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A general theoretical framework is developed to account for the effects of an external potential on the energetics
of membrane proteins. The framework is based on the free energy relation between two (forward/backward)
probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-
fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage cou-
pling" reaction coordinate, we investigate several interconnected free energy relations between these two con-
formational states, considering voltage activation of ion channels. The free energy difference between the two
conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of
free energy change in ion channels) is shown to be equivalent to the free energy difference between the two
“equilibrium” (resting and activated) conformational states along the one-dimensional voltage couplin reaction
coordinate. Furthermore, the requirement that the application of linear response approximation to the free ener-
gy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form ex-
pression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in
statisticalmechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by consid-
ering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane,
representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane pro-
teins, which includes the membrane, the electrolytes and the electrodes. The CGmodel yields Marcus-type volt-
age dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the
transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and
free energy barrier that follow the trend of the equilibrium fluctuation relation and theMarcus theory of electron
transfer. These energetics also allow for a direct estimation of the voltage dependence of channel activation (Q-V
curve), offering a quantitative rationale for a correlation between the voltage dependence parabolas and the Q-V
curve, upon site-directed mutagenesis or drug binding. Taken together, by introducing the voltage coupling as
the energy gap reaction coordinate, our framework brings new perspectives to the thermodynamic models of
voltage activation in voltage-sensitive membrane proteins, offering an a framework for a better understating of
the structure-function correlations of voltage gating in ion channels as well as electrogenic phenomena in ion
pumps and transporters. Significantly, this formulation also provides a powerful bridge between the CG model
of voltage coupling and the conventional macroscopic treatments.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The advances in structural elucidation of voltage activated ion chan-
nels as well as in biophysical studies (e.g. Refs. [1–7]) have provided
major clues about the relationship between the membrane voltage
and the gating process. However, despite these great progress we still
do not have a clear understanding of the corresponding structure–func-
tion correlation. Apparently, although there have been a significant
progress in the computational/theoretical modeling of the energetics
of ion channels (e.g. Refs. [8–22]) and the control of ion selectivity
(e.g. Refs. [23–30]), the quantitative understanding of the voltage acti-
vation process is still somewhat limited. In addition to the obvious
need formore structural information, the ability to obtain amicroscopic
description of the energetics of the conformational transition and the
coupling to the external voltage is far from satisfactory. Similar prob-
lems occur with regards to the molecular understanding of the nature
of the gating charge. In this case, despite the enormous insight provided
by macroscopic approaches [13,14,31], it is hard to be fully comfortable
with the corresponding physical picture, which does not include the
electrolytes and the electrodes explicitly (see discussion in Refs. [20,
32]).

A promising way for advancing our understanding of ion channels
and related systems has been offered by the recent development of
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our coarse-grained (CG)model of voltage coupling [20,21,32,33], which
considers the entire membrane–protein, electrolytes and electrodes ex-
plicitly. The power and insight of this model have been illustrated in
several works, but it seems that these advances have not been widely
recognized, due in part to the use of descriptions that are very different
than the familiar macroscopic formulation and the fact that the model
does not use the straightforward fully microscopic treatment (that un-
fortunately does not offers yet converging free energy results [17,34]
nor a clear description of the nature of gating charge [35]). Thus we
try to explore in the present work the relationship between our CG
model of voltage coupling and the correspondingmacroscopic continu-
um results.

Moreover, we introduce a general theoretical description of voltage
coupling in membrane proteins, extending and generalizing the previ-
ous thermodynamic models of voltage activation in ion channels [1,19,
36–41]. This is done in the framework of equilibrium fluctuation rela-
tions, where a linear response approximation to the free energy func-
tions of voltage coupling is introduced, resulting in the Marcus–
Warshel (MW) type parabola, with the voltage energy gap as the reac-
tion coordinate. Novel closed-form expressions for gating charge and
free energy barrier in terms of basic properties of ion channels are
then derived under the equilibrium fluctuation relations and the
linear response approximation and explored by using the CG model of
the voltage coupling. The corresponding results are validated against
the macroscopic continuum results and applied to determining voltage
dependent MW parabola for the movement of a unit charge within the
membrane. We then use the MW type free energy parabolas in the
framework of equilibrium fluctuation relations to formulate the quanti-
tative relationship between the free energy landscapes and the QV
curves, thus providing a new insight on themolecular information con-
tent of these curves.

2. Theory and methods

2.1. Free energy relations

We will start by defining formal free energy relationships that will
result in free energy functions of the energy gap reaction coordinate, in-
troduced byWarshel [42] and used extensively in studies of reactions in
condensed phase (e.g. [43-47]). Thiswill be donewhile exploring sever-
al variants of free energy relations in the general framework of equilib-
rium fluctuation relation.

The equilibrium probability densities for the initial (0) and the final
(1) states (pλ(u){λ = 0, 1}) are related to each other [48], given by:

p0 uð Þ
p1 uð Þ ¼ exp u−ΔGconf

� �
; ð1Þ

where kBT= 1 and ΔGconf is the free energy difference between, for ex-
ample, two conformational states and u is a particular value of the reac-
tion coordinate of energy gap (ΔU). This relationship is referred to “the
equilibrium fluctuation relation”, in an analogy with its generalization
to non-equilibrium processes, known as the work–fluctuation theo-
rem [49,50].

The equilibrium fluctuation relation is easily derived (see SI for a de-
tailed derivation) by considering the system as being perturbed from its
initial to final states by ΔU, with the Hamiltonian of the form H1 =
H0 + ΔU:

p0 uð Þ≡bδ u−ΔU xð Þð ÞN0

¼

Z
dx exp −H0 xð Þð Þδ u−ΔU xð Þð Þ

Z0

¼ Z1

Z0
exp uð Þ

Z
dx exp −H1 xð Þð Þδ u−ΔU xð Þð Þ

Z1
¼ exp u−ΔGconf

� �
p1 uð Þ

ð2Þ
where pλ(u){λ=0, 1} are the probability densities of finding a particu-
lar value of u along a reaction coordinateΔU(x), where x is a point in the
6 N-dimensional phase space. In fact, this relation has been known to
the community for some time ago as the theory of Bennett overlapping
histogram (BOH) [47,51], which is also here referred to the free energy
relation of the first kind. In the following, the free energy difference be-
tween the two conformational states (ΔGconf,) is defined by two differ-
ent ways, eventually leading to an equivalent relation.

Notice that ΔGconf, is identified as the value (u*) of reaction coordi-
nate ΔU where the two probability densities intersect [47, 52]:

p0 u�ð Þ
p1 u�ð Þ ¼ 1 ¼ exp u �−ΔGconf

� �
;

leading to

ΔGconf ¼ u� ¼ ΔU x�ð Þ≡ΔU � : ð3Þ

Rearranging Eq. (1) yields the free energy relation of the second
kind:

Δ f 1 uð Þ−Δ f 0 uð Þ ¼ uþ ln
p1;max

p0;max
ð4Þ

or

Δg1 uð Þ−Δg0 uð Þ ¼ u−ΔGconf þ ln
p1;max

p0;max
; ð5Þ

where Δgλ(u) and Δfλ(u){λ = 0, 1} are free energy functions or poten-
tials of mean force (PMF) along the reaction coordinate of energy gap
[42,43,47], which are related to each other by:

Δ f 1 uð Þ≡Δg1 uð Þ þ ΔGconf ≡− ln
p1 uð Þ
p1;max

þ ΔGconf :

Δ f 0 uð Þ≡Δg0 uð Þ ¼ − ln
p0 uð Þ
p0;max

:
ð6Þ

Here, pλmax{λ=0, 1} are defined as themaximumvalues of the prob-
ability densities, such that Δgλ{λ = 0, 1} have their respective global
minimum set to zero [47], i.e., Δgλ(uλ,min) = − ln[pλ(uλ,min)/pλ,max] =
0, which results in a expression of the form:

Δ f 1 u1;min
� �

−Δ f 0 u0;min
� � ¼ ΔGconf ; ð7Þ

ΔGconf ¼ ΔU� ¼ Δ f 1 u1;min
� �

−Δ f 0 u0;min
� � ð8Þ

which states that the free energy difference between the two "equi-
librium" conformational states along the one-dimensional reaction co-
ordinate of energy gap (Δf1(u1,min) − Δf0(u0,min)) is equal to the
conformational free energy difference of ΔGconf. Combining Eqs. (3)
and (7), we have the free energy relation of third kind: This relation
states that the conformational free energy difference, ΔGconf, defined
in two different ways from Eqs. (3) and (7), leads to an equivalent rela-
tion of Eq. (8). A closely related derivation to Eq. (8) along “positional”
reaction coordinates is found in Ref. [47] and applied to the thermody-
namics of ion binding in a K+ channel [28], supporting the earlier pro-
posal of themulti-ion mechanism of ion selectivity in K+ channels [27].

