
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 4 (2006) 475–498

www.elsevier.com/locate/jda

Upper bounds on the bisection width of
3- and 4-regular graphs

Burkhard Monien ∗, Robert Preis

Department of Mathematics and Computer Science,
University of Paderborn, D-33098 Paderborn, Germany

Available online 18 January 2006

This paper is dedicated to our friend of long years Prof. GIORGIO AUSIELLO with the best wishes

Abstract

We derive new upper bounds on the bisection width of graphs which have a regular vertex degree.
We show that the bisection width of sufficiently large 3-regular graphs with |V | vertices is at most
(1

6 + ε)|V |, ε > 0. For the bisection width of sufficiently large 4-regular graphs we show an upper

bound of (2
5 + ε)|V |, ε > 0.

© 2005 Published by Elsevier B.V.

Keywords: Graph partitioning; Bisection width; Regular graphs; Local improvement

1. Introduction

There are graph-partitioning problems in a wide range of applications. The task is to
divide the set of vertices of a graph equally into a given number of parts while keeping
the number of crossing edges between vertices belonging to different parts, called the cut
size of the partition, as small as possible. The special case of a partition of the graph into 2
parts is called a bisection, and the minimal cut size of all balanced bisections of a graph
is called its bisection width. Its calculation is NP-complete for arbitrary graphs [11] and
remains NP-complete for regular graphs [2].

* Corresponding author.
E-mail addresses: bm@uni-paderborn.de (B. Monien), robsy@uni-paderborn.de (R. Preis).
1570-8667/$ – see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.jda.2005.12.009

https://core.ac.uk/display/82100844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda
mailto:bm@uni-paderborn.de
mailto:robsy@uni-paderborn.de
http://dx.doi.org/10.1016/j.jda.2005.12.009

476 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
There are several results on bounds on the bisection width of regular graphs (discussed
below). Results for 3- and 4-regular graphs are of special interest because these are the
lowest non-trivial degrees.

It is of general theoretical interest to improve previous upper bounds on 3- and 4-regular
graphs. Moreover, there are some direct applications of these results. As a motivating ex-
ample, upper bounds on the bisection width of 4-regular graphs have successfully been
applied to the configuration of transputer systems [13].

1.1. Definitions and previous results

Let G = (V ,E) be a simple undirected graph with vertex set V of cardinality n := |V |
and edge set E. A graph is d-regular if for all v ∈ V it is |{w ∈ V ; {v,w} ∈ E}| = d .

Let π :V → {0,1} be a bisection of G. It distributes the vertices among parts V0 and V1.
We focus on balanced bisections, i.e. the number of vertices in the parts differ by at most 1.
Let cut(π) := |{{v,w} ∈ E;π(v) �= π(w)}| be the cut size of π . The bisection width of a
graph G is bw(G) := min{cut(π);π is a balanced bisection of G}.

The bisection width is known for some graph classes with regular degree such as tori,
cube-connected-cycles [21] or butterflies [4].

There are several results on bounds on the bisection width of arbitrary regular graphs.
Clark and Entringer [6] present an upper bound of n+138

3 for the bisection width of 3-
regular graphs. Kostochka and Melnikov improve this asymptotically and show an upper
bound of n

4 + O(
√

n logn) [16]. Recently, an upper bound of 0.198n + O(log(n)) has
been proved in [27]. Hromkovic and Monien [13] proved an upper bound of n

2 + 1 for
the bisection width of 4-regular graphs with n � 350. A general upper bound of n

2 + 5
for 4-regular graphs with any number of vertices is proven in [27]. The result of [16] for
3-regular graphs above is a corollary of an upper bound of d−2

4 n + O(d
√

n logn) for the
bisection width of d-regular graphs in the same paper. An upper bound of d−2

4 n + 1 for
n � n0(d) with some function n0(d) is shown in [20,24] by generalizing the techniques
of [13]. Alon [1] uses probabilistic arguments to show that the bisection width is at most

(d
2 − 3

√
d

16
√

2
) n

2 for d-regular graphs with n > 40d9.
There are results for lower bounds of almost all d-regular graphs. Bollobas [5]

shows that for d → ∞ the bisection width of almost every d-regular graph is at least
(d

2 − √
ln(2) · d)n

2 . For d = 4 he shows that almost all 4-regular graphs have a bisection
width of at least 11

50n = 0.22n. Furthermore, Kostochka and Melnikov show that almost
every 3-regular graph has a bisection width of at least 1

9.9n ≈ 0.101n [17].
There are some (slightly weaker) results for explicitly constructible infinite graph

classes with high bisection width. The Ramanujan Graphs (see e.g. [7,18,19,22]) have
a regular degree d and are defined by having λ2 � d − 2

√
d − 1 with λ2 being the sec-

ond smallest eigenvalue of the Laplacian of the graph. The well-known spectral lower
bound λ2·n

4 on the bisection width of a graph (cf. [9]) directly leads to a lower bound of
(d

2 −√
d − 1)n

2 for d-regular Ramanujan graphs. This implies lower bounds of 0.042n and
0.133n for the bisection widths of 3-regular and 4-regular Ramanujan graphs. The spectral
lower bound has been improved in [3] to a lower bound of 0.082|V | for the bisection width

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 477
of large 3-regular Ramanujan graphs and a lower bound of 0.176|V | for the bisection width
of large 4-regular Ramanujan graphs.

