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Abstract

The classical polynomials of Meixner’s type—Hermite, Charlier, Laguerre, Meixner, and
Meixner—Pollaczek polynomials—are distinguished through a special form of their generating
function, which involves the Laplace transform of their orthogonality measure. In this paper,
we study analogs of the latter three classes of polynomials in infinite dimensions. We fix as an
underlying space a (non-compact) Riemannian manifold X and an intensity measure ¢ on it.
We consider a Jacobi field in the extended Fock space over L?(X; ¢), whose field operator at a
point xe X is of the form 9! + 2010, + 9y + 00,0y, where 2 is a real parameter. Here, y and
Ol are, respectively, the annihilation and creation operators at the point x. We then realize the
field operators as multiplication operators in L2(2; i), where &' is the dual of 2 = Cg* (X),
and u; is the spectral measure of the Jacobi field. We show that y; is a gamma measure for
|2] = 2, a Pascal measure for |2| > 2, and a Meixner measure for |4| <2. In all the cases, y; is a
Lévy noise measure. The isomorphism between the extended Fock space and L*(Z'; ;) is
carried out by infinite-dimensional polynomials of Meixner’s type. We find the generating
function of these polynomials and using it, we study the action of the operators 9, and 9! in
the functional realization.
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1. Introduction
In his classical work [26], Meixner considered the following problem: Suppose that

functions f(z) and ¥(z) can be expanded in a formal power series of zeC and
suppose that /(0) = 1, ¥(0) =0, and ¥'(0) = 1. Then, the equation

o pin)(x
G(x,2) = exp(x¥(2)) f(z) = r '( )

n=0

(1.1)

n!

generates a system of polynomials P"(x), neZ ., with leading coefficient 1. (These
polynomials are now called Sheffer polynomials.) Find all polynomials of such type
which are orthogonal with respect to some probability measure p on R. To solve this
problem, Meixner essentially used the two following facts. First, by the Favard
theorem, a system of polynomials P"(x), neZ,, with leading coefficient 1 is
orthogonal if and only if these polynomials satisfy the recurrence formula

xP" (x) = P"D(x) + a,P" (x) + b, PV (x),
neZ,,P"V(x) =0 (1.2)

with real numbers @, and positive numbers b,; or equivalently, the polynomials
P"(x) determine the infinite Jacobi matrix with the elements @, on the main
diagonal and the elements /b, on the upper and lower diagonals. And second, as
follows from (1.1),

P 1(D)PW(x) = nP" V(x), neN, (1.3)

where ¥~! is the inverse function of ¥ and D = %. Meixner showed that the

solution of this problem is completely determined by the equations

b by
A=a, —an,_, neN, x=-"2-"""
n n—1

n=2,

where 1 and k are some parameters. If k =0, we have to distinguish the two
following cases:

(D) 2 =0, without loss of generality, we then get @, = 0 and b, = nin (1.2), P" (x)
are the Hermite polynomials, u is the standard Gaussian distribution on R.

(IT) 4#0, so that a, = in, b, =n, P"(x) are the Charlier polynomials, u is a
centered Poisson distribution on R.

Let now k#0 and we set k = 1 for simplicity of notations. We then get a, = An
and b, = n’. We introduce two quantities o and f through the equation

14+ z422 = (1 —az)(1 — Bz). (1.4)
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We now have to distinguish the three following cases:

(IID) 4| =2, so that « = B = +1, P"(x) are the Laguerre polynomials, u is a
centered gamma distribution.

(IV) |2] > 2, so that o+ f8, both real, P (x) are the Meixner polynomials (of the
first kind), which are orthogonal with respect to a centered Pascal (negative
binomial) distribution.

(V) |4]<2, so that a#f, both complex conjugate, P"(x) are the Meixner
polynomials of the second kind, or the Meixner—Pollaczek polynomials in
other terms. These are orthogonal with respect to a measure p obtained by

centering a probability measure of the form Cexp(ax)|I'(1+ im x)|* dx,
where aeR, m > 0, and C is the normalizing constant. We will call it a
Meixner measure, though there seems to be no commonly accepted name
for it.

In all the above cases, the generating function G(x,z) defined in (1.1) can be
represented as G(x,z) = exp(x¥(z))/L,(¥(z)), where L,(z) = [ ™ u(dx) is the
extension of the Laplace transform of the measure y defined in a neighborhood of
zero in C.

In the present paper, we will study analogs of polynomials of Meixner’s type
and their orthogonality measures in infinite dimensions. In the case of the Gaussian
and Poisson measures, such a theory is, of course, well studied; we refer to e.g.
[6,17] for the Gaussian case and to e.g. [20,22] for the Poisson case. Notice that, in
both cases, the Fock space and the corresponding Jacobi fields of operators in it
play a fundamental role (see [3,7,25] for the notion of a Jacobi field in the Fock
space). In particular, the field operator at a point x€ X, where X is an underlying
space, has the form 97 + Oy in the Gaussian case, and 0] + 2010, + 0, in the Poisson
case. Here, 0, and 9! are the annihilation and creation operators at the point x,
respectively.

Concerning the gamma case (III), an infinite-dimensional analog of the Laguerre
polynomials and the corresponding Jacobi field was studied in [21,23]. The
polynomials are now orthogonal with respect to the (infinite-dimensional)
gamma measure, which is a special case of a compound Poisson measure.
Since such a measure does not possess the chaotic decomposition property,
instead of the usual Fock space one has to use the so-called extended Fock
space. This space, on the one hand, extends the usual Fock space and, on the
other hand, still has some similarities with it. The field operator at a point xe X’
has the form ! + 2010, + 0, + 810,0,. In [8], the structure of the extended
Fock space was discussed in detail, and in [9], it was shown that the extended Fock
space decomposition of the Gamma process can be thought of as an expansion of
any L?>-random variable in multiple integrals constructed by using a family of
resolutions of the identity in the extended Fock space. We also refer to the recent
paper [30] and the references therein, where many other properties of the gamma
measure are discussed in detail.
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As for cases (IV) and (V), the role of the orthogonality measure should be played
by (infinite-dimensional) Pascal and Meixner measures (processes). These processes
in the case X = R, , both Lévy, were introduced in [11,29], respectively. In [16], the
Meixner process was proposed for a model for risky asserts and an analog of
the Black—Sholes formula was established. In [27] (see also the recent book [28]), the
gamma, Pascal, and Meixner processes served as main examples of a chaotic
representation for every square-integrable random variable in terms of the
orthogonalized Teugels martingales related to the process. Though the one-
dimensional polynomials of Meixner’s type were used in this work in order to carry
out the orthogonalization procedure of the Teugels martingales (which, in turn, are
the centered power jump processes related to the original process), infinite-
dimensional polynomials corresponding to these processes have not appeared in
this work; furthermore, they were mentioned as an open problem in [28§].