The additive constant on the right hand side in Eqs. (4) and (5) van-
ishes in the case where Δgλ{λ = 0, 1} are functions with equal maxi-
mum values (curvatures) of the probability densities (p1,max = p0,

max) at their respective minima (uλ,min). In the present study, the
constant will be dropped out without a loss of generality [44,47] and
the approximation introduced here will be discussed in conjunction
with the linear response expression for free energy functions (see
Section 2.3). The second free energy relation of Eq. (4) was first
recognized by Warshel and others [43-45] in formulating microscopic
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treatment of electron transfer in condensed phases and relating it to the
framework of the macroscopic Marcus theory [53,54]

Note that the free energy functions (Δfλ(u){λ = 0, 1}), whose final
state (λ = 1) is shifted by the free energy (ΔGconf) from the reference
free energy function (Δg1(u)), intersect at u = 0 along the energy gap
coordinate [43-45], leading to:

Δ f 1 0ð Þ ¼ Δ f 0 0ð Þ ð9Þ

or

Δg0 0ð Þ−Δg1 0ð Þ ¼ ΔGconf : ð10Þ

The free energy relations examined so far is illustrated in Fig. 1 with
ΔU = Qg.V, where Qg and V are, respectively, the gating charge and the
externally applied potential. This will be further investigated in the fol-
lowing section, considering the voltage energy gap as the reaction coor-
dinate and driving the fundamental free energy relations (see e.g. Ref.
[1]) used to describe the voltage dependency of channel activation in
ion channels.

2.2. Free energy relations for voltage activation in ion channels

The general free energy relations investigated in the previous sec-
tion can be applied to account for the kinetics/thermodynamics of volt-
age activation of ion channels by using the voltage dependent free
energy functions. As a background for such considerations, we start by
noting that the effect of an external potential on the activation of the
voltage sensor domain (VSD) in ion channels is described by the voltage
coupling to the gating charge Qg. This coupling reflects the response of
the system to the application of an external potential but before the
ions are allowed to pass through the channel [1]. The gating charge,
Qg, is defined by determining the fraction of activated (up) and resting
(down) channels as a function of the applied potential and asking
what is the Boltzmann probability for the voltage induced structural
change [1]. This assumption leads to the expression [1]:

QgΔVext ¼ ΔGdown→up; ð11Þ
Fig. 1. Illustration of equilibrium fluctuation relations and linear response approximation, appli
CG model system of Fig. 2. The calculations were done by placing a positive charge on both sid
responding CG free energies (f0 and f1) as a function of the applied voltage (A) A graphical rep
obtained from the equilibriumfluctuation relation of Eq. (1) by a simple substitution of u=QgV.
different external voltages of V (≡Vext is assumed to be equal to the membrane potential of Vm),
probability densities are obtained from the voltage dependent CG free energy functions (parab
between two states,ΔGconf, is identified as the value (QgV*) of the voltage coupling reaction coord
to QgV1/2 = ΔGconf. Notice that we have a positive value of half voltage as we are considering th
activated state ismore stable than the resting state for V1/2 N 0) rather than "activation" (where
fundamental free energy relationships (Eqs. (16)-(21)) along the voltage coupling reaction coo
QgV. The chemical component of free energy changes (ΔGc≡ g0(0)-g1(0)), namely, the free ener
be equal to the free energy difference between two “equilibrium” conformational states along
energy (QgV1/2 = ΔGconf), determined using the equilibrium fluctuation relation of Eq. (15). Th
whose globalminimumset to zero (dashed line), resulting in the intersectionwith f0(V) atV=0
(parabolas) as in (B). The application of linear response approximation to the free energy functi
voltage activation in ion channels. Λ represents the reorganization energy, given by the form
reorganization, of the form given by: ΔGǂ = Λ / 4(1 + ΔG conf/Λ)2 (see Eq. (40) for details).
where ΔGdown → up is the phenomenological free energy associated with
conformational change between two “equilibrium” states (i.e., the con-
formational free energy of Eq. (8)), which can be measured experimen-
tally in QV measurements [1]. Basically this is equivalent to the
assumption that the free energy needed to move the gating charge, Qg,

in the membrane electric field is equal to the work of moving the pro-
tein charges between the two conformations (activated and resting),
under the membrane electric field. Now, Eq. (11) is basically a reason-
able formal definition of the gating charge that does not tell us what is
the relationship of this parameter to physical measured observables
such as the integral of the current that flows to the electrodes, Qext, al-
though many accept the identity of Qext with Qg. The structure-based
evaluation of Qg is almost always done using reasonable but not neces-
sarilymicroscopic assumptions. It is also not certain that in all cases that
the actual electrode potential Vext is equal to the membrane potential,
Vm. These issues will be addressed below but at this point we just
note that one of the problem is that the assumption that leads to
Eq. (11) implies that the potential is linear across the membrane. This
is likely to be a reasonable approximation and it has been used in previ-
ousmacroscopic studies [13,55]. Obviously, such a picturewould be jus-
tified if thepotential across theprotein/membrane systemwas obtained
by convergingmicroscopic simulations. However, in such cases, it is un-
likely that we will have the same potential in different sites with the
same z value that is normal to themembrane surface. Thus such a treat-
ment does not really provide a microscopic description even if a few of
the relevant quantities (e.g. the average displacements) are evaluated
microscopically [17]. Other related problems are discusses in our previ-
ous work [32].

In view of the above discussion we can write

Qext ¼ c1Qg:m
Vext ¼ c2Vm;

ð12Þ

whereQg,m is the chargemovementwithin themembrane and Vm is the
change in the potential across the membrane. However, for simplicity
we will assume below that c2 and c1 are approximately equal to one,
while exploring this assumption by examining the correspondence be-
tween the energetics and charge movement, considering both only
the membrane–protein system and the entire electrolyte/membrane–
ed to the free energy functions of voltage activation in voltage gated ion channels with the
es of the membrane, representing the activated and resting states, and evaluating the cor-
resentation of the fundamental relation of probability densities in ion channels (Eq. (15)),
Theprobability densities (pλ(V){λ=0,1}) of finding the system in eachof the two states at
where the subscripts 0 and 1 represent initial (activated) and final (resting) states. These
olas) Δfλ(V){λ= 0.1} with pλ(V) ∝ exp(−Δfλ(V)) (see Fig. 4A).The free energy difference
inate (QgV)where two probability densities intersect (i.e., have equal probability), leading
e voltage dependency of channel “deactivation”, i.e., from the 0th to 1st states, (where the
the activated state ismore stable than the resting state for V1/2 b 0). (B)The corresponding
rdinate. The free energy functions are reconstructed from (A) using the Eq. (6) with u =
gy difference between two conformational states at zero membrane potential, is shown to
the voltage coupling reaction coordinate (f1(V1.min)-f0(V0,min)), via the conformational free
e free energy function f1(V) is shifted by ΔGconf from the reference free energy from g1(V),
, i.e., f0(0)= f1(0), or equivalently g0(0)-g1(0)=QgV1/2. (C) The same free energy functions
ons yields theMarcus-like expressions of reorganization energy and free energy barrier for
of Λ = 1/2QgΔVmin, leading to the free energy of barrierassociated with the environment
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protein system. We start by considering only the membrane–protein
system, whose Hamiltonian is given by [19]:

H1;m ¼ H0;m þ ΔU≡H0;m þ Qg;mVm; ð13Þ

where the subscripts 0 and 1 represent initial (activated) andfinal (rest-
ing) states, respectively, of, for example, VSD. The gating charge (Qg,m)
arises from the displacement of charged residues within membrane as-
sociated with conformational changes of VSD by Vm.