There are many heuristics for graph partitioning which are successfully being used in
applications. Furthermore, efficient software implementations of the most relevant methods
are available by using software tools like e.g. CHACO [12], JOSTLE [28], METIS [15],
SCOTCH [26] or PARTY [25]. These heuristics try to calculate a bisection with a small cut
size. However, they do not guarantee an approximation of the bisection width. Recently,
it has been shown that the bisection width can be approximated by a polynomial time
algorithm within a factor of O(log2(|V |)) [10].

1.2. New results and outline of the paper

In this paper we improve previous upper bounds on the bisection width of large 3- and
4-regular graphs.

Two main lemmas in this paper are not exclusively connected to the bisection problem
and may also be of interest on their own. Although they are used in the bisection Sections 3
and 4, we kept them outside those sections because they are also fairly technical. Therefore,
they are described in their own Section 2.

In Section 3 we prove for any ε > 0 an upper bound of (1
6 + ε)n on the bisection width

of large 3-regular graphs and in Section 4 we prove an upper bound of (2
5 + ε)n on the

bisection width of large 4-regular graphs.
As discussed above, there are large 3-regular graphs with a bisection width of at least

0.101n and large 4-regular graphs with a bisection width of at least 0.22n. Thus, the results
are optimal up to constant factors and our results improve these factors.

Parts of Sections 2 and 3 of this paper are published in a preliminary and short version
in the proceedings of the Symposium on Mathematical Foundations of Computer Science
(MFCS) 2001 [23].

1.3. Iterative local improvement with helpful sets

The proofs in this paper are constructive and follow an iterative local improvement
scheme. It starts with an arbitrary balanced bisection. If the cut size of it does not fulfill the
stated upper bound, it performs two steps to improve the bisection as illustrated in Fig. 1.

Fig. 1. One iteration of a local improvement.

478 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
In the first step, a small set S0 ⊂ V0 is moved to V1. S0 is chosen such that this move
decreases the cut size. In the second step, a set S1 ⊂ V1 ∪ S0 with |S1| = |S0| is moved to
V0. S1 is chosen such that the cut size does not increase too much, i.e. such that the increase
is less than the decrease in the first step. Thus, the resulting bisection is balanced and has
a smaller cut size. These steps are repeated until the cut size drops below the upper bound.
The proofs in this paper ensure that there are sets S0 and S1 with the desired property as
long as the cut size is higher than the stated upper bound.

This local improvement scheme has successfully been used to derive upper bounds on
the bisection width of 4-regular graphs [13,20]. Furthermore, it is the basis for the Helpful-
Set heuristic which is able to calculate bisections with low cut sizes for very large graphs
in a short time [8,24]. An implementation of the Helpful-Set heuristic can be found in the
software tool PARTY [25].

A move of a set of vertices from one part to the other changes the cut size of the bisec-
tion. The helpfulness of the set is the amount of this change.

Definition 1. Let π be a bisection of a graph G = (V ,E). For S ⊂ Vp(π), p ∈ {0,1}, let

H(S) = ∣∣{{v,w} ∈ E;v ∈ S,w ∈ V \Vp(π)
}∣∣

− ∣∣{{v,w} ∈ E;v ∈ S,w ∈ Vp(π)\S}∣∣
be the helpfulness of S. S is called H(S)-helpful.

2. Two technical lemmas

In this section we prove two technical lemmas. Although these two lemmas are used to
derive bounds on the bisection width, they are not exclusively connected to this topic, i.e.
they may be of interest on their own.

Lemma 1 is the main lemma to derive an upper bound on the bisection width of 3-
regular graphs and will be used to prove Lemma 3 in Section 3. Lemma 2 will be used in
Lemma 6 of Section 4 to show the first step of the local improvement step for deriving an
upper bound on the bisection width of 4-regular graphs (although the lemma itself makes
a statement on graphs with maximum degree of 3).

The following lemma makes a statement on 3-regular graphs with black and red edges.
Such a graph is e.g. constructed in Lemma 3, where one side of a bisection is considered
and the helpfulness of a set can be stated as the relation of the red and black edges.

Lemma 1. Let G = (V ,E), E = B � R, be a 3-regular graph with black edges B and red
edges R. Let each vertex be adjacent to at least one black edge. Let |R| > (1

2 + ε)|V | for
an ε > 0. Then there is a set S ⊂ V of size O(1

ε
) such that the number of red edges between

vertices of S is larger than the number of black edges between S and V \S.

Proof. Each vertex is adjacent to at most 2 red edges. Thus, it is ε < 1
2 .

Let bi , i ∈ {1,2,3}, be the number of vertices which are adjacent to i black edges. For
a set S ⊂ V let bi(S), i ∈ {1,2,3}, be the number of vertices of black degree i in S. It is

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 479
|V | = b1 + b2 + b3 and 2|R| = 2b1 + b2 and it follows

(1)
|R|
|V | = 2b1 + b2

2(b1 + b2 + b3)
.