The contents of the present paper is as follows. In Section 2, we fix as an
underlying space X a smooth (non-compact) Riemannian manifold and an intensity
measure ¢ on it. We consider a Jacobi field in the extended Fock space over L*(X; a),
whose field operator at a point xe X has the form 97 + 2910, + 0y + 910,0y, where 1
is a fixed real parameter. Using ideas of [7,21,25], we construct via the projection
spectral theorem [6] a Fourier transform in generalized joint eigenvectors of the
Jacobi field. This gives us a unitary operator I; between the extended Fock space and
the space L*(Z'; u;), where &' is the dual space of Z == Cg*(X) with respect to the
zero space L>(X; ), and y, is the spectral measure of the Jacobi field, i.e., the image
of any field operator under 7; is a multiplication operator in L*(Z'; u;). The y, is a
gamma measure for |1| = 2, a Pascal measure for |A| > 2, and a Meixner measure for
|4|<2, in the sense that, for any bounded 4 < X, the (naturally defined) random
variable <-,y,> has a corresponding one-dimensional distribution. Furthermore,
for |A|=2 u, is a compound Poisson measure, and for |A|<2 p, is a Lévy noise
measure. In particular, for X = R we obtain the gamma, Pascal, and Meixner
processes, respectively.

Next, under the unitary 7, the image of any vector f° (")e_@g)i is a continuous
polynomial ¢ : w®:;, 0% of the variable we %', which may be understood as an
infinite-dimensional polynomial of Meixner’s type, since < :w®':;, X?i > =
P%((w, %4> ), Where P(Al)A() is a one-dimensional polynomial of Meixner’s type.

In Section 3, we identify the generating function G)(w, ) =3 ,2) L 0®" 1,
P®"y, we?', peYc, and show that G;(w,p) =exp({w, Y,(¢)>)/l:(¥:(0)),

where /; is the extension of the Laplace transform of the measure p; defined in a
neighborhood of zero in ¢, and ¥, is the same function as ¥ in (1.1).

Finally, in Section 4, using results of [22,24], we introduce a test space (Z;)
consisting of those functions on 2’ which may be extended to entire functions on Z¢.
of first order of growth and of minimal type. This space is densely and continuously
embedded into L*(Z';u;). We then study the action of the operators O :
(2,)~(2,) and 0! : (2,)—(2,)*, where (Z,)" is the dual of (Z;). We note that,
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analogously to (1.3), we have 0, = ‘I’ZI(VX), where V is the Gateaux derivative in
direction 6. We obtain explicit formulas for the operators dy and [ o(dx) &(x)dL,
€. Tt should be stressed that, for the latter operator in the case ||<2, the
possibility of a (unique) extension of a test function on 2’ to a function on Z¢. plays
a principle role.

In a forthcoming paper, we will study a connection between the extended Fock
space decomposition of L?(Z';u;) obtained in this paper and the chaotic
decomposition of this space in the case X = R as in [27]. Finally, we note that one
can also study a more general model where, in the field operator at a point xe X, the
value of the parameter A depends on x. Then, the corresponding noise will be with
independent values and at each point xe X its properties will be the same as the
properties of the noise at the point x under p, ).

2. Meixner’s Jacobi field and its spectral measures

Let X be a complete, connected, oriented C* (non-compact) Riemannian
manifold and let Z(X) be the Borel o-algebra on X. Let ¢ be a Radon measure on
(X,4(X)) that is non-atomic, i.e., ¢({x}) = 0 for every xe X and non-degenerate,
ie,, 6(0O) >0 for any open set OcX. (We note the assumption of the non-
degeneracy of ¢ is non-essential and the results below may be generalized to the case
of a degenerate ¢.) Note that 6(A4) < oo for each A€ 0.(X)—the set of all open sets in
X with compact closure.

We denote by & the space C;°(X) of all real-valued infinite differentiable
functions on X with compact support. This space may be naturally endowed with a
topology of a nuclear space, see e.g. [10] for the case X = R and e.g. [14] for the case
of a general Riemannian manifold. We recall that

9 = proj lim A,. (2.1)
teT
Here, T denotes the set of all pairs (t1,72) with 11€Z and 1, C* (X)), 12(x) > 1 for
all xe X, and #'; = A, ., is the Sobolev space on X of order 7; weighted by the
function 1, i.e., the scalar product in 5., denoted by (-,-),, is given by

0.~ | <f<x>g<x>+2<vff<x>,vfg<x>>T,\(X)®f>rz<x> d, (22)
i=1

where V' denotes the ith (covariant) gradient, and dx is the volume measure on X.
For 7,7 e T, we will write 7' >t if 7} >, and 75(x)>1,(x) for all xe X.

The space Z is densely and continuously embedded into L*(X;0). As easily seen,
there always exists 79 € T such that #;, is continuously embedded into L?(X; ). We
denote 7" := {teT: 1>=79} and (2.1) holds with T replaced by 7". In what follows,
we will just write T instead of 7”. Let 2 _; denote the dual space of /#°, with respect
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to the zero space # = L*(X;0). Then &' = ind lim,c7 # _, is the dual of 2 with
respect to #, and we thus get the standard triple

Do>HDD.

The dual pairing between any we %’ and &e % will be denoted by {w, .
Following [21], we define, for each ne N, an n-particle extended Fock space over
A, denoted by féﬂ(ﬂ) Under a loop x connecting points xj, ..., X, m=2, we
understand a class of ordered sets (Xz(i), ..., Xz(m), Where @ is a permutation of
{1, ...,n}, which coincide up to a cyclic permutation. We put |k| = m. We will also
interpret a set {x} as a “one-point” loop «, i.e., a loop that comes out of x, || = 1.
Let o, = {x1, ..., K|5,|} be a collection of loops x; that connect points from the set
{x1, ..., x,} so that every point x; € {x1, ..., x,} goes into one loop k; = k;(; from a,.

Here, |o,| denotes the number of the loops in a,, evidently n = Z}il |%j]. Let 4,

stand for the set of all possible collections of loops o, over the points {x, ..., x,}.
(We note that the set A, contains n! elements [21, Remark 2.1].) Every o, A4,
generates the following continuous mapping

@g)n E)f(n) :f(”)(xh ...,Xn)

, ® |
— 1(")()(1, s X1 X2y ey X2y ey Xy | ...,x‘an‘)egc " (2.3)
|| times || times [1joy | times

where the lower index C denotes complexification of a real space and the symbol &

stands for the symmetric tensor power. We define a scalar product on 9?” by

(fm gt => (fmg™), do®, (2.4)

o
oy €A, Xoml|

where £ is the complex conjugate of /(). Let 7 §X1( #') be the closure of @gj " in the

norm generated by (2.4).
The extended Fock space Z e (#°) over # is defined as a weighted direct sum of

the spaces Z ) (#):

ext

Fex(H) = @ Fo(A)n), (2.5)

where 5753?(1(%”) C and 0! =1. That is, Fex(#) consists of sequences f =
(F© O @ such that /e Z")(#) and

Z [Fag

n'<oo
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We will always identify any f® e Z ") (#) with the element (0, ...,0,£®,0, ...) of
F ext(H).

Note that the usual Fock space () can be considered as a subspace of
F ext(#) generated by functions £ e 2&" such that @ (x, ..., x,) =0 if x; = x;
for some i,je{l,...,n}, i#j.

Let Z,(2) denote the topological direct sum of the spaces 28", i.e., F i (2)

consists of all sequences f = (f©,f(), .. £" 0,0,...) such that f<”>e@d:®" and
the convergence in Z (%) means uniform finiteness and the coordinate-wise

convergence. Since each space @gj " is nuclear, so is Z 1in(2). As easily seen, the space
T in(2) is densely and continuously embedded into F o ().
For each £€ 2, let at (&) be the standard creation operator defined on Z ;,(2):

at(@) SN =E@f W, fMez®", nez..