By taking an energy gap reaction coordinate of (ΔU= Qg.m Vm) (re-
ferred to as the “voltage coupling”), we obtain from Eq. (3):

ΔGconf ¼ Qg;mVm� ¼ Qg;mVm;1=2; ð14Þ

where Vm,1/2 is a half voltage at which two conformational states have
equal population. This relation along with Eq. (19) is basically the
same as the phenomenological free energy of conformational change
of Eq. (11).

The equilibrium fluctuation relation or the first free energy relation
of Eq. (1) for voltage activation is therefore expressed as:

p0 Vð Þ
p1 Vð Þ ¼ exp Qg;mVm−Qg;mVm;1=2

� �
: ð15Þ

In fact, this fundamental relation has been known to the ion channel
community to describe the kinetics/thermodynamics of voltage activa-
tion, e.g., as empirically derived in Hille's book [1], which goes back to
Hodgkin and Huxley for their formulation to quantify membrane cur-
rents and thus action potentials (spikes) in a nerve cell [56].

Using Eqs. (14) and (15), the second free energy relation of Eq. (4) or
(5) leads to:

Δ f 0 Vmð Þ−Δ f 1 Vmð Þ ¼ �Qg;mVm ð16Þ

or

Δg0 Vmð Þ−Δg1 Vmð Þ ¼ Qm;gVm;1=2−Qm;gVm: ð17Þ

In addition, the free energy functions (Δfλ(V){λ = 0, 1}) of Eq. (16)
intersect at V= 0 along the voltage coupling reaction coordinate, lead-
ing to the expression:

Δ f 0 0ð Þ ¼ Δ f 1 0ð Þ ð18Þ

or from Eq. (17)

Δg0 0ð Þ−Δg1 0ð Þ ¼ Qg;mVm;1=2: ð19Þ

The expression (Eq. (16) or Eq. (17)) is another form of fundamental
free energy relation (equivalent to Eq. (15)), used to describe the volt-
age dependency of channel activation (Q–V curve) in voltage gated
ion channels [19,57]. The free energy difference between the two con-
formational states at zero membrane potential, Δg0(0) − Δg1(0), is
known as the “chemical” component of free energy change [19], which
is represented by ΔGc below.

Combining Eqs. (19) and (14) yields

ΔGc ≡Δg0 0ð Þ−Δg1 0ð Þð Þ ¼ Qg;mVm;1=2 ¼ ΔGconf : ð20Þ

Thus we showed here the chemical component of free energy
change,ΔGc(≡Δg0(0)−Δg1(0)), is equal to the conformational free en-
ergy of ΔGconf along the one-dimensional voltage coupling reaction
coordinate.

Finally, Eq. (20) combined with the third free energy relation of
Eq. (8) implies a new relation, given by:

ΔGcð ≡Δg0ð0Þ � Δg1ð0ÞÞ ¼ Qg;mVm;1=2 ¼ ΔGconf
¼ Δ f 1 V1;min

� �
−Δ f 0 V0;min

� �
; ð21Þ
which is one of the key expressions of our paper. The relation shows an
equivalence of the chemical free energy change,ΔGc ≡Δg0(0)−Δg1(0),
(i.e., the free energy difference at zero membrane potential) to the free
energy difference between the two “equilibrium” conformational states
(Δf1(V1,min) − Δf0(V0,min)) along the one-dimensional reaction coordi-
nate of the voltage coupling, via the conformational free energy of
ΔGconf(Eq. (14)), determined by using the equilibrium fluctuation rela-
tion of Eq. (15).

Last, notice that Eq. (14) has been used to estimate the chemical
component of free energy change (Eq.(20)), or equivalently the equilib-
rium free energy difference between the activated and resting states
(Eq.(21)), yielding a value of -14 kcal/mol for Shaker channel with
Qg=13e, V1/2~-45mV (see Ref. [19] for more details) and ~7kcal/mol
for Kv1.2 with Qg=10e, V1/2~-30mV [65].

The free energy relations, investigated so far, are illustrated in Fig. 1,
using the actual simulation data for the model system in Section 3.

2.3. Linear response approximation satisfies the free energy relations
(or the equilibrium fluctuation relation)

If we consider the effect of the overall electrode potential, i.e., an ex-
ternally applied voltage, Vext, on the energetics of the entire electrolyte/
membrane–protein system, instead of just the membrane potential on
the energetics of the membrane–protein system, the Hamiltonian in
Eq. (13) may be rewritten formally as:

H1 ¼ H0−QextVext ð22Þ

where Qext is the charge that flows through the electrodes and assumed
to be equal to gating charge (see Eq. (12) and Fig. 2), which will be
reviewed shortly below.

The state-dependent free energy of the voltage activation can be
expressed by modifying the treatment of [37,58-60] and writing:

Δ f λ Vextð Þ ¼ Δ f λ 0ð Þ−
X
j

q jϕmp;λ xj
� �2

4
3
5Vext þ 1

2
C

0
λVext

2 ð23Þ

where Δfλ(0) is related to the chemical component of free energy of
Eqs. (18) or (19).

Here the second term is the continuum expression for Qλ,g,mVext

(assuming that Vext = Vm) and the last term is the interaction of the
external potential with electrolytes, where Cλ′ is the capacitance of
the electrolyte/membrane–protein system.

The function, ϕλ,mp(xj), which represents a fraction of membrane
potential that falls on the j the charged amino acid [58,59,61], can be ob-
tained by solving a modified Poisson–Boltzmann equation (PB–V) [60].
For a linearized membrane potential, it leads to the simple expression

Δϕmp xj
� �

≃
εLz j
ε jL

; ð24Þ

which is often termed as the dielectric distance (see Ref. [33] and refer-
ences therein). The expression is a generalization of a simple geometric
distance (zj/L) along the axis normal to themembrane surface, where εL
and εj are, respectively, the dielectric constant of themembrane and the
(frequently ill defined) local dielectric constant in the region of the jth
charged amino acid. Here L is the width of membrane and zj is a coordi-
nate normal to the membrane.

