maxðjjjjj
N
;CÞomaxðjaj; jbjÞ�1;

by the majorized convergence theorem, G̃lðo; fkÞ-G̃lðo;jÞ as k-N: Thus, (3.2)
holds for any jAD such that supp jCL and

jjjjj
N
ominðC�1

L;o;maxðjaj; jbjÞ
�1Þ:

Let us show that (3.2) holds for any jAD such that jjjjj
N
omaxðjaj; jbjÞ�1: Fix

such jAD: Denote

Oj :¼ fzAC : jzjo1þ 1
2
ðmaxðjaj; jbjÞ�1 � jjjjj

N
Þg;

and consider the analytic function

Oj U z/gðzÞ :¼ G̃lðo; zjÞ:

For all zAC such that jzjp1; we have the Taylor expansion

gðzÞ ¼
XN
n¼0

gðnÞð0Þ
n!

zn: ð3:6Þ

But it follows from the proved above that

gðzÞ ¼
XN
n¼0

1

n!
/ : o#n :l;j#nSzn ð3:7Þ
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for all zAC from some neighborhood of zero. Comparing (3.6) and (3.7), we get

gðnÞð0Þ ¼ / : o#n :l;j#nS; ð3:8Þ

and thus, by (3.6) and (3.8) we have proved the proposition in the case where
oAMðXÞ:
Let us consider the general case. Fix tAT : Without loss of generality, we can

suppose that the inclusion Ht+L2ðX ; sÞ is quasi-nuclear,

jjjjj
N
pCtjjjjjt; jAD; Ct > 0;

and 1AH�t: Let

Ot :¼ fjADC : jjjjjtpð2Ct maxðjaj; jbjÞÞ�1g:

It follows from (2.2) that

sup
jAOt

maxðjjlogð1� ajÞjjt; jjlogð1� bjÞjjtÞoN:

Then, for each fixed oAD�t; the function G̃lðo; 	Þ is G-holomorphic and bounded

on Ot: Hence, by e.g. [15], G̃lðo; 	Þ is holomorphic on Ot: The Taylor decomposition

of G̃lðo; 	Þ and the kernel theorem (cf. [24, Subsection 4.1]) yield

G̃lðo;jÞ ¼
XN
n¼0

1

n!
/G

ðnÞ
l ðoÞ;j#nS; ð3:9Þ

where G
ðnÞ
l ðoÞAH

##n
�t is given through

/G
ðnÞ
l ðoÞ;j#nS ¼ dn

dtn

����
t¼0

G̃lðo; tjÞ:

Next, for each oAMðXÞ-H�t; we have, by the proved above,

/G
ðnÞ
l ðoÞ;j#nS ¼ / : o#n :l;j#nS; jAD: ð3:10Þ

Differentiating G̃lðo; tjÞ in t; we conclude that dn

dtnjt¼0 G̃lðo; tjÞ depends continu-
ously on oAH�t: On the other hand, / : o#n :l;j#nS does also depend
continuously on oAH�t: Since MðXÞ-H�t is dense in H�t (MðX Þ-H�t; in
particular, contains D), we conclude that (3.10) holds for all oAH�t; and hence also
(3.9) holds for all oAH�t: &

Corollary 3.1. For each lX0; the function

j/LlðjÞ :¼
Z
D0

e/o;jS mlðdoÞ
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is well defined and holomorphic on some neighborhood of zero in DC: Furthermore, for

each fixed tAT ; there exists a neighborhood of zero in DC; denoted by Ot; such that,
for all oAH�t and all jAOt; we have

Glðo;jÞ ¼
e/o;ClðjÞS

LlðClðjÞÞ
: ð3:11Þ

Here,

ClðjÞ :¼
1

a� b
log

1� bj
1� aj

� �
; la2;

C2ðjÞ :¼
j

jþ 1

is a holomorphic DC-valued function defined in a neighborhood of zero in DC which is

invertible and satisfies Clð0Þ ¼ 0:

Remark 3.2. Corollary 3.1 shows that the system of polynomials / : o#n :l; f ðnÞS;

f ðnÞAD
##n
C ; nAZþ; is a generalized Appell system in terms of [22], see also [1,13,18,24]

and the references therein. We also refer to [4] and the references therein for the
study of the Appell systems via the theory of generalized translation operators.