A simple calculation shows that the adjoint operator of a* (&) in F ¢y (#), restricted
to Zn(2), is given by the formula

a (&) = (@ ()1 Fn(2) = a7 (£) + a3 (&),

where a;y (¢) is the standard annihilation operator:
(@ 1wt = [ 01 ),
X
and a; () is given by

(a;({)f(”))(xl, vy Xpo1) = n(n — 1)(5()61)]‘(”)()61,xl,xQ7 e Xuo1)) 7,

where (-)~ denotes the symmetrization of a function.
Finally, we define on % g, (2) the neutral operator a°(¢), é€ Z, in a standard way:

(ao(i)f(">)(x1, ey Xy) = n(i(xl)f(")(xl, e X))

One easily checks that a°(¢) is a Hermitian operator in 7 o ().
Now, we fix a parameter 1€[0, co) and define operators

ay(&) = a* (&) +2d°(&) +a (&) + ;< &id, ¢ed.
Here, (&) = [, &(x)o(dx), id denotes the identity operator, and the constant

¢, > 0 is given by

B {;b/z if 1e[0,2], 06

2/(A+VIE—4) if L>2.
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(The special choice of this constant will become clear later on, however it is not of a
real importance.) Each «;(¢) with domain ,(2) is a Hermitian operator in
F ext(H).

By construction, the family of operators (a;(¢)). ., has a Jacobi field structure in
the extended Fock space Fex(#) (cf. [3,7,25]). We will call this family Meixner’s
Jacobi field corresponding to the parameter A.

Lemma 2.1. The operators a;(&), (€D, with domain F,(2) are essentially self-
adjoint in F ('), and their closures a; (&) constitute a family of commuting self-
adjoint operators, where the commutation is understood in the sense of the commutation
of their resolutions of the identity.

Proof. The lemma follows directly from [3, Theorem 4.1] whose proof admits a
direct generalization to the case of the extended Fock space. [

Theorem 2.1. For each 1€[0, ), there exist a unique probability measure u, on

(2',6,(2")), where €,(Z') is the cylinder a-algebra on ', and a unique unitary
operator

L s Fex(H) > LD 5 15)
such that, for each &€ 2, the image of aj (&) under I; is the operator of multiplication
by the function {-,&Y in L*(2'; ;) and I Q = 1, where Q = (1,0,0, ...). The Fourier

transform of the measure u; is given, in a neighborhood of zero, by the following
Sformula: for 1 =2

[ dnafe) = exp | [ o1 = iotyatas)|

e, |loll, =sup |p(x)|<1, (2.7)
xeX

and for A#2

1 —ifo(x) _ Be—irp(x)
= exp [_az_ Xlog(ae o ge >o(dx) + ic;~<(p>] (2.8)

for all p e D satisfying

a(e o — 1) — Ble7™» — 1)
x—p

<1, (2.9)

o0
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o, p defined by (1.4). The unitary operator I; is given on the dense set F1,(Z) by the
Sformula

Finl@)of = (()EgoLf = (L)) =3 o 5 f0)

n=0

(the series is, in fact, finite), where : ®®" :; eg'®" s defined by the recurrence formula

@0t = @ (X, X)) = C0® (X0 e, X))@ (X011))
—n(:®0 7 (X 1)0 (e — X))
—n(n—1)Co0® Y (o X01)0 (X — X0e1)0 (s — X))~
— An(: »®" (X1, oey X0)O (X1 — X))~
— i 0®" 2z (x, X)) (X)) T
c0® =1, 0% ;=0 — . (2.10)

Remark 2.1. It can be shown that p, is the spectral measure of the commutative
family of self-adjoint operators a; (¢), €2 (see [6, Chapter 3] for the notion of a
spectral measure).

Remark 2.2. Note that taking a parameter 1<0 would lead us to the measure y;
obtained from the measure u_,; by the transformation w+ — w of the space &',
which is why we have excluded this choice.

Proof of Theorem 2.1. As easily seen, for any £€ 2 and neN, the operators a* (),

a(¢), and a (&) act continuously from 28" into 22"V, & @
respectively. Therefore, for any €2, a,(&) acts continuously on F,(9).
Furthermore, for any fixed fe€ % ,(2), the mapping Z3¢a; (&) feFu(2) is
linear and continuous. Finally, the vacuum Q is evidently a cyclic vector for the
operators a' (§), (€D, in F,(2), and hence in F o (). Then, using the Jacobi
filed structure of a, (&), it is easy to show that Q is a cyclic vector for a;(¢), £€9, in
F ext(H). Thus, analogously to [7,21, Theorem 3.1, 25], we deduce, by using the
projection spectral theorem [6, Chapter 3, Theorem 2.7, Subsection 3.3.1], the
existence of a unique probability measure u; on (%', %,(%’)) and a unique unitary
operator I; : F ey (#)— L*(Z'; ;) such that, for each €%, the image of a; (&)
under [, is the operator of multiplication by the function (-, &> and I;Q = 1.

Let us dwell upon the explicit form of I;. Let Z#§, () denote the dual space of

F (D). FE(2) is the topological direct sum of the dual spaces (9?”)* of 9?”. It

will be convenient for us to realize each (9?")* as the dual of 9? " with respect to
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the zero space %?” n!, so that (@?”)* becomes :@Aftéj". Thus, Z§,(2) consists
of infinite sequences F = (F™)”  where F"e%.®" and the dualization with

f=(")" eFn(2) is given by
CEfy =3 CFILf5m, 2
n=0

where (-,-> denotes the dualization generated by the scalar product in # ®”, which
is supposed to be linear in both dots.

Next, according to the projection spectral theorem, for u,-a.e. we %', there exists a
generalized joint vector P(w) = (P"(w)),2,€ F ,(2) of the family a(¢), € Z:

VieFm(Z): (P(w),al@)f) =<o,iP(w).f), (2.12)

and for each f = ()" e F,(2) the action of I, onto f is given by
Lf = (L)) = CP@)fy =3 CPP(0)./0 yn. (2.13)
n=0

We denote : ©®" :;:= P")(w)n!, which is an element of 9/;@@” for py-a.e. we?'. By
(2.12) and (2.13), we have, for u;-a.e. we %',

(0,8 (035,89 = Co®0t s, g8
+Co® (@) &S 1o (e ey
+ o0 g @B i —1)(E) @Oy (2.14)

for all £€ 2. Therefore, for u;-a.e. we %', the : @®" :;’s are given by the recurrence

relation (2.10). As easily seen, : @®” :; is even well defined as an element of 9?C®" for
each we?'.

Let us calculate the Fourier transform of p;. Let 4€.(X) and let y, denote the
indicator of A. One easily checks that each of the vectors xf?", nez., xfo =Q,
belongs to F e (#), and let 44 be the subspace of F . (#) spanned by these
vectors. Let ] (y,) denote the operator in o (#’) whose image under the unitary
I, is the operator of multiplication by the function

(o, yy =0 ) + ao(d) = (L) (o) + co(4).