Using Eqs. (23) and (24), in the case of linear change of the
potential across the membrane, the state dependent gating charge
becomes

Qg;λ ¼
X
l

zlq
p
l εL=εl

� �
λ=L: ð25Þ



Fig. 2.Description of themodel system (i.e., a unit charge embedded in themembrane between electrolytes that incorporates electrodes), used to illustrate the theoretical framework and
the CGmodel of voltage coupling. The electrode potential (as in the Gouy–Chapman model), provided by a virtual battery, is determined by Eqs. (47), (48) and (49) with an appropriate
boundary condition (i.e., the denominator in Eq. (47)). Ig (defined as the gating current in the macroscopic continuum approach, of which time integration yields Qg) (see Eqs. (13)and
(27)) is shown to be equal to the current that flows through the electrode by the law of current conservation (defined as Iext, of which time integration yields Qext; see Eqs. (22) and
(26)). The actual gating current measured in experiment corresponds to Ic in the external circuit. The area (A) and width (L) of membrane are 80 × 80 Å2 and 40 Å width, respectively,
and an electrolyte concentration of 250mMwas used. (Top) The unit positive charge is initially positioned near the membrane surface on the left (i.e., state 0). The unit charge is located
on the right side (i.e., state 1) of membrane in its final configuration. (Bottom) Net electrolyte charge distributions [e/Å3] before (left) and after (right) the unit charge movement at
100 mV; the integration of charge distribution along the axis normal to the membrane surface (multiplied by membrane area) yields state dependent gating charge shown in Fig. 3.
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Finally, using the Hamiltonian of Eq. (22) and differentiating Δfλ(V)
with respect to the external potential gives (see the SI):

∂Δ f λ
∂Vext

����
Vext¼0

¼ −
∂

∂Vext
lnZλ

����
Vext¼0

¼ −bQextNλ;Vext¼0:

ð26Þ

We also have from Eq. (23)

∂Δ f λ
∂Vext

����
Vext¼0

¼ −
X
j

q jϕλ;mp xj
� �0

@
1
Aþ C0Vext

2
4

3
5
������
Vext¼0

¼ −Qλ;g;m: ð27Þ

This proves that Qλ;g;m ¼ bQextNλ;Vext¼0 . However, it should be no-
ticed that the equality reflects the assumption that Qg,m is equal to
Qext, each of which corresponds to charge coupling to the membrane
potential and the external potential in their respective Hamiltonians
(see Eqs. (13) and (22)), while the assumption may hold according to
the law of current conservation.

In fact, the quadratic free energy expression in Eq. (23), which is fa-
miliar in the Marcus theory of electron transfer [43], is thought of as a
realization of linear response approximation (LRA) [62-64] that is likely
to be satisfied bymany dimensional systems in their response to charg-
ing processes (e.g. by the responses to an external potential in the pres-
ent study). Here, the LRA expression for the free energy functions
(Δfλ(V){λ = 0, 1}) is shown to satisfy the second free energy relation
(Eq. (16)), or equivalently, the equilibrium fluctuation relation
(Eq. (15)), leading to a novel expression for gating charge in terms of
other experimentally measurable quantities.
The Hamiltonian used in the present study may also be expresses as
follows:

H1 ¼ H0–Qext V−V0;min
� �

; ð28Þ

where the subscript of V (“ext”) was dropped. The free energy functions
of voltage activation (Δfλ(V){λ = 0, 1}) can be expanded around their
respective minima up-to a second order (i.e., using the equilibrium
fluctuation-response relation) and expressed as (see SI for a detailed
derivation):

Δ f 0 Vð Þ ¼ Δ f 0 V0;min
� �

−
1
2

δQ2
ext

D E
V0;min

V−V0;min
� �2

¼ Δ f 0 V0;min
� �

−
1
2

δQ2
ext

D E
V0;min

V2
0;min

þ δQ2
ext

D E
V0;min

V0;minV−
1
2

δQ2
ext

D E
V0;min

V2;

¼ Δ f 0 0ð Þ þ δQ2
ext

D E
V0;min

V0;minV−
1
2

δQ2
ext

D E
V0;min

V2

ð29Þ

where δQext = Qext − 〈Qext〉. Similarly, for the activated state (state (1))
we have,

Δ f 1 Vð Þ ¼ Δ f 1 0ð Þ þ δQ2
ext

D E
V1;min

V1;minV−
1
2

δQ2
ext

D E
V1;min

V2: ð30Þ

Notice that these two expressions could be obtained by a direct
application of linear response approximation, i.e., differentiation
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of the free energy function with respect to the external potential
gives:

∂Δ f 0
∂V

����
V
¼ −bQextNV ¼ −bQextNV0;min−bδQextNV ¼ −bδQextNV : ð31Þ

An explicit application of linear response approximation [64] yields:

∂Δ f 0
∂V

����
V
¼ −bδQextNV

≃−bδQext
2NV0;min V−V0;min

� �
:

ð32Þ

Integration gives the same result as Eq. (29).
Subtracting Eq. (30) from Eq. (29) yields

Δ f 0 Vð Þ−Δ f 1 Vð Þ ¼ f 0 0ð Þ− f 1 0ð Þ
þ δQ2

exV¼V0;min
V0;min−δQ2

extV¼V1;min
V1;min

h i
V

−
1
2

δQ2
exV¼V0;min

−δQ2
extV¼V1;min

h i
V2

¼ δQ2
exV¼V0;min

V0;min−δQ2
extV¼V1;min

V1;min

h i
V

−
1
2

δQ2
exV¼V0;min

−δQ2
extV¼V1;min

h i
V2

¼ �C0ΔVminV ;

ð33Þ

where C0≡−hδQ2
extiV¼V1;min

¼ −hδQ2
extiV¼V0;min

is the capacitance of the

channel–membrane system and ΔVmin = V0,min − V1,min. The equality
in the first line comes directly from Eq. (18) that the free energy func-
tions intersect at V = 0. The approximation of equal curvature for the

quadratic free energy functionswasused in the second line, leading toC0

≡−hδQ2
extiV¼V1;min

¼ −hδQ2
extiV¼V0;min

. In fact, this approximation is the

same level of approximation (p1max = p0
max) used to drop a constant

for the second free energy relation of Eq. (16), when it moves from
Eq. (4).

A comparison of Eq. (33)with Eq. (16) (i.e., the requirement that the
LRA expression for free energy functions satisfy the second free energy
relation) yields a novel expression for gating charge of the form:

Qg ¼ C0ΔVmin ð34Þ
This gating charge expression is one the key relations of our

paper, where a measure of voltage sensitivity (gating charge) is
expressed in terms of the basic properties of channels, as probably
conceived by Hodgkin and Huxley [56]. This relationmay offer a sim-
ple rationale for the differences in gating charges among members of
the voltage gated ion channels [65]. In addition, the LRA expressions
of Eqs. (29) and (30) should satisfy the equilibrium fluctuation rela-
tion of Eq. (15) with the probability densities of finding the λ state at V,
i.e., pλðVÞ ¼ expð− f λðVÞÞ

�
Zλ
:

p0 Vð Þ
p1 Vð Þ ¼

Z1

Z0
exp Δ f 1 Vð Þ−Δ f 0 Vð Þð Þ

≃
Z1

Z0
exp C0ΔVminV

� �
¼ exp C0ΔVminV−ΔGconf

� �
:

ð35Þ

The approximation in the second line comes directly fromEq. (33). A
comparison with the equilibrium fluctuation relation of Eq. (15) yields
the same gating charge expression as Eq. (34).

Last, the state dependent gating charge (Qg,λ) can be defined from
Eqs. (33) and (34) as:

Qg;λ ¼ δQ2
ext

D E
V¼Vλ;min

Vλ;min: ð36Þ

The above expression may be rewritten as

∂Qg;λ

∂V

����
V¼Vλ;min

¼ δQ2
ext

D E
V¼Vλ;min

; ð37Þ
This relation is nothing but thefluctuation–response relation in volt-
age gated ion channels, where the response of the gating charge to the
external potential (Qλ,g = 〈Qext〉λ as in the equivalence of Eq. (26)
with Eq. (27)) is related to its fluctuation, by noticing the equivalent re-
lation:

∂bQextNλ
∂V

����
V¼Vλ;min

¼ δQ2
ext

D E
V¼Vλ;min

; ð38Þ

as implicated in Eq. (29) or (30) (see SI for a detailed derivation).
Considering the observation that we have quadratic Marcus-type

free energies of equal curvature (which is reflected in the capacitance),
we find out that the reorganization energy (Λ) for voltage coupling in
membrane proteins is given by [66]:

Λ ¼ 1
2
C0 ΔVminð Þ2 ¼ 1

2
QgΔVmin; ð39Þ

which yields the free energy of (deactivation) barrier (from λ = 0 to
λ = 1), given by:

ΔG‡ ¼ Λ
4

1þ ΔGconf

Λ

� �2

¼ 1
8
QgΔVmin 1� 2V1=2

ΔVmin

� �2

: ð40Þ

Here,+ and -, respectively, represents the free energy barrier for de-
activation and activation of channels (where the activated state is more
stable than the resting state for V1/2N 0 andV1/2 b0, receptively). Eq. (40)
is another key expression of our paper, enables in some cases a direct es-
timation of free energy barriers of voltage gated ion channels. For exam-
ple, and surprisingly, the expression yields the free energy barrier of
~13.7 kcal/mol for Shaker channel with Qg ~13e, V0~30mV, V1=-70,
V1/2~-45mV and of ~7.3 kcal/mol for Kv1.2 with Qg ~10e, V0~20mV,
V1=-70, V1/2~-30mV, which is in reasonable agreement with computa-
tional estimations of the barrier [21], consistent with the observed ki-
netics for the gating charge [75]. It should be noticed, however, that
this barriermay not be associatedwith the actualmovement of the pro-
tein between the two conformations but the response of the environ-
ment (electrolytes, changes in protein ionization states). It is similar
formally to the barrier for solvent reorganization in electron transfer be-
tween two fixed donor and acceptor. Here it is not clear what the result
means since it gives the barrier due to the environment that imposes a
lower limit on the barrier for the conformational change. That is, since
the calculated reorganization is obtained by using the initial and final
configurations of the protein and only changing the voltage, it cannot
“know a priori” about the barrier for the protein structural change. It
is possible, however, that the barrier for the protein structural change
is optimized with the constraint of not beingmuch higher than the bar-
rier for the electrolyte reorganization. Further, exploration of the pres-
ent finding is left to a subsequent study.

2.4. Key features of the coarse-graining (CG) model

The energetics of our CG model is different than most other models
as it focuses on reliable treatment of the electrostatic energy (ΔGelec),
considering the self-energy of ionizable residues and the charge–
charge interaction with a realistic dielectric as well as the electrostatic
energetics of protein–membrane system [20,32]. The model also con-
siders the hydrophobic contribution (ΔGhydro) to the CG model that
has been constantly refined over past years.Most importantly, the influ-
ence of an applied voltage was recently incorporated into the CGmodel
(ΔGlyte–voltage(V ext)) — CG (semi-microscopic) model of voltage cou-
pling in membrane proteins, referred to as the Kim–Dryga–Warshel
(KDW) model — as a part of electrostatic contribution (ΔGelec) [67].
The KDWmodel was successfully applied to evaluating the CG energet-
ics of voltage coupling, as well as the gating currents in ion channels
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(Kv1.2) [21], and gating charge and voltage changes in Bacterial Reac-
tion Center [33].

The energetics of the CG model is given by:

ΔGtot ¼ ΔGfold ¼ ΔGmain þ ΔGside ð41Þ

where the total free energy is taken relative to the free energy of the un-
folded system inwater at zero applied potential. Themain chain energy
is given by backbone and hydrogen bonds contributions with weights
(w) optimized to yield the observed absolute folding free energies:

ΔGmain ¼ wbackΔGback þ wHBΔGHB;

while the side chain contribution is decomposed into four terms:

ΔGside ¼ ΔG0
elec þ ΔGhydro þ ΔGpolar þ ΔGvdw: ð42Þ

Finally, in the case of the presence of electrodes and electrolytes,
ΔGlyte − voltage

fold (Vext) is added to the total free energy (Eq. (41)), resulting
in

ΔGtot Vextð Þ ¼ ΔGfold þ ΔGlyte−voltage Vextð Þ; ð43Þ

where the ΔGlyte − voltage
fold (Vext) is the CG representation of the effect of

the external potential (KDW model), and the nature of this term will
be elaborated below.

In the following, we consider the electrostatic contributions to the
folding energy as a state dependent function of the form, given by:

ΔGelec;λ Vextð Þ ¼ ΔG0
elec;λ þ ΔGlyte−voltage;λ Vextð Þ: ð44Þ

The first term represents the (voltage independent) electrostatic
free energy of the “ionizable” residues, which is the sum of two contri-
butions: a local-environment and membrane-depth dependent Born-
type self-energy and charge–charge interaction energy with a distant
dependent dielectric that approaches ~40 in an infinite distance:

ΔG0
elec;λ ¼ ΔGself þ 332

X
l;m

qpl q
p
m

εefflm rlmð Þrlm
; ð45Þ

where we use a distant dependent effective dielectric function, εlmeff =
1 + 60[1− exp(− 0.5rlm)].

The ΔGlyte − voltage,λ(Vext) term represents voltage-dependent ener-
getics ofmembrane proteins coupled to the externally applied potential,
which includes the effects of electrolytes on the electrostatic energetics
[33]:

ΔGlyte−voltage;λ Vextð Þ

¼ 1
2

X
j

V j
extq

g
j þ

1
2
332

X
k≠ j

qgj q
g
k

εeff ;lytek j r jk
� �

r jk
þ
X
l

V l
extq

p
l þ

1
2
332

X
k;m

qpmq
g
k

εeffkm rkmð Þrkm
;

ð46Þ

where the units are kcal/mol rather than the esu units in the above
macroscopic expression and distant dependent effective dielectric
constants of 40 and 60 were used, respectively, for the electrolyte
response to the charging of protein residues (εkmeff ) and external po-
tentials (εkjeff,lyte). The first and second terms represents the contri-
bution that arises from the polarization of electrolyte effective
charges (qg) by the external potential and all the other charge of
the system. The third term represents voltage coupling to protein
charges (qp) and the last term represents the interaction between
protein charges and electrolytes that arise when protein ionizable
residues are charged.
More specifically, the electrolyte charges in this expression (qjg) are
represented by a grid with a charge distribution of the form:

q�j ¼ z�N�
boxe

∓βϕ jX
k∈box

e∓βϕk
; ð47Þ

where (qjg = qj
+ + qj

−) is determined by solving iteratively with the in-
teractions between all the charges in the system, considering the local
potential on each grid point [20,32]:

φ j ¼ 332
X
m

qPm
εeffjm r jm

� �
r jm

þ 332
X
k≠ j

qgk
εeffk j r jk

� �
r jk

þ Vext
j ; ð48Þ

where Vj
ext, is evaluated using the macroscopic formula [20,32]:

Vext
j ¼

ZZ j

Z0

D0
z=ε Zð ÞdZ ð49Þ

where Z0 is the Z coordinate at the left electrode. Alternatively we can
consider the potential from the electrode charges and using periodic
boundary conditions.

The KDW model evaluates the gating charge in a direct manner by
computing the cumulative electrolyte charges near the electrode that
arises in response to charge movements within the membrane, using
an integration through the relation:

Qg ¼
ZZ0

Z0

dZ Δ Δqgrid Z;Vð Þ=ΔZð Þð Þ ¼
Xi¼i0

i¼0

X
j;k

qgridi; j;k ð50Þ

whereΔΔqgrid (Z, V) is the difference in the accumulated sumofΔqgrid of
the initial and final state, and Z′ is the point to the left of themembrane
where the electrolyte charge distribution changes sign. At this point, the
integrated charge reaches a plateau and then starts to decrease. The for-
mal integral in the second term of Eq. (50) corresponds to the explicit
summation on the grid points (in the third term), where j and k run
on all the grid points in the X and Y directions, whereas i runs from
points neat the electrode to Z′.

The KDWmodel was recently applied to estimating gating charge
in voltage gated K+ ion channel (Kv1.2) [21] and voltage changes
in response to proton/electron transfer in bacterial reaction center
[33].