Remark 3.3. Note that

C�1
l ðjÞ :¼ eaj � ebj

aeaj � bebj
; la2;

C�1
2 ðjÞ :¼ j

1� j
:

Remark 3.4. In the one-dimensional case (Remarks 2.3 and 3.1), the function

z/LlðzÞ :¼
Z
R

ezxmlðdxÞ

is well defined and holomorphic on a neighborhood of zero in C (for the explicit
formula, replace iu in formula (2.23) with z). Furthermore, for all xAR and z from
the neighborhood of zero, we have [26]

Glðx; zÞ ¼
exClðzÞ

LlðClðzÞÞ
;

where ClðzÞ ¼ 1
a�b log

1�bz
1�az

� �
; la2; C2ðzÞ ¼ z

zþ1:
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Proof of Corollary 3.1. Fix lX0: Let L̃lðjÞ denote the right-hand side of (2.7),
respectively (2.8), with ij replaced with j: It follows from the proof of Theorem 2.1
and [6, Section 3.2] that there exists t0AT such that mlðH�t0Þ ¼ 1: By Proposition
3.1, there exists a neighborhood of zero in DC; denoted by Ot0 ; such that for all

jAOt0 and all oAH�t0

e/o;jS ¼ L̃lðjÞGlðo;C�1
l ðjÞÞ: ð3:12Þ

Since the number of the summands in the sum on the right-hand side of (2.4) is n!; we
easily conclude that

jjGð	;C�1
l ðjÞÞjj2L2ðD0;mlÞ ¼

XN
n¼0

1

n!

� �2

jjðC�1
l ðjÞÞ#njj2

F
ðnÞ
extðHÞn!oN ð3:13Þ

for all j from some (other) neighborhood of zero in DC; denoted by O: Then, for all

jAÕt0 :¼ Ot0-O; we get by (3.12) and (3.13):Z
D0

e/o;jS mlðdoÞ ¼
Z
H�t

e/o;jSmlðdoÞ

¼ L̃lðjÞ
Z
H�t

Glðo;C�1
l ðjÞÞmlðdoÞ

¼ L̃lðjÞ: ð3:14Þ

Formula (3.11) in the case of H�t0 follows from (3.12) and (3.14). The general case

now easily follows from Proposition 3.1. &

4. Operators @x and @w
x

For each tAT ; we introduce on PðD0Þ a Hilbertian norm jj 	 jjl;t as follows: for
any fAPðD0Þ of the form fðoÞ ¼

PN
n¼0 / : o#n :l; f ðnÞS (cf. Corollary 2.5), we set

jjfjj2l;t :¼
XN

n¼0
jj f ðnÞjj2tn!:

Let ðDlÞt denote the Hilbert space obtained by closing PðD0Þ in this norm. By

Kondratiev et al. [22, Theorem 34], there exists t0AT such that the Hilbert space

ðDlÞt0 is densely and continuously embedded into L2ðD0; mlÞ: Just as in Section 2, we
first set T 0 :¼ ftAT : tXt0g and then re-denote T :¼ T 0: Thus, each ðDlÞt; tAT ;

consists of (ml-classes of) functions on D0 of the form

fðoÞ ¼
XN
n¼0

/ : o#n :l; f ðnÞS
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with f ðnÞAH
##n
t and

jjfjj2l;t :¼
XN
n¼0

jj f ðnÞjj2tðn!Þ
2oN:

Let

ðDlÞ :¼ proj lim
tAT

ðDlÞt; ð4:1Þ

which is a nuclear space [22, Theorem 32]. (We note that, though only the case of a
nuclear space that is the projective limit of a countable family of Hilbert space is
considered in [22], all the results we cite from this paper admit a straightforward
generalization to the case of a general nuclear space.)