We approximate the indicator function y, by functions ¢,e<Z, neN, such that
U,en SUPP @, is precompact in X, ¢,’s are uniformly bounded, and ¢, (x) — y,(x) as
n— oo for each xeX. By using the definitions of # ¢ (#) and a] (¢) and the
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majorized convergence theorem, we get

(n+1) (nfl)'

af xS = 15" 4 Gn+ o(A) 3"+ n(n—1+a(4)15

Therefore, 4, is an invariant subspace for the operator a~(y,). Hence,
analogous to [21, pp. 315-316], we may conclude that the distribution of the
random variable <-,x,» is the probability measure u, , on (R,#(R)) whose
orthogonal polynomials (PE"A)‘ (x)),—, with leading coefficient 1 satisfy the recurrence
relation

xP(x) = P (x) + (2n + cz0(4)) Py (x)

+n(n—1+a(4)P", " (x) (2.15)
(the measure y; 4 being defined uniquely through this condition). Thus, (P(f) (N

is a system of Laguerre polynomials for 4 = 2, and a system of Meixner polynomials
for A#2. We will now consider only the case 1#2, the case A = 2 being considered
analogously (see also [21]). By Meixner [26], the Fourier transform of the measure
1.4 in a neighborhood of zero in R is given by

A .y @A)/
[t = (= fm) el (219

oce—iﬁ” _ ﬁe—iau
Therefore, for any ue R satisfying

oc(eiiﬁ” _ 1) _ B(eiau _ 1)
x—p

‘<1, (2.17)

we get

| | A —ifu _ —iou
/ ezu<w,m>'ui(dw) =exp |:_ 6( ) log <OC€ ﬁe
@/

p .y ) + iqua(A)]

e PuLa (%) _ Boiours()

—exp {_# Xlog( — )a(dx)

—|—ic,1/Xu}(A(x)a(dx)]. (2.18)

Now, let A4;,...,4,€0.(X) be disjoint. Then the spaces # 4, ©F¢(H), ...,
H 4, ©Fo(H) are orthogonal in Feu(#). Therefore, the random variables
o ¥ay D5 oos <5 %a, > are independent. Hence, for any step function ¢ =
S uiy 4, such that all »;’s satisfy (2.17) with u = u;, formula (2.8) holds.
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Finally, fix any @ €2 satisfying (2.8). Choose any sequence of step functions
{¢,},en such that

—ibo,(x) _ 1) — B(efen(x) _ 1
wp | ) - Bl )

<1,
neNxeX O‘_ﬁ

Unen sSupp ¢,€0.(X), and ¢, converges pointwisely to ¢ as n— co. Then, by the
majorized convergence theorem, we conclude that the right-hand side of (2.8) with
¢ = ¢, converges to the right-hand side of (2.8). On the other hand, {-,¢,)>
converges to {-, @ in L*(Z; u), and therefore also in probability. Hence, again by
the majorized convergence theorem, the left-hand side of (2.8) with ¢ = ¢, converges
to the left-hand side of (2.8). O

Corollary 2.1. For each A€ 0.(X), the distribution y, 4 of the random variable < -, 1, »
under w; is given as follows: For A >2, u, . is the negative binomial (Pascal)
distribution

a(4) - (G(A))k k
:u’i,A = (1 _p/t) ; k' p)5 )v2—4k’ (219)
where
A=\ —4
pi=
A+ VIT—4

and for r >0 (r)g =1, (r), =r(r+1)---(r+k—1), keN. For A=2, u, 4 is the
Gamma distribution

a(4)—1 ,—s

S e
U2 4 (ds) = WX[O,OO)(S) ds. (2.20)
Finally, for 2€]0,2),
B (4 _ 12)(5(4)—1)/2
M4 (ds) —W

x |[(a(4)/2 + i(4 — 22)~%s)?

x exp[—s2(4 — %)~ arctan(A(4 — 22)7V/?)] ds. (2.21)

Proof. The result follows from (the proof of) [12, Theorem 2.1 Chapter VI, Section
3; 26] (see also [28, Subsection 4.3.5, 29]). O

For [ e ZF ! (A), let { :-®":, £ denote the element of L2(Z'; ;) defined
as L,f™.
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Corollary 2.2. For any A€ .(X) we have
a®n :bxf?”> = Pg:’z‘(<w,xA ) wraa. wed, (2.22)
where (P(Anz‘);i o are the polynomials on R as in the proof of Theorem 2.1.

Proof. This result directly follows from the proof of Theorem 2.1. [

Remark 2.3. Let us state the one-dimensional analog of the results of Theorem 2.1
and Corollaries 2.1, 2.2. We consider the weighted /»-space # = /2(((n!)?)2,)
consisting of all sequences f = (f")7,, f®™eC, such that |[f|5 =
>oo |f®*(n!)* < 0. Let Fpy denote the set of all finite sequences in %. For

each 1€[0, o0 ), we define a linear Hermitian operator @, in % with domain %, by
setting

a, =a" + 2’ +a + ¢ id,

where (atf™)® =51 f®, (@fYE = 5, nf @ (@ K = 5, 2. Here
0;j = 1ifi=jand §;; = 0 otherwise, and ¢; is given by (2.6). We note that, under the
natural unitary mapping of the weighted /,-space % onto the usual /5, the operator
a; goes over into the operator defined by the infinite Jacobi matrix J = (ocm,,,),ff’n:o
with the elements o, , = An+c¢;, neZy, tppy1 = 01y =n+1,neZ,, and o,,,, =0
for |m—n| > 1.

The operator a; is essentially self-adjoint, and let @;" denote its closure. By the
spectral theory of infinite Jacobi matrices (e.g. [2, Chapter VII, Section 1]), there
exist a unique probability measure nt; on (R, Z(R)) and a unique unitary operator
S, F - L*(R;m;) such that the image of the operator a; under .#, is the operator
of multiplication by the variable x and .#,(1,0,0, ...) = 1. The mapping .#, is given
on the dense set g, by

Fwnaf = (") g I = SPPY ().
n=0

Here, (Pgm);i o 1s the system of polynomials on R satisfying the following recurrence
relation: for neZ,

xP (x) = PPV () + G+ ) P (x) + 2PV (x),  PUY(x) =0,

y A
P (x) =1,

and m,, is the unique probability measure on R with respect to which the polynomials

(PE")) o are orthogonal. By Meixner [26], the Fourier transform of the measure m;
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in a neighborhood of zero in R is given by

) elciu - %*ﬁ — 1/(“5)7 }v;ﬁz’
/ ¢ (dx) = G T ) (2.23)
R (1 —iu)", A=2.

Furthermore, the measure m; is explicitly given by the right-hand side of
formula (2.19), resp. (2.20), resp. (2.21), with o(4) = 1. Thus m; is a Pascal
distribution for A€0,2), a Gamma distribution for 1 =2, and a Meixner
distribution for 1 > 2.

We will now show that each y, is a compound Poisson, respectively, Lévy noise
measure.

Corollary 2.3. For each 2=2, p, is a compound Poisson measure on (2',6,(%"))
whose Lévy—Khintchine representation of the Fourier transform reads as follows:

/ e 1 (dw) = exp {/ (e"‘“f’(x> — Do(dx)v;(ds)|, @e2, (2.24)
Iz X xR,

where

—S

va(ds) = ers,

8

v;(ds) =
k=1

S — , L>2. (2.25)
-4k

UG

In particular, each p, is concentrated on the set of all Radon measures on (X, #(X)) of
the form Y " | s,0x,, {x,} =X, s, >0, neN.