With the above formulation we can try to look for the analogy to the
macroscopic continuum treatment. The most obvious analogy come
with the capacitor model where we note that the first two terms in
Eq. (46) correspond to the free energy of charging (the membrane) be-
tween two electrolytes by an electric field in the macroscopic continu-
um approach. Here we can try to look for correspondence between
the CG and continuum models and note that in the absence of the pro-
tein charge we have:

1
2

X
j

Vext
j qgj þ

1
2
332

X
k≠ j

qgj q
g
k

εeffjk r jk
� �

r jk
↔

1
2
CV2

ext : ð51Þ

This correspondence states the law of energy conservation that the
free energy stored in themembrane capacitor is equal to the free energy
of polarizing electrolyte solutions by the externally applied voltage. The
validity of this relationship will be explored in Section 3.1 (see also
Fig. 4B), while it seems to be apparent that the free energy expression
of total system (as dictated by Eq. (29) or (30)) approximates to the ex-
pression of simple free energy of charging in the absence of protein
charges (i.e., a capacitor formula of 1/2CV2).
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Now we investigate the relationship between the gating charge ob-
tained by the macroscopic continuum and the KDWmodel, by formally
rewriting the state dependent total CG energy as the free energy func-
tion, introduced before:

ΔGtotal
λ Vextð Þ ¼ Δ f λ Vextð Þ: ð52Þ

While the CG model of voltage coupling was used to evaluate
gating charge in a direct manner by computing the cumulative
electrolyte charges on the electrode generated in response to
charge movements within the membrane, we can look for the
trend in a state dependent gating charge, Qg,λ, using the differenti-
ation of Eq. (52), in an analogy with Eq. (27), which can be
expressed as:

Qg;λ ¼ ∂Δ f λ;fold=∂Vext jVext¼0: ð53Þ

This expression can clearly be explored by numerical differenti-
ation. Furthermore, an inspection of our CG energetics (i.e. the
third term in Eq. (46)) against Eq. (23) yields the gating charge,
through:

Qg;λ ¼
X
l

Vl
mq

p
l

� 	
λ
=Vm: ð54Þ

This expression should have the same trend as the (linearized)
macroscopic expression as Eq. (25). Both Eqs. (53) and (54) will be
applied in Section 3 to estimate the gating charge.

3. Results

3.1. Gating charge

We start by illustrating the application of the free energy relations
derived above to the analysis of the thermodynamics of voltage activa-
tion in ion channels. This is done by using our CG model to determine
the energetics ofmoving a unit charge between the two sides of amem-
brane, in the presence of an external (see Fig. 2). The area (A) andwidth
(L) of membrane are 80 × 80 Å2 and 60 Å respectively, where the elec-
trolyte concentration is taken as 250mM. The unit charge is initially po-
sitioned near themembrane on the left side (i.e., state 0). An application
of a positive external potential drives the unit charge to the right side
Fig. 3. Evaluations of the gating charge by several different approaches: (A) The gating charge o
The difference in cumulative electrolyte charges near the electrode that arises in response to c
charge obtained by the second indirect approach (i.e., using Eq. (54)). In this case a linear le
slope (zero dependence on the external potential) for both the 0 and 1 states, yielding a gatin
that the (total) gating charge is independent of external potentials without the consideration o
(i.e., state 1) of the membrane. Such a “non-equilibrium” movement
of the charge within themembrane leads to accumulation of electrolyte
charges near themembrane, where opposite electrolyte charges are ac-
cumulated near the electrode (see bottom in Fig. 2). The difference in
electrolyte charges near the electrode before and after the chargemove-
ment is the actual gating charge measured in experiments. The charge
movement can also generates voltage change (unless we keep the volt-
age constant), and be expressed as a change in the electrode potential.

Such a direct evaluation of the gating charge has been possible
through the development of our CG model of membrane proteins that
include membrane, electrolytes, and electrodes [20,32], which is now
called the KDW model in the present study. This model focuses on the
actual measured quantity, namely the displacement current (e.g. [35]),
rather than on its interpretation. Thus, the gating charge is evaluated
by considering the fact that the gating current is due to the motion
and accumulation of the electrolyte charges.

Fig. 3A shows the gating charge determined by such a direct proce-
dure, while using Eq. (50), yielding the gating charge of ~0.73 e. It
turns out that Δqg(Z, V) is independent of the external potential [33],
where the accumulated charge (gating charge) was produced at zero
potential (also see inset of Fig. 3A that shows the gating charge at an ex-
ternal potential of 100 mV).

The second approach, referred to here as the first “indirect method”,
uses the free energy of voltage coupling to the protein charges, whose
expression is obtained by treating the energetics of voltage activation
from our KDW model (Eq. (53)) in analogy to Eq. (27). The numerical
differentiation of theCG free energies at zeromembranepotential yields
a gating charge of ~0.74 e. In addition, we can use the second indirect
approach (Eq. (54)), which is an analogous expression to the corre-
sponding macroscopic continuum expression (Eq. (25)). This approach
yields a gating charge of ~0. 75 e, where the linear component of capac-
itance charge is subtracted, as shown in Fig. 3B.

The third approach uses a new expression of gating charge derived
in the present study (Eq. (34), i.e., Qg = C'ΔVmin), using a minimum
voltage difference between two states and a capacitance of the system.
The voltage difference, where the two states have their respective min-
imum,was obtained from the voltage dependent free energies using our
CGmodel (Fig. 4A), yielding a value of 300mV (V0,min− V1,min). The ca-
pacitance of the model system, i.e., fluctuation of an external charge
flowing through a complete circuit, can be estimated as a second deriv-
ative of the voltage dependent free energies with respect to an external
potential, yielding the capacitance of ~2.52 e/V, which is close to the
btained using the direct CG approach of Eq. (50) at zero potential (and at 100mV in inset).
harge movements within the membrane gives a gating charge of ~0.73 e. (B) The gating
ast square fits of data points from several different potentials gives approximately zero
g charge of ~0.76 e estimated from the gap between the two parallel lines. This implies
f voltage dependent population for each state.



Fig. 4.The voltage dependentMarcus–Warshel parabolas, obtained using the CGmodel of voltage coupling (theKDWmodel). (A) The free energy of a unit chargemovement as function of
external potential using the CG energetics of the voltage coupling, which is approximately quadratic, as predicted by linear response approximation applied to the free energy functions of
voltage activation in ion channels. Notice that fλ(V) {λ=0,1} interest atV=0along the voltage coupling reaction coordinate,which is a natural consequence of the equilibrium fluctuation
relation of Eq. (1) or (15) that any system of two equilibrium states described by an energy gap reaction coordinate (voltage coupling in the present study) should satisfy. g1(V) (dashed
light blue) is obtained by shifting f1(V) (blue) by the conformational free energy of−ΔGconf. (B) The free energy of charging themembrane between twoelectrolytes (i.e., themodel system
of (A) but in the absence of any charge within themembrane). The free energy parabola obtained by our KDWmodel shows an excellent agreement with the capacitor formula (Eq. (55))
obtained from themacroscopic continuumapproach by solving amodified Poisson–Boltzmann equation (PB–V), yielding a capacitance of ~2.34 e/V (in comparisonwith 2.33 e/V from the
capacitor formula of Eq. (55)).
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membrane-only (between two electrolytes) capacitance of ~2.33 e/V
(0.58 uF/cm2), determined by using the (linearized) macroscopic con-
tinuum approach [68]:

C ¼ Cm
1

1þ 2εm
kLεw

; ð55Þ

where 1/k Debye length, L (=60) is the width of membrane, εm (=4)
and εw (=80) are dielectric constants of membrane and water respec-
tively, and Cm is the capacitance of the pure membrane:

Cm ¼ εmA
4πL

: ð56Þ

Notice that our CG energetics of voltage coupling (the KDW model)
also yields the free energy parabola that yields a membrane capacitance
of ~2.34 e/V,which is excellent agreementwith theprediction of themac-
roscopic capacitor formula of ~2.33 e/V (Fig. 4B), as predicted by the cor-
respondence between our CGmodel of energetics of the voltage coupling
and the macroscopic continuummodel (Eq. (51)). At any rate, the newly
developed expression for gating charge (Eq. (34), i.e., Qg = C'ΔVmin)
yields a similar gating charge (Qg ~ 0.77 e with C′ = 2.58 e/V and
ΔVmin = 300 mV) to the charges obtained by the other approaches
(0.73e from the direct approach and 0.74e/0.76 e from the indirect ap-
proach). Last, for this particular simple system, assuming a linear mem-
brane potential across the membrane, the simple dielectric distant
formula with a uniform dielectric constant (Eqs. (24) or (25)) yields a
value of 40/60 e–0.67 e. The fact thatwe obtained similar resultswith dif-
ferent approaches is a comforting confirmation of the validity of our CG
formulation that can be used inmore challenging caseswhere themacro-
scopic approximation can be questionable.