Denote by E1
minðD0

CÞ the set of all entire functions on D0
C of first order of growth

and of minimal type, i.e., a function f entire on D0
C belongs to E1

minðD0
CÞ if and

only if

8tAT ; 8e > 0 (C > 0 : 8oAH�t;C : jfðoÞjpCeejjojj�t :

Denote by E1
minðD0Þ the set of restrictions to D0 of functions from E1

minðD0
CÞ:

Following [22,24], we then introduce norms on E1
minðD0

CÞ; and hence on E1
minðD0Þ; as

follows. For each fAE1
minðD0

CÞ and for any tAT and qAN; we set

nt;qðfÞ :¼ sup
zAH�t;C

ðjfðzÞj expð�2�qjjzjj�tÞ:

Next, each fAE1
minðD0

CÞ can be uniquely represented in the form fðzÞ ¼P
N

n¼0 /z#n; f ðnÞS; and we set, for any tAT and qAN;

Nt;qðfÞ :¼
XN
n¼0

jj f ðnÞjj2t ðn!Þ
22nq:

By Kondratiev et al. [22, Theorems 2.5, 3.8, Section 6.2], the three systems of norms
on ðDlÞ:

ðjj 	 jjl;t; tATÞ; ðnt;qð	Þ; tAT ; qANÞ; ðNt;qð	Þ; tAT ; qANÞ;

are equivalent, and hence determine the same topology on ðDlÞ:
As easily seen, for each jAD; Ila

�
1 ðxÞI�1l can be extended to a continuous

operator on ðDlÞ:We denote this operator A�
1 ðxÞ:Next, for each xAX ; we denote by

@x the linear continuous operator on ðDlÞ defined by

@x/ : o#n :l; f ðnÞS :¼ n/ : o#ðn�1Þ :l; f ðnÞðx; 	ÞS; f ðnÞAD
##n
C :
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Lemma 4.1. For any fAðDlÞ; we have

8oAD0 : ðA�
1 ðxÞfÞðoÞ ¼

Z
X

xðxÞð@xfÞðoÞsðdxÞ:

Proof. Let t0AT be such that jjdxjjt0p1 for all xAX : Fix oAH�t; tXt0: Let t0 > t
be such that the inclusion Ht0+Ht is quasi-nuclear. By Kondratiev et al. [22,

Proposition 22], we have for any e > 0

jj : o#n :l jj�t0pn!Cn
t expðejjojj�tÞ; Ct > 0: ð4:2Þ

Hence, we may estimate

XN
n¼1

nj/ : o#ðn�1Þ :l; f ðnÞðx; 	ÞSjp sup
xAX

jjdxjj�t0 expðejjojj�tÞ

�
XN
n¼1

ðn � 1Þ!Cn�1
t njj f ðnÞjjt0 :

Therefore, for each f ¼
P

N

n¼0 / : 	#n :l; f ðnÞSAðDlÞ; we get, by the majorized

convergence theorem,

Z
X

xðxÞ
XN
n¼0

n/ : o#ðn�1Þ :l; f ðnÞðx; 	ÞS sðdxÞ ¼
XN
n¼0

/ : o#ðn�1Þ :l; n/f ðnÞ; xSS;

where

/f ðnÞ; xSðx1;y; xn�1Þ :¼
Z

X

f ðnÞðx; x1;y; xn�1ÞxðxÞsðdxÞ:

From here, the lemma follows. &

Remark 4.1. Let t; t0AT be as in proof of Lemma 4.1. Note that the operator @x acts
continuously in ðDlÞt: By (4.2), we then have for all oAH�t and all jADC such that

jjjjjt0ominð1;C�1
t Þ:

@x

XN
n¼0

1

n!
/ : o#n :l;j#nS ¼ jðxÞ

XN
n¼0

1

n!
/ : o#n :l;j#nS:

By Corollary 3.1, we get for all oAH�t and all j from a neighborhood of
zero in DC:

@xe/o;ClðjÞS ¼ jðxÞe/o;ClðjÞS;
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and consequently

@xe/o;jS ¼ ðC�1
l ðjÞÞðxÞe/o;jS: ð4:3Þ

Let rx denote the Gâteaux derivative of a function defined onD0 in direction dx; i.e.,

rxFðoÞ :¼ d
dt
jt¼0 Fðoþ tdxÞ: Clearly,

rxe/o;jS ¼ jðxÞe/o;jS: ð4:4Þ

Comparing (4.3) and (4.4), we get (at least informally):

@x ¼ C�1
l ðrxÞ: ð4:5Þ

Remark 4.2. In the one-dimensional case (Remarks 2.3, 3.1, 3.4), we define a linear
operator A by

AP
ðnÞ
l ð	Þ ¼ nP

ðn�1Þ
l ð	Þ:

By Remarks 3.1 and 3.4, one then gets (cf. [26])

A ¼ C�1
l ðDÞ; ð4:6Þ

where D ¼ d
dx
: Thus, (4.5) is an infinite-dimensional counterpart of (4.6).

Theorem 4.1. For each lX0 and for all fAðDlÞ and oAD0:

ð@xfÞðoÞ ¼
Z
R

ðfðoþ sdxÞ � fðoÞÞsnlðdsÞ;

ðA�
1 ðxÞfÞðoÞ ¼

Z
X�R

ðfðoþ sdxÞ � fðoÞÞsxðxÞsðdxÞnlðdsÞ; ð4:7Þ

where xAX ; xAD; and nl is the Lévy measure of ml (see Corollaries 2.3 and 2.4).

Proof. By Lemma 4.1, it suffices to prove the statement only for @x: Fix tXt0 as in
proof of Lemma 4.1. Then, for all oAH�t and all j from a neighborhood of zero in
DC; we haveZ

R

ðe/oþsdx;jS � e/o;jSÞsnlðdsÞ ¼ e/o;jS
Z
R

ðesjðxÞ � 1ÞsnlðdsÞ

¼ e/o;jSðC�1
l ðjÞÞðxÞ; ð4:8Þ
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where C�1
l is given by (3.3). The latter equality in (4.8) can be derived by

differentiating in y the following equality:Z
R

ðesy � 1� syÞnlðdsÞ ¼
Z
R

XN
n¼2

sn�2yn

n!
s2nlðdsÞ

¼
� 1

ab
log

ae�by � be�ay

a� b

� �
; la2;

�logð1� yÞ � y; l ¼ 2;

8><
>:

which holds for all y from a neighborhood of zero in C (this equality has been
already used in course of the proof of Corollaries 2.3 and 2.4). Therefore, by Remark
4.1, we have (4.7) for all xAX ; oAH�t and f ¼ Glð	;jÞ; where j runs through a
neighborhood of zero in DC; denoted by Ut:
As easily seen, there exists e > 0 such thatZ

R

eejsjs2nlðdsÞoN ð4:9Þ

(in the case lo2; see e.g. [12, p. 180]). Choose qAN such that 2�q=2oe: Choose
t1; t2AT and q1AN such that tot1ot2;