Proof. It follows from the general theory of compound Poisson measures (e.g. [19])
that there exists a compound Poisson measure fi; whose Fourier transform is given
by (2.24) with v, given by (2.25), and which is concentrated on the set of those Borel
measures on X as in the formulation of the theorem. Furthermore, it follows from
the general theory that, for any disjoint 4, ..., 4, € 0.(X), the random variables are
independent. Thus, it suffices to show that, for any fixed 4€ 0.(X), the distributions
of the random variable {w, y,» under u; and fi; coincide. But this can be easily
done by calculating the Fourier transform

/ <0 i (dw) = exp l:G(A)/ (e — l)v;v(afs)}7 ueR,
9 Ry

and comparing it with the Fourier transform of the measure ; 4 (see (2.16) for the
case 4 >2). O
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In the case 1€[0,2), the situation is a little bit more complicated, since the
corresponding Lévy measure v; to be identified does not have the first moment finite.

Corollary 2.4. For /.€[0,2), w, is the Lévy noise measure whose Lévy—Khintchine
representation of the Fourier transform reads as follows:

/ ¢, (do) = exp { / (00 — 1 — isg(x))a(dx)v;(ds) +ic; {9 |,
174 XxR
QpeD, (2.26)

where

2n
x |F(1+i(4 — 22)7V29) ) exp[—s2(4 — 22)71/?

1

x arctan(A(4 — A%)71/2)] S—zds. (2.27)

Proof. The existence of a probability measure i; on &' whose Fourier transform is
given by the right-hand side of (2.26) with v, given by (2.27) follows by, e.g. the
Bochner—Minlos theorem. Furthermore, as easily seen, for each 4e 0.(X), one can
naturally define a random variable (-, %, > as an element of L>(Z'; fi;). By (2.26), for
any disjoint Ay, ...,4,€0.(X), the random variables <{- 7, >, ..., {14, > are
independent. Analogous to the proof of Corollary 2.3, we conclude the statement by
calculating the integral fR(e"”S — 1 — ius)v;(ds), ue R, using [28, Subsection 4.3.5], see
also [29]. O

Remark 2.4. It follows from Corollaries 2.3 and 2.4 that s?v;(ds) is a Meixner
distribution for 1€]0,2), gamma distribution for 2 = 2, and Pascal distribution for
/> 2. Furthermore, for each 1>0, s> v;(ds) is a probability measure on R whose

orthogonal polynomials (QS"))HJQ: o Wwith leading coefficient 1 satisfy the following
recurrence relation:

50" () = 0"V (s) + 2(n+ DO () + n(n+ NQ" V(s), nez.,

0;'(s) =0.

We denote by 2(Z') the set of continuous polynomials on &', i.e., functions on &’
of the form

Flo)=Y" (o® [0y, 028 o® =1, icZ,.
i=0



E. Lytvynov | Journal of Functional Analysis 200 (2003) 118—149 133

The greatest number i for which /)0 is called the power of a polynomial. We
denote by 2,(2') the set of continuous polynomials of power <n.

Corollary 2.5. For each >0, we have I,(F n(2)) = P(Z'). In particular, ?(Z') is a
dense subset of L*(9'; ;). Furthermore, let 2;,(%') denote the closure of 2,(2') in
L*(Z'; ), and let (L%’n) denote the orthogonal difference 2;,(2')©2;,-1(2') in
L*(Z'; ;). Then,

L) = & (LL,). (228)

n=
Finally, let P;, denote the orthogonal projection of L*(Z'; ;) onto (Lfn) Then, for
any £ e@?”,

P),,n(<'®n»f(n) >) = < : L@ :/"mf(n)> w-a.e. (229)

and

L(F8(H)) = (L2,). (2.30)

rn

Proof. Using recurrence relation (2.10), we obtain by induction the inclusion
L(Z(2))=2(2') and moreover, the equality

Cro® 5 fy = (o®" [0S +p, i (w), fMea8" (2.31)

where p, €2, 1(2'). Using (2.31), we then obtain by induction also the
inverse inclusion 2(Z')cl(Fu(2')). That 2(Z') is dense in L*(Z';u,)
follows from the fact that F,(2) is dense in Fex(#). Decomposition (2.28)
now becomes evident. Finally, (2.29) follows by (2.31), and (2.30) is a
consequence of (2.29). O

3. The generating function

Now, we will identify the generating function of the polynomials
C® 0%y pe.

Let .#(X) denote the set of signed Radon measures on (X,%4(X)). We can
evidently identify any measure we.#(X) with an element @€ %’ by setting

(B,p) = /X p((dx), pe2.

In what follows, we will just write w instead of &. Then, for 4€ 0 .(X), the writing
L, x> will mean w(4).
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Proposition 3.1. We have, for A#2,

3
I
=)

+oc—[3<w CA’IOgG:iZ)ﬂ (3.1)
and for A =2
0)= Y (0 )
n=0
=exp [—<log(l +o0)>+ <w,%>} (3.2)

Formulas (3.1), (3.2) hold for each we. #(X) and for each ¢eZ¢c satisfying

llol|,. <(max(laf,|8]))"" for (3.1) and ||@||, <1 for (3.2). More generally,
for each fixed teT, there exists a neighborhood of zero in Z¢ (depending
on 1), denoted by O, such that (3.1), respectively (3.2), holds for all we # _. and
all pe,.

Remark 3.1. In the one-dimensional case (see Remark 2.3), the generating function
of the polynomials (Pg")(o));;o is given by (cf. [26])

u
G, (x,u) = WP(;)(X)
n=0 """
(1= )P\ O 1 g e
(Y e
(1 — o) 1 —ou

o . n 1
{éz(x’ u) — Z ipgn)(x) _ 7eux/(u+1)

— ! 1+u

for u from a neighborhood of zero in C. [

Proof of Proposition 3.1. We only prove formula (3.1), corresponding to the
case A#2. Let us fix we #(X). Then, as easily seen from (2. 1()) cw®" e (X
for each neN (if we identify .#(X") as a subset of 2 ®"). Fix Ae0.(X).
As follows from the proof of Theorem 2.1, the equality in (2.22) holds for each
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we M (X). Then,

<1
Z _, (“XA)®n> =
n=0 n

8
]

)7/{4 >

g
s S
VN
8

I
hE
S

Il
o

P\ (K, 74)):
Hence, it follows from [26] (see also Remark 3.1) that (3.2) holds with ¢ = uy, and

ueC such that |u| < (max(|«|, [8]))""
We next prove the following lemma.

Lemma 3.1. For any we 4 (X) and any disjoint Ay, ..., 4;€0.(X),

Cro® e ®y$k1>—H< 0z 20

i=1

- H (o 1a), (3.3)

where ki, ..., kjeN, ki + - +k; =n.