3.2. Voltage dependent free energies and voltage dependency of activation
(Q–V curve)

Fig. 4A shows the voltage dependent CG (the KDW model) free en-
ergy functions (fλ(V) {λ = 0,1}) for moving the unit charge within the
membrane as a result of the external potential. These type of free energy
parabolas are familiar in the Marcus theory of electron transfer except
that they are obtained here along the voltage coupling coordinate and
evaluate microscopically. The parabolic dependence is a realization of
linear response approximation, which should be satisfied approximate-
ly by any system that involves free energies of charging (by an external
potential in the present study) along chosen reaction coordinates. The
free energy difference between two equilibrium conformational states,
i.e., f1(V1.min)− f0(V0,min), is about ~0.2 kcal/mol (Figs. 4A and 1B), yield-
ing approximately the same result as the “chemical” component of free
energy change (~0.2 kcal/mol) obtained using the gating charge and
half voltage (V1/2) (see below and Eq. (20)). Notice that fλ(V) {λ =
0,1} interest at V = 0 along the voltage coupling reaction coordinate,
which is a natural consequence of equilibrium fluctuation relation (or
the first free energy relation) that any system of two states described
by the reaction coordinate of energy gap (voltage coupling in the pres-
ent study) should Satisfies. 81. Again as clarified in the discussion of eq
40, the barrier should not be identified with the conformational change
barrier.

The determination of voltage dependent free energies using our CG
model of the voltage coupling (theKDWmodel) allows for a direct eval-
uation of Q–V curve. That is, starting with the relation

pλ Vð Þ∝ exp −Δ f λ Vð Þð Þ: ð57Þ

by normalization (or by an application of Bayes' theoremwith a uni-
form prior [69]), we obtain:

p0 Vð Þ ≡Qg Vð Þ=Qmax
g

� 	
¼ p0 Vð Þ

p0 Vð Þ þ p1 Vð Þ ¼
1

1þ p1 Vð Þ=p0 Vð Þ ; ð58Þ

where pλ(V){λ= 0, 1} are the probability densities of finding state λ of
voltage sensor domain (VSD) at a given voltage V. Notice that the 0th
state is treated as the activated one (see Eq. (13)). Application of equi-
librium fluctuation relation (Eq. (15)) to Eq. (58) leads to the familiar
Fermi–Dirac logistic function, given by

p0 Vð Þ ≡Qg Vð Þ=Qmax
g

� 	
¼ 1

1þ exp QgV1=2−QgV
� � : ð59Þ

This analytic form of Q–V curve is commonly used in the field of ion
channels to fit the observed open (activated) probability of voltage



Fig. 5. The voltage dependent open (activated) probability (Q–V curve) obtained using the
CGmodel of voltage coupling (see Fig. 4A)with pλ(V) ∝ exp(−Δfλ(V)). The least square fit
of the voltage dependent open (final state) probability density of Eq. (58) to the analytic
formof Q–V curve of Eq. (59) yields the half voltage (V1/2) of ~−9.2mV and gating charge
of ~−0.78 e, resulting in the chemical component of free energy change of ~0.2 kcal/mol
using ΔGc (≡ g0(0)− g1(0)= QgV1/2. Notice we have a minus sign for a half voltage as we
are considering the voltage dependency of channel “activation” (where the activated state
ismore stable than the resting state V1/2 b0) rather than "deactivation" (where the activat-
ed state is more stable than the resting state for V1/2N 0). As expected from Eq. (21), the
chemical component of free energy changes (ΔGc ), namely, the free energy difference
at zero membrane potential, is equal to the free energy difference (~0.2 kcal/mol) be-
tween the two equilibrium conformational states along the reaction coordinate that de-
scribes the voltage activation, i.e., Δf1(V1,min) − Δf1(V0,min).

Fig. 6. Schematic illustrations of a quantitative correlation between free energy landscapes (pa
upon mutations and dug binding, leads to a left shift (toward hyperpolarization) in the Q–V c
the Q–V curve. The shift in the Q–V curve in terms of V1/2 is correlated with the stabilization o
QgΔV1/2 ≈ ΔΔGconf (see Eq. (20)).
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activation [19] to extract the thermodynamic information about the
voltage coupling such as a half voltage (where the initial (0) and final
(1) states have equal probability), gating charge (notice, however,
Qg is equal toQg

max only for the two statemodel) and thus chemical com-
ponent of free energy change of ΔGc. Fig. 5 shows the numerical Q–V
curve for the unit charge movement using the voltage dependent CG
free energies (Eqs. (57) and (58)). The least squarefit [70] of the voltage
dependent 0th (activated) CG probability density (Eq. (58)) to the ana-
lytic form of Q–V curve (Eq. (59)) yields the half voltage (V1/2) of
~−9.2 mV and gating charge of ~−0.78 e, thereby resulting in the
chemical component of free energy of ~0.2 kcal/mol using
ΔGc (≡ g0(0) − g1(0) = QgV1/2. Notice we have a minus sign for a half
voltage as we are considering the voltage dependency of channel “acti-
vation” (where the activated state is more stable than the resting state
V1/2 b0) rather than "deactivation" (where the activated state is more
stable than the resting state for V1/2N 0). As expected from Eq. (21),
the chemical component of free energy change (ΔGc) is equal to the
conformational free energy (ΔGconf) (~0.2 kcal/mol), obtained from
the CG voltage dependent free energies using the equilibrium free ener-
gy difference (f1(V1.min) − f0(V0,min)) along the the voltage coupling re-
action coordinate.
3.3. Free energy functions (parabolas) along voltage coupling offers a new
insight into the mechanisms of voltage activation in ion channels

Our understanding of voltage activation and gating processes bene-
fits largely from the site-directed mutagenesis studies of selected
rabolas) and the Q–V curve. (A) The stabilization of an open activated state, for example,
urve (C). (B) The destabilization of a closed resting state also results in the same shift in
r destabilization of the conformational states, offering a quantitative relation of the form,
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residues that are critical for channel functions. The effects of such site-
directed mutations on the functions of channels that contains voltage
sensors modules have been commonly examined through electrophys-
iological measurements of macroscopic currents and gating currents. In
particular, the resulting Q–V curve (and also shifts in the Q–V curve
upon site-directed mutations) offers important thermodynamic infor-
mation of voltage activation of ion channels. For example, specificmuta-
tions of key arginine or lysine residues of the S4 helix in the VSD of
Shaker channel, which is due to the stabilization of the open-activated
(up) state, causes a left shift in the Q–V curve (toward hyperpolariza-
tion) [71]. Also a specific set of mutations in the S3b helix of VSD in
the same channel causes a right shift in the Q–V by destabilizing the
open-activated (up) state of the channel [72]. However, quantitative in-
terpretation of the Q–V curve in terms of the free energy landscapes of
channel activation has been hampered due to several reasons; these in-
clude the lack of quantitative criteria exists about which conformational
state is stabilized or destabilized to account for the observed shifts in the
Q–V curve. It also reflects the lack of a quantitative relation between the
free energy of stabilization or destabilization and the observed shifts in
the Q–V curve exists (partly due to the absence of a reaction coordinate
to describe thermodynamics of voltage activation).