CNt;qð	ÞpC1nt1;q1ð	Þpjj 	 jjl;t2 ; C;C1 > 0: ð4:10Þ

Fix any fAðDlÞ: For each kAN; let fk be a linear combination of functions Glð	;jÞ
with jAUt and let jjfk � fjjl;t2-0 as k-N (evidently, such a sequence ffkg
always exists). By (4.10), we then have

nt1;q1ðfk � fÞ-0 as k-N: ð4:11Þ

For a fixed oAH�tCH�t1 ; we define

*fkðzÞ :¼ fkðoþ zÞ � fkðoÞ; *fðzÞ :¼ fðoþ zÞ � fðoÞ

for zAH�t1;C: One easily checks that (4.11) implies

nt1;q1ð *fk � *fÞ-0 as k-N;

and hence, by (4.10)

Nt;qð *fk � *fÞ-0 as k-N:

We have

*fkðzÞ ¼
XN
n¼1

/z#n; f
ðnÞ

k S
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(note that *fkð0Þ ¼ 0). Since jjdxjj�tpjjdxjj�t0p1 for all xAX ; we get, using the

Cauchy inequlity ([24, proof of Lemma 2.7])

j *fkðsdxÞjjsj�1p
XN
n¼1

jsjn�1jj f
ðnÞ

k jjt1

p
XN
n¼1

maxð1; jsjÞnjj f
ðnÞ

k jjt1

pNt;qð *fkÞ expð2�q=2maxð1; jsjÞÞ

pC expðemaxð1; jsjÞÞ; kAN;

where CAð0;NÞ is independent of kAN: Hence, by (4.9) and the majorized
convergence theorem,Z

R

*fkðsdxÞnlðdsÞ-
Z
R

*fðsdxÞnlðdsÞ as k-N: ð4:12Þ

Finally, @x acts continuously on ðDlÞt2 ; and hence jj@xfk � @xfjjl;t2-0: Thus, by

(4.10), we get nt1;q1ð@xfk � @xfÞ-0 as k-N: Therefore, ð@xfkÞðoÞ-ð@xfÞðoÞ as
k-N; which, together with (4.12) concludes the proof. &

Let ðDlÞ�t denote the dual space of ðDlÞt: Analogous to (2.11), we realize ðDlÞ�t

as the Hilbert space consisting of sequences F ¼ ðF ðnÞÞNn¼0; F ðnÞAH
##n
�t;C; such that

jjF jj2l;�t :¼
XN
n¼0

jjF ðnÞjj2�toN;

with the scalar product in ðDlÞ�t generated by the Hilbertian norm jj 	 jjl;�t; and the

dual pairing of F ¼ ðF ðnÞÞNn¼0 with an element

f ¼
XN
n¼0

/ : 	#n :l; f ðnÞSAðDlÞt ð4:13Þ

is given by

0F ;fT ¼
XN
n¼0

/F ðnÞ; f ðnÞSn!:

By (4.1), we get the following representation of the dual space of ðDlÞ:

ðDlÞn ¼ ind lim
tAT

ðDlÞ�t:
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Each test space ðDlÞt can be embedded into ðDlÞ�t by setting, for f of form (4.13),

iðfÞ :¼ ðf ðnÞÞNn¼0: In what follows, we will just write f instead of iðfÞ to simplify

notations.

For each xAX ; we define an operator @w
x on ðDlÞn by

@w
xðF ðnÞÞNn¼0 :¼ ðdx

##F ðn�1ÞÞNn¼0:

Evidently, @w
x is the dual operator of @x and acts continuously in each ðDlÞ�t; tXt0

(with t0 as in the proof of Lemma 4.1). We define operators : oðxÞ :l 	 and oðxÞ	;
acting continuously from each ðDlÞt into ðDlÞ�t; tXt0; by

: oðxÞ :l 	 :¼ @w
x þ l@w

x@x þ @x þ @w
x@x@x;

oðxÞ 	 :¼:oðxÞ :l 	 þ cl id: ð4:14Þ

Analogous to A�
1 ðxÞ; we define operators A�

2 ðxÞ; A0ðxÞ; and AþðxÞ: Let also

/ : o#1 :l; xS	 and /o; xS	 denote the operators of multiplication by / : o#1 :l; xS
and /o; xS; respectively. We then easily get the following integral representation:

AþðxÞ ¼
Z

X

sðdxÞxðxÞ@w
x; A0ðxÞ ¼

Z
X

sðdxÞxðxÞ@w
x@x;

A�
2 ðxÞ ¼

Z
X

sðdxÞ xðxÞ@w
x@x@x;

/ : o#1 :l; xS	 ¼
Z

X

sðdxÞxðxÞ : oðxÞ :l 	;

/o; xS	 ¼
Z

X

sðdxÞxðxÞoðxÞ	; ð4:15Þ

where the integrals are understood in the sense that one applies pointwise the
integrand operator to a test function from ðDlÞ; then dualizes the result with another
test function, and finally integrates the obtained function with respect to the
measure s:
Before formulating the next theorem, we note that, for each xAX ; the operator rx

introduced in Remark 4.1 acts continuously on ðDlÞ: This can be easily shown using
methods as in the proof of Theorem 4.1. Furthermore, we introduce on ðDlÞ
continuous operators ra�b;x and Ua�b;x as follows:

ra�b;xfðoÞ :¼
fðoþ ða� bÞdxÞ � fðoÞ

a� b
;

Ua�b;xfðoÞ :¼ fðo� ða� bÞdxÞ:

Notice that, in the case lA½0; 2Þ; we have a� b ¼ a� %a; which is a purely imaginary
number, so when writing either fðoþ ða� bÞdxÞ or fðo� ða� bÞdxÞ; we under-

stand under f its entire extension to D0
C:
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Theorem 4.2. For each xAX ; @w
x considered as an operator from ðDlÞ into ðDlÞn has

the following representation:

@w
x ¼

: oðxÞ :l 	ð1þ ara�b;xÞ2Ua�b;x

�ð1þ ara�b;xÞra�b;xUa�b;x; la2;

oðxÞ 	 ðrx � 1Þ2 þ ðrx � 1Þ; l ¼ 2:

8><
>: ð4:16Þ

Proof. We prove the theorem only in the case la2 and refer to [21, Lemma 7.1] for
the case l ¼ 2: By (4.14) and (1.4),

: oðxÞ :l 	 ¼ @w
xð1þ l@x þ @2xÞ þ @x

¼ @w
xð1� a@xÞð1� b@xÞ þ @x: ð4:17Þ

Fix tXt0 and choose t0AT ; t0 > t; such that the operators ð1þ ara�b;xÞ2Ua�b;x and

ð1þ ara�b;xÞra�b;xUa�b;x act continuously from ðDlÞt0 into ðDlÞt: Take any jAD

such that e/	;jSAðDlÞt0 : Then, by (4.3) and (4.17),

: oðxÞ :l 	e/	;jS ¼ @w
xð1� aðC�1

l ðjÞÞðxÞÞð1� bðC�1
l ðjÞÞðxÞÞe/	;jS

þ ðC�1
l ðjÞÞðxÞe/	;jS: ð4:18Þ

Denoting

ra�bjðxÞ :¼
ejðxÞða�bÞ � 1

a� b
;

we get

ðC�1
l ðjÞÞðxÞ ¼ ra�bjðxÞ

1þ ara�bjðxÞ
ð4:19Þ

(compare with [26, formula (7.2)]). By (4.18) and (4.19),

: oðxÞ :l 	e/	;jS ¼ @w
x

ejðxÞða�bÞ

ð1þ ara�bjðxÞÞ2
e/	;jS þ ra�bjðxÞ

1þ ara�bjðxÞ
e/	;jS;

which yields

: oðxÞ :l 	ð1þ ara�bjðxÞÞ2e�jðxÞða�bÞe/	;jS

¼ @w
xe/	;jS þra�bjðxÞð1þ ara�bjðxÞÞe�jðxÞða�bÞe/	;jS: ð4:20Þ

Since the set of all functions e/	;jS with j as above is total in ðDlÞt0 and since