Proof. We prove this lemma by induction in neN. For n=1, formula (3.3)
trivially holds. Now, suppose that (3.3) holds for all n<N. Let ky,...,keN,

ki + - +k =N+1. Applying recurrence formula (2.10) to : w®®™*D :; we
express { : w®WVF ,X®k‘® ®/j@k’> through <m,74 >, <:0®V g ®k‘®

@2V @ @28 Y, @V 80 @S @ @y PM )y, and
o(4;),j=1,...,1. Applying formula (3.3) with n = N and n = N — 1 and then using
the recurrence relation (2.15) for the polynomials PY"Z‘, we conclude the
statement. [J '

Fix any disjoint 4y,...,4,,€0.(X) and any wu,...,u,€C satisfying
lui| <max(|a|,|p])"", i=1,...,m, and set f=>" uy,. By Lemma 3.1,
we get

o0 1 m o0 u;.«, "
GOy O = H(Z o >>.
n=0 """

n=0 """ i=1
Hence, (3.2) holds with ¢ = f.
Using (2.10), one easily shows by induction that, for each fixed A€ 0.(X), there
exists a constant C4, such that

VreN: |:0®":; A" <nlC) (3.4)

)
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where | : ©®" :; | A"| denotes the full variation of the signed measure : ©®” :; on A".
Fix any ¢ € Z such that supp =4 and |[|pl|,, <C,},. Let {fy, ke N} be a sequence
of step functions on X such that

C= sup |fi(x)|<Cyl,
keNxeX

Uken SUppfic A4 and fi —> ¢ as k— oo uniformly on X. We then get by (3.4)

<1 <1
YDEREPLEWLOND pRTE NS
n=0

n=0

o0
1 n n
<> r0® 1A sup A0 (3 Xa) — 0" (X1 X))
n=0 n (X1yeeeyxpy) EXT
- 1
<> ¢y nmax(llell,, €)' sup | fi(x) — @(x)| >0
n=0 xeX
as k— o0. (3.5)

Let G;(w, @) denote the right-hand side of (3.2). Then, if
-1
max([[o]|.,, €) <max(fal, [5) ",

by the majorized convergence theorem, G;(w,fi) = G;(w, @) as k— oo. Thus, (3.2)
holds for any ¢ € & such that supp p <A and

o -1
oIl <min(Cg,, max(|ol, |B]) ).

Let us show that (3.2) holds for any ¢ €2 such that ||o||, <max(|«/, |f])”". Fix
such pe . Denote

0, = {zeC: [z|< 1+ K(max(ja, |B) " —llell.,)},
and consider the analytic function
0,3z 9¢(z) = G;(w,z9).

For all zeC such that |z| <1, we have the Taylor expansion

Z". (3.6)

But it follows from the proved above that

<]
=30 L won s pony 3
n=0
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for all ze C from some neighborhood of zero. Comparing (3.6) and (3.7), we get
g"(0) = C:w®" 5, 0", (3:8)

and thus, by (3.6) and (3.8) we have proved the proposition in the case where
weM(X).

Let us consider the general case. Fix te 7. Without loss of generality, we can
suppose that the inclusion #; < L?(X; o) is quasi-nuclear,

||(p‘|oo<cf||(p||rﬂ (pE@, C‘t>0a

and le #_;. Let

O = {peZc : ||oll.<(2C max(al, |B)) "'}
It follows from (2.2) that

sug) max(||log(1 — ae)||,, |[log(1 — fo)||,) < 0.
e,

Then, for each fixed we Z_,, the function Gi(w, -) is G-holomorphic and bounded
on (). Hence, by e.g. [15], Gi(w, -) is holomorphic on ;. The Taylor decomposition
of G;(w,-) and the kernel theorem (cf. [24, Subsection 4.1]) yield

o0

1 n "
Gi(o.0) = <G (@), 0", (3.9)
n=0 """

where Ggy")(w) eHN E;)T” is given through

n

n n d
(G (@), p®"y ==

ar G (o, l(p).

t=0

Next, for each we . #(X)n# _., we have, by the proved above,
(G(@),0®"> = (:0®" 15,02, ¢ed. (3.10)

Differentiating G;(w, tg) in ¢, we conclude that 4|, | G;(w,tp) depends continu-
ously on we#_,. On the other hand, {:w®":,p®"> does also depend
continuously on we# _,. Since .4 (X)nA# _, is dense in H#_, (M(X)NH _,, in
particular, contains &), we conclude that (3.10) holds for all we # _., and hence also
(3.9) holds for all we#_,. O

Corollary 3.1. For each .=0, the function

@ L;(p) :=/ e 1, (dw)
174
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is well defined and holomorphic on some neighborhood of zero in Y¢. Furthermore, for
each fixed te T, there exists a neighborhood of zero in D¢, denoted by O, such that,
for all we # _; and all ¢ € O,, we have

RERACN

Ly(¥:(9)) 10

GZ(OL (P) =

Here,

1

1 —
'}’;((p) = o ﬁlog(l _£z>7 )”7é27

is a holomorphic 9¢-valued function defined in a neighborhood of zero in Y¢ which is
invertible and satisfies ¥ ;(0) = 0.

Remark 3.2. Corollary 3.1 shows that the system of polynomials ¢ : @®" :;, £

jag eb@g”, ne”Z.,is a generalized Appell system in terms of [22], see also [1,13,18,24]
and the references therein. We also refer to [4] and the references therein for the
study of the Appell systems via the theory of generalized translation operators.

Remark 3.3. Note that

I NN 110}
~1 - e*? e
IPA ((P) _aew — ﬁeﬁ(pv 17&27
- ¢
qul(fﬂ) _m-

Remark 3.4. In the one-dimensional case (Remarks 2.3 and 3.1), the function

2> %)(2) ::/Re”m,l(dx)

is well defined and holomorphic on a neighborhood of zero in C (for the explicit
formula, replace iu in formula (2.23) with z). Furthermore, for all xeR and z from
the neighborhood of zero, we have [26]

eXi(2)

Gi(x,2) = Z,(¥i(z))

where ¥;(z) = al—,;log(l‘ ) A#2, Wa(z) = =4
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Proof of Corollary 3.1. Fix 1>0. Let L;(¢) denote the right-hand side of (2.7),
respectively (2.8), with ip replaced with ¢. It follows from the proof of Theorem 2.1
and [6, Section 3.2] that there exists 7o e T such that p,(#_,,) = 1. By Proposition
3.1, there exists a neighborhood of zero in Z¢, denoted by O, such that for all
@e 0, and all we H# _;,

e(uup) _ EA(QD)G;L<G)7 lPA_l((P)) (312)

Since the number of the summands in the sum on the right-hand side of (2.4) is n!, we
easily conclude that

166 sy = 3 () 102 0D 1

n=0

Sonm<o (313)

for all ¢ from some (other) neighborhood of zero in Z¢, denoted by O. Then, for all
pe0,, = 0,00, we get by (3.12) and (3.13):

e o) = [ e (o)
9/ ‘

(o) / Gy, ¥ (0) ), (dov)
:I:i(ﬁl’)- (3.14)

Formula (3.11) in the case of # _,, follows from (3.12) and (3.14). The general case
now easily follows from Proposition 3.1. [

4. Operators 0, and 9!

For each te T, we introduce on #(Z') a Hilbertian norm || - |, . as follows: for

any ¢pe 2(2') of the form ¢(w) = Z;I,V:o C:w® i, £ (cf. Corollary 2.5), we set

N
I3, =D [1/™n!.
n=0

Let (2,), denote the Hilbert space obtained by closing #(Z’) in this norm. By
Kondratiev et al. [22, Theorem 34], there exists toe T such that the Hilbert space
(2)),, is densely and continuously embedded into L*(Z'; u;). Just as in Section 2, we
first set 7" := {teT :t>10} and then re-denote T == 7I". Thus, each (2;),, 1€T,
consists of (u;-classes of) functions on &' of the form

n=0
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with £ e.}ﬂ@” and
2 < 2/ 1\2
17 =D ™) < 0.
n=0

Let

(2;) = projlim (2,)
teT

(4.1)

T?

which is a nuclear space [22, Theorem 32]. (We note that, though only the case of a
nuclear space that is the projective limit of a countable family of Hilbert space is
considered in [22], all the results we cite from this paper admit a straightforward
generalization to the case of a general nuclear space.)