To progress in analyzing the above mutation effects we can exploit
the findings of the previous subsection, where we show that the
Marcus-type free energy parabolas along the voltage coupling reaction
coordinate allows one to obtain quantitative predictions of the Q–V
curve. For example, Fig. 6 show such a correlation between the free en-
ergies of voltage activation and the Q–V curve. Here, the “hypothetical”
Marcus-type free energy parabolas of the 0 and 1 states are related each
other by equilibrium fluctuation relation, intersecting each other at V=
0 along the voltage coupling reaction coordinate and yielding the con-
formational free energy of QgV1/2. This figure shows that the hypothet-
ical Q–V curve (Fig. 6C) could be shifted toward the left (toward
hyperpolarization) in eitherway by the stabilization of the open activat-
ed (0) state (red dagger in Fig. 6A) or the destabilization of closed rest-
ing (1) state (red dagger in Fig. 6B). In addition, there exists a simple
quantitative relation between the free energy of stabilization or destabi-
lization and shift in the Q–V curve, given by QgΔV1/2 ≈ ΔΔGconf from
Eq. (20), which can be explored by the CG model of voltage coupling.
The expression may offer a new avenue to evaluate membrane-inser-
tion free energies (or relative free energies of mutations) in voltage
gated ion channels from the Q-V curve (see Ref. [79] and references
therein) Thus, the proposed theory and the CG energetics of voltage
coupling (the KDWmodel) offer a clear graphical and quantitative anal-
ysis on a correlation between the stabilization/destabilization in the free
energies of voltage activation and shifts in Q–V curve by integrating
equilibrium fluctuation relations and Marcus type parabolas using the
voltage coupling reaction coordinate. The accurate determination of
equilibrium free energy changes, upon site-directed mutations, have
strong implications in designing pharmacophore in drug discovery
targeting voltage sensing domains.
4. Discussion

Starting from the equilibrium fluctuation relation that makes a con-
nection between the conformational free energy between the two (for-
ward/backward) probability densities, along the one-dimensional
reaction of “voltage coupling”, we have offered a rigorous physical foun-
dation for the fundamental free energy relations in the voltage gated ion
channels, used to quantify kinetics/thermodynamics of voltage activa-
tion [1,19,36–41]. We have shown that the chemical component of
free energy change, namely, the free energy difference between two
conformational states at zero (depolarization) membrane potential
(QgV1/2), is equivalent to the free energy difference between two
“equilibrium” conformational states along the one-dimensional space
of the voltage coupling.
Application of linear response approximation (LRA) to the free ener-
gies of voltage activation in the framework of equilibrium fluctuation
relations yields a remarkable relation between gating charge and its
fluctuation, i.e., a closed-form expression of gating charge in terms of
the basic properties of channels. This relationship, which is known as
the fluctuation-response relation in statisticalmechanics, is reminiscent
of the Johnson-Nyquist relation for current fluctuation (as a realization
of the fluctuation–dissipation theorem in an electric circuit) [73,74],
which was employed to estimate the number of channels and thus the
gating charge per channel (see Ref. [75] and references therein). The
gating charge expression developed in the present study could thus be
considered a time independent version of Nyquist relation (as a realiza-
tion of fluctuation–response relation in an analogous neuro-electric cir-
cuit). A recent realization of the non-equilibrium (and non-linear)
extension of the relation in a quantum coherent conductor [76,77]
may further implicate the roles played by the Nyquist relation in ion
channels in the framework of the non-equilibrium fluctuation
theorem [78].

A new expression of free energy barrier in voltage gated ion chan-
nels was also derived in terms of basic properties of ion channels by
the application of a combination of linear response approximation and
equilibrium fluctuation relation to the free energy functions of the volt-
age coupling. The expression is similar formally to the barrier for solvent
reorganization in electron transfer between two fixed donor and accep-
tor, as in the Marcus theory of electron transfer [54]. Here it is not clear
what the result means since it gives the barrier due to the environment
that imposes a lower limit on the barrier for the conformational change.
That is, since the calculated reorganization is obtained by using the ini-
tial and final configurations of the protein and only changing the volt-
age, it cannot “know a priori” about the barrier for the protein
structural change. It is possible, however, that the barrier for the protein
structural change is optimized with the constraint of not being much
higher than the barrier for the electrolyte reorganization. Further, ex-
ploration of the present finding is left to a subsequent study.

The accuracy of our CG model of the energetics of voltage coupling
(the KDWmodel) inmembrane proteins, simulated by using semi-“mi-
croscopic” grid-based electrolytes and implicit electrodes, was exam-
ined considering a well-defined test case (i.e., the membrane between
two electrolytes)wherewe have clear results frommacroscopic contin-
uummodel [68]. It was found that the free energy of charging (and also
capacitance) obtained by using the KDW model, yields an excellent
agreement with the macroscopic continuum prediction. Thus, our
model offers a new explicit microscopic insight into the nature of the
voltage coupling in membrane proteins.

The KDWmodel for a unit charge movement displaced by an exter-
nal potential was also applied to simulate gating charge using three dif-
ferent approaches, including the new formula, yielding approximately
equal result to each other. The KDW model was then used to illustrate
the free energy relations for voltage activation in the simple model of
the unit charge movement. The KDW model yields Marcus type parab-
olas along the voltage coupling reaction coordinate, as predicted by lin-
ear response approximation, allowing for a direct prediction of voltage
activation profiles, e.g., gating charge vs. voltage curve (Q–V curve).
These free energy parabolas along the one-dimension reaction coordi-
nate of voltage activation have allowed for a clear understanding of
the correlation between the changes in the free energies of voltage acti-
vation and the shifts in Q–V curve, upon site-directed mutagenesis or
drug binding.

Overall, the presented theory and the CG simulation of voltage cou-
plings offers new quantitative tools for understanding the molecular
basis of the action of mechanisms of voltage gating in voltage gated
ion channels. This was be done in the framework of the equilibrium
fluctuation relation and LRA, thus laying a firm quantitative foundation
for a more unified understanding of voltage effects in ion channels, ion
pumps, and transporters in general. Application of the framework de-
veloped in the present study to (real) membrane proteins is under
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way, considering the voltage sensor domain from a voltage sensitive
phosphatase [79]. Note that, however, while we expect LRA to be very
effective in approximating the energetics of the conformational chang-
es, as it has been in our studies of processes in condensed phases and
in proteins (e.g. [80]), the validity is not essential for the new derivation
of the gating charge and for the CG treatment of the gating charge/
current. That is, we emphasize the CG model of gating charge/charges
follows LRA and gives very reasonable capacitor-like results because
the electrolytes grid follows nicely LRA. This means that regardless of
whether the protein free energy landscapes and conformational transi-
tions follow LRA or not, we do have a reliable description of the gating
charges when the structures of the open activated and closed resting
state are known. This is indeed the case in our studies of Kv1.2, where
we reproduced the observed gating charge/current [21].

In addition, the direct approach of the KDWmodel provides an effec-
tive way for determining the gating charge and the resulting changes in
electrode potentials (voltage generation), that has been used to esti-
mate electrogenicity in membrane proteins (e.g. [81]). This important
feature that has been illustrated in studies of the electrogenicity in the
charge separation in bacterial RC [33], should offer a new insight into
the mechanisms of proton/electron transfer in cytochrome c oxidase.
The work in this direction is also in progress.
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