: oðxÞ :l 	 and @w
x act continuously from ðDlÞt into ðDlÞ�t; (4.20) implies (4.16). &
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Corollary 4.1. For any fAðDlÞ and xAD; we have for all oAD0

AþðxÞfðoÞ

¼ /oðxÞ � cl; xðxÞð1þ ara�b;xÞ2Ua�b;xfðoÞS

� /1; xðxÞð1þ ara�b;xÞra�b;xUa�b;xfðoÞS; la2; ð4:21Þ

and

AþðxÞfðoÞ ¼/oðxÞ; xðxÞðrx � 1Þ2fðoÞS

þ/1; xðxÞðrx � 1ÞfðoÞS; l ¼ 2;

where x denotes the variable in which the dualization is carried out.

Proof. Again, we prove only in the case la2 and refer to [21, Theorem 7.1] for the
case l ¼ 2: Fix any tXt0: Using methods as in the proof of Theorem 4.1, we
conclude the existence of t1AT ; t1 > t; such that, for any fixed oAH�t and zAC;
jzjp2ja� bj; and for any sequence ffk; kANgCðDlÞt1 such that fk-f in ðDlÞt1
as k-N; we have x *fk;z-x *fz in Ht;C as k-N: Here,

X U x/ *fk;zðxÞ :¼ fkðoþ zdxÞAC; X U x/ *fzðxÞ :¼ fðoþ zdxÞAC:

Choose t2 > t1 such that Cnt1;1ð	Þpjj 	 jjl;t2 ; C > 0; and choose t3 > t2 such that

AþðxÞ acts continuously from ðDlÞt3 into ðDlÞt2 : Fix any jAD such that

e/	;jSAðDlÞt3 : Then, for any fAðDlÞ; we get by (the proof of) Theorem 4.2

and (4.15)

0AþðxÞe/	;jS;cT ¼
Z

X

xðxÞ0@w
xe/	;jS;cTsðdxÞ

¼
Z

X

xðxÞð1þ ara�bjðxÞÞ2e�jðxÞða�bÞ

�0 : oðxÞ :l 	e/	;jS;cTsðdxÞ

�
Z

X

xðxÞð1þ ara�bjðxÞÞra�bjðxÞe�jðxÞða�bÞ

�0e/	;jS;cT sðdxÞ

¼ 0/ : 	#1 :l; xð1þ ara�bjÞ2e�jða�bÞS 	 e/	;jS;cTsðdxÞ

� 0/1; xð1þ ara�bjÞra�bfe�jða�bÞSe/	;jS;cT;

which implies (4.21) for f ¼ e/	;jS and oAH�t: Now, approximate an arbitrary
fAðDlÞ in the jj 	 jjl;t3 norm by a sequence ffk; kANg of linear combinations of
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exponents as above. Then, AþðxÞfk-AþðxÞf as k-N in the jj 	 jjl;t2 norm, and
hence in the nt1;1ð	Þ norm. In particular, AþðxÞfkðoÞ-AþðxÞfðoÞ for any oAH�t1 :
Furthermore, for any fixed oAH�t; we get

xð1þ ara�b;�Þ2Ua�b;�fkðoÞ-xð1þ ara�b;�Þ2Ua�b;�fðoÞ;

xð1þ ara�b;�Þra�b;�Ua�b;�fkðoÞ-xð1þ ara�b;�Þra�b;�Ua�b;�fðoÞ

in H�t;C: From here, we evidently get (4.21) for an arbitrary fAðDlÞ and an

arbitrary oAH�t: &

Remark 4.3. Analogous to Corollary 4.1, one can derive from Theorems 4.1, 4.2 and

(4.15) explicit formulas for the action of the operators A0ðxÞ and A�
2 ðxÞ (see also

[21, Theorems 7.2, 7.3] for the case l ¼ 2).
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