Denote by &1, (Z}) the set of all entire functions on Z¢. of first order of growth
and of minimal type, i.e., a function ¢ entire on Z[. belongs to L. (Z¢) if and
only if

VieT, ¥e>03C>0: Yoel c: |p(w)|<Cel®l-,
Denote by &...(Z') the set of restrictions to &' of functions from &L (Z¢).
Following [22,24], we then introduce norms on & (Z¢), and hence on &\, (Z'), as
follows. For each ¢e&). (Z;) and for any te T and geN, we set

min

neg(¢) = sup (|p(z)[exp(=27|z|| ).

zeH ¢
Next, each ¢peél. (Z¢) can be uniquely represented in the form ¢(z) =

S, (29 % and we set, for any te T and geN,

o0

Neg(@) =D I1F7I2 ()2,
n=0

By Kondratiev et al. [22, Theorems 2.5, 3.8, Section 6.2], the three systems of norms
on (2,):

(||'||).,rv TET)v (”T,q(')ﬂ TeTquN)a (Nf,q(')v ‘EGT,(]GN),

are equivalent, and hence determine the same topology on (2)).

As easily seen, for each ¢pe2, Lay(E)I;' can be extended to a continuous
operator on (2;). We denote this operator A; (). Next, for each xe X, we denote by
Oy the linear continuous operator on () defined by

0.0 5 0y =0 0@ G O (x)y, [ ea
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Lemma 4.1. For any ¢p€(2,), we have

Voed' (A7 (&)¢)(w) = /X £(x) (0:)) () (d).

Proof. Let 1o T be such that [[6,]|, <1 for all xe X. Fix we # ., 1>10. Let ¢’ > ¢
be such that the inclusion #;, <& #; is quasi-nuclear. By Kondratiev et al. [22
Proposition 22], we have for any ¢ > 0

|| :0®" || <n!C'exp(el|w||_,), C:>0. (4.2)

Hence, we may estimate

(o8]

D@y ()< sup 0] exp(elloo]| )
X€E

n=1

0
XZ (n—D1Cn|| f™..

n=1

Therefore, for each ¢ =3", (:-®":, f5e(2;), we get, by the majorized
convergence theorem,

/é @00 5 () oldy) = 3 o@D L ey,
n=0

n=0

where
W EY (X1, ey X)) = / LU X1, ey X1 )E(X)a (dx).
X

From here, the lemma follows. [

Remark 4.1. Let 7,7’ € T be as in proof of Lemma 4.1. Note that the operator 9, acts
continuously in (2;),. By (4.2), we then have for all we # _; and all ¢ € Z¢ such that
||(p||r’ <1'l’li1’1(17 C;l):

21 21 )
afzoﬁ »® ;.,<p®">=<p(x)zoa<:w®":;.,<p®’>.
n= n=

By Corollary 3.1, we get for all we#_, and all ¢ from a neighborhood of
zero in Yc:

)

axe<w,¥’;.(¢)> _ (p(x)e<‘”’%<q)>>
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and consequently

B P = (V7 (9))(x)e <. (43)
Let V, denote the Giteaux derivative of a function defined on &’ in direction d,, i.e.,

ViF(w) =4|_o F(w+ 15,). Clearly,

vxe<w,<ﬂ> — (p(x)e<w"“’>. (4.4)

Comparing (4.3) and (4.4), we get (at least informally):

Or = Y7 (V,). (4.5)
Remark 4.2. In the one-dimensional case (Remarks 2.3, 3.1, 3.4), we define a linear
operator 4 by

AP () =nP{ V().

By Remarks 3.1 and 3.4, one then gets (cf. [26])

4=v;Y(D), (4.6)
where D = d%’c. Thus, (4.5) is an infinite-dimensional counterpart of (4.6).

Theorem 4.1. For each /.>0 and for all pe (%) and we D'

(0u) (@) = / (oo + 555) — () svilds),

(41 (©)o)(w) = / (¢ +501) — p(@))sE(x)a(dx)v;(ds), (4.7)

X xR

where xe X, E€ 9, and v, is the Lévy measure of p, (see Corollaries 2.3 and 2.4).

Proof. By Lemma 4.1, it suffices to prove the statement only for 9,. Fix t=1( as in
proof of Lemma 4.1. Then, for all we # _; and all ¢ from a neighborhood of zero in
D¢, we have

/(€<U)+S(s“’(p> _ e(rm(p})svl(ds) :e<w,(p> /(esrp(x) _ I)SV)L(dS)
R

R

=P (W () (), (4.8)
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where 'P;l is given by (3.3). The latter equality in (4.8) can be derived by
differentiating in 6 the following equality:

0 n-2an
50 — s"°0 2
/R(e —1—50)v,(ds) = /R E ] 57v;(ds)

n=2
1 ae Pl — pe=0
()
—log(l —0) — 0, A=2,

which holds for all 0 from a neighborhood of zero in C (this equality has been
already used in course of the proof of Corollaries 2.3 and 2.4). Therefore, by Remark
4.1, we have (4.7) for all xe X, we# _, and ¢ = G,(-, 9), where ¢ runs through a
neighborhood of zero in Z¢, denoted by U..

As easily seen, there exists ¢ > 0 such that

/esls‘szvi(ds)< o0 (4.9)
R

(in the case 1<2, see e.g. [12, p. 180]). Choose geN such that 2-%/? <¢. Choose
71,72€ T and ¢; €N such that 1 <7 <71y,

CNey ()< Cittey g, )< - I, €, C1 > 0. (4.10)

Fix any ¢pe(2;). For each ke N, let ¢, be a linear combination of functions G, (-, ¢)
with pe U, and let ||¢; — l|;,,—~0 as k—co (evidently, such a sequence {¢;}
always exists). By (4.10), we then have

Ne g (P — @) =0 as k— 0. (4.11)
For a fixed we #_,c #_,,, we define
Pi(2) = di(0+2) = Pp(@),  d(2) = dp(o +2) — p()
for ze # _;, c. One easily checks that (4.11) implies
nrhql(dEk—q;)AO as k— oo,
and hence, by (4.10)
N’[ﬁq(d;k_(g)_)o as k— .

We have

$i(z) =D O

n=1
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(note that ¢;(0) = 0). Since [[0x]] . <|6x]| , <1 for all xeX, we get, using the
Cauchy inequlity ([24, proof of Lemma 2.7])

|Br(s3:)lls| ™" < ZI?\"'ka u

n=1

> max(L, )" 1)

Mx

<

n=1

<N q((pk) eXp(Z_q/zmax(l ’ |S|))

< Cexp(emax(1,]s])), keN,

where Ce(0, 00) is independent of keN. Hence, by (4.9) and the majorized
convergence theorem,

/ Pi (56, )v;(ds) — / P (565 )v;(ds) as k— 0. (4.12)
R R

Finally, 0y acts continuously on (Z;),,, and hence ||0x¢; — 0xl|;,, —0. Thus, by
(4.10), we get n;, 4, (Oxdy — Oxd) =0 as k— co. Therefore, (0:¢;)(w)— (Oxd)(w) as
k— oo, which, together with (4.12) concludes the proof. [

Let (2;)_, denote the dual space of (Z,),. Analogous to (2.11), we realize (2,) _,
as the Hilbert space consisting of sequences F = (F <”));°: 0y F ejf%f’@, such that

0
2 e
IFI =Y IF™])2 <0,

n=0

with the scalar product in (2;) . generated by the Hilbertian norm || - ||, _., and the
dual pairing of F = (F ))n:() with an element

b= O f0 (), (4.13)
n=0

is given by

CF¢y =3 CFol, f0ym,
n=0

By (4.1), we get the following representation of the dual space of (Z,):

(9;,)* = ind lim (“@1)71

teT
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Each test space (), can be embedded into (2;)_. by setting, for ¢ of form (4.13),
1(p) = (F")~,. In what follows, we will just write ¢ instead of 1(¢) to simplify
notations.

For each xe X, we define an operator 97 on (2,)* by

DLFM) ) = (0, @ F D)~ .

Evidently, 07 is the dual operator of d, and acts continuously in each (Z,)__, =19
(with 7 as in the proof of Lemma 4.1). We define operators : w(x) :; - and w(x)-,
acting continuously from each (Z;), into (Z;)_,, 1=10, by

co(x) i =00 + 2010, 4 0y + 0100,
o(x) - =ro(x) -+ ¢;id. (4.14)

Analogous to A; (&), we define operators A5 (&), 4°(¢), and A*(&). Let also

Cw® 8> and (w, E)- denote the operators of multiplication by { : 0®! :; &>
and {w, &), respectively. We then easily get the following integral representation:

A*(é):/Xa(dx)é(x)ai, Ao(f):/)(a(dx)f(x)aiax,
450 = | oo dwoi0..

Co®l ey = / o(dx)E(x)  o(x) 5 -

X

<w,f>-:/Xa(dx)f(x)w(x)-, (4.15)

where the integrals are understood in the sense that one applies pointwise the
integrand operator to a test function from (Z;), then dualizes the result with another
test function, and finally integrates the obtained function with respect to the
measure o.

Before formulating the next theorem, we note that, for each xe X, the operator V,
introduced in Remark 4.1 acts continuously on (2;). This can be easily shown using
methods as in the proof of Theorem 4.1. Furthermore, we introduce on ()
continuous operators V,_g . and %,_g . as follows:

P(w + (o= B)dx) — p(w)
o—p ’

Vi pxp(®) =

Uypxp(©) = P — (2 = f)dx)-

Notice that, in the case A€[0,2), we have o — = o« — &, which is a purely imaginary
number, so when writing either ¢(w + (« — f§)dx) or ¢p(w — (o — f)dy), we under-
stand under ¢ its entire extension to Z.
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Theorem 4.2. For each xe X, 91 considered as an operator from (2,) into (2,)* has
the following representation:

: CU(X) 5] -(1 + Wa_,;‘,x)%Z/a_,;ﬁx
5}: = —(14+aVyp)VoapslUypy, ~A#2, (4.16)
o(x)- (Ve= 12 +(Ve—1), i=2.

Proof. We prove the theorem only in the case 1#2 and refer to [21, Lemma 7.1] for
the case 1 = 2. By (4.14) and (1.4),
co(x) ;- =01+ 20, + %) + 0y
= 0L(1 = 2d) (1 — poy) + Ox. (4.17)

Fix 1>=1¢ and choose '€ T, v > 1, such that the operators (1 + av%ﬂ,y%,ﬂ,x and
(1 4+ oVypx)Vau_pxs—p~ act continuously from (2;), into (Z;),. Take any pe 2
such that e<?” €(2;).. Then, by (4.3) and (4.17),

to(x) e =91 = (P (@) (x))(1 = B} (9))(x))e 7

- (@) (e, (4.13)
Denoting
Vo poln) = D=1
Py
we get
(1 () () = 2t P (4.19)

1+ aV, pe(x)
(compare with [26, formula (7.2)]). By (4.18) and (4.19),

o))

ro(x) y e$0 =08 et —
) (1 +aV, po(x))? 1 +aV, po(x)

which yields
co(x) (14 aV,_p(x)) e ?WE o
= 8ie<"‘/’> + va7ﬂ¢(x)(1 + av%ﬁ@(x))efw(x)(afﬁ)g.7<p>. (4.20)

Since the set of all functions e<?” with ¢ as above is total in (2;), and since
: (x) :; - and 9! act continuously from (Z,), into (2;)_, (4.20) implies (4.16). O
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Corollary 4.1. For any ¢p€(2;) and E€ D, we have for all we 9’

AT (&) ¢(w)
= 0(x) = ¢, EX) (1 + Vo) U pxp ()
- < 17 g(x)(l + avm—/ﬁ,x)voc—ﬁﬁx%a—ﬁ,xd)(w) >7 ;‘7é27 (421)

and
AT (E)p(0) = {o(x),E(x)(Vy — 1) ¢(0) >
+ (LEX) (Ve — D)y, 1=2,

where x denotes the variable in which the dualization is carried out.

Proof. Again, we prove only in the case 1#2 and refer to [21, Theorem 7.1] for the
case A =2. Fix any 1>7(. Using methods as in the proof of Theorem 4.1, we
conclude the existence of 7, €T, t; > 7, such that, for any fixed we #_, and zeC,
|z| <2|o — f, and for any sequence {¢;, keN}=(Z;), such that ¢, —¢ in (),

as k— oo, we have f(/;k,z—%qu in # ;¢ as k— co. Here,

T

Xox—¢.(x) = ¢p(w+125,)eC, X3x—¢.(x) = p(w+20,)eC.

Choose 72 > 11 such that Cn, i(-)<|||l;,,, C >0, and choose 73 > 75 such that
A*(&) acts continuously from (,),, into (Z;),. Fix any @eZ such that
e$2e(2,),,. Then, for any ¢e(Z;), we get by (the proof of) Theorem 4.2
and (4.15)

A Qe ) = [ €l wyald)
= [ €)1 +aV, po(x)) e ?0h
x Co(x) 5 ey a(dx)
— | &1 +aV,p0(x) Vape(x)e oD
X <<:<,“‘/’>,lﬁ>> o (dx)
= (O (4 V) e T e gy o (dx)
— L E+ 0V, 5) Vo ppe 2D e 02 gy

which implies (4.21) for ¢ = e<?> and we #_,. Now, approximate an arbitrary
$e(Z;) in the || -||; , norm by a sequence {¢;,keN} of linear combinations of
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exponents as above. Then, A" (&)¢; —A"(E)¢ as k— oo in the || - ||, ,, norm, and

hence in the n,, ;(-) norm. In particular, 4" (&), (w) > A1 (E)P(w) for any we # .
Furthermore, for any fixed we # _;, we get

E(1 4 0V pa) Uy patpy(0) > E(1 + AV ooV Uy pap(),

f(l + ava,ﬁ,.)Va,57.%a7/37.¢k(w) e 5(1 + avzxfﬁ,o)vafﬁp%aﬁ/i-d)(w)

in #_,c. From here, we evidently get (4.21) for an arbitrary ¢e(2;) and an
arbitrary we #_,. [

Remark 4.3. Analogous to Corollary 4.1, one can derive from Theorems 4.1, 4.2 and
(4.15) explicit formulas for the action of the operators 4°(¢) and A5 (&) (see also
[21, Theorems 7.2, 7.3] for the case 4 = 2).
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