The fact |V | < 2|R| leads us to

(2)b3 = |V | − b1 − b2 < 2|R| − b1 − b2 = b1.

For b3 ≈ b1 Eq. (1) leads to |R|
|V | ≈ 1

2 . The idea of this proof is to show that if we could

not find a set fulfilling the lemma, then b3 is close enough to b1 such that |R|
|V | < 1

2 + ε and
we get a contradiction to the condition of the lemma.

Call a set S ⊂ V positive if it has more internal red edges than external black edges,
negative if it has more external black edges than internal red edges and neutral if the
numbers are equal.

Consider the graph consisting of black edges only and let F be the family of its con-
nected components. Clearly, the elements of F are neutral or positive. As a simple example,
a positive set I ∈ F of size O(1

ε
) fulfills the lemma.

Let r(I), I ∈ F , be the number of edges which can be removed from I without split-
ting it into disconnected components. It holds b3(I) = b1(I) + 2r(I) − 2, because I is a
connected component. Let r = ∑

I∈F r(I). It is

(3)b3 = b1 + 2r − 2|F |.
Let δ > 0 be a constant. The value of δ will be assigned below. A set I ∈ F is called

small if |I | � 1
δ

and large otherwise. Denote with α(S), S ⊂ V , the number of red edges
between vertices of S and vertices of small sets in F . Denote with s(S), S ⊂ V , the size of
the union of S and all small sets of F which are connected to S via a red edge. A set I ∈ F

is called thin if s(I) � α(I)+1
δ

and thick otherwise.
The outline of the proof is the following. We will find a positive set of size at most

20
δ

+ 1. Since we will set later that δ = ε
1+2ε

, we can say that any positive set of size

at most O(1
δ
) fulfills the lemma and we are finished. We iteratively remove elements of

F and prove that there remains a large and thin set I ∈ F which has some additional
properties (discussed below) and that we can find a set S ⊂ I which, together with small
sets connected to it, fulfills the lemma.

There are some simple cases. If there is a positive small set I ∈ F , then I fulfills the
lemma. If there is a red edge between two different small sets Ia, Ib ∈ F , then Ia ∪ Ib

fulfills the lemma because Ia and Ib are neutral themselves and the union has an additional
internal red edge. Both kind of fulfilling sets have a size of at most 2

δ
. Thus, we may assume

that there is no red edge within or between small sets of F .
In the following we remove sets from F iteratively.

Step 1. As long as there is a small set I ∈ F which has at least one cycle of black edges,
remove I from F .

Step 2. As long as there is a large and thick set I ∈ F , remove I from F and remove all
small sets J ∈ F which are connected to I via a red edge.

480 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Notice that the actions in both steps may change the values α(J) and s(J) for the sets
J ∈ F and thin sets of F may change to thick sets.

After these removals, all elements in F are either

(i) large and thin or
(ii) small and the black edges form a tree.

If there is a large and thin set I ∈ F with α(I) > 4r(I), we will show below how we can
find a set S ⊂ I which, together with small sets connected to it, fulfills the lemma. Before
we do so, we show that such a set I exists in F .

Assume that all large and thin sets I ∈ F have α(I) � 4r(I).
Let F1 be the family of (a) the large sets remaining in F , (b) the large sets removed

from F in Step 2 and (c) the small sets removed from F in Step 2. We show that the
average size of an element in F1 is at least 1

δ
. For each set I ∈ F1 of type (a) it is |I | � 1

δ
.

For each set I ∈ F1 of type (b) it is s(I) � α+1
δ

with α being the value of α(I) at the
time I was removed from F in Step 2. This removal operation caused the removal of k,
k � α, small sets Si , 1 � i � k, from F (it is k < α if there is a small set connected to
I via more than one red edge). These small sets belong to sets of type (c). Clearly, it is
|I ∪ ⋃

1�i�k Si | � α+1
δ

� k+1
δ

. Overall, the elements of F1 have an average size of at least
1
δ
, i.e. it is |V | = b1 + b2 + b3 � |F1|

δ
. With b3 < b1 (Eq. (2)) we get

(4)|F1| < δ(2b1 + b2).

Let F2 be the family of (a) the small sets removed from F in Step 1 and (b) the small
sets I remaining in F with |I | � 2. Clearly, F1 and F2 are disjoint. Let |F2(a)| be the
number of sets of type (a) and |F2(b)| be the number of sets of type (b). For each set I of
type (a) it is r(I) � 1. For each set I of type (b) it is |I | � 2 due to the fact that each vertex
is incident to at least 1 black edge. Furthermore, in each set I of type (b) the black edges
form a tree and, thus, there are at least 4 red edges connecting vertices of I with vertices
of V \I . Notice that these vertices may only belong to large and thin sets remaining in F .
Otherwise, if one of them would belong to a small set we would have found a fulfilling set
as discussed above and if one of them would belong to a large and thick set, I would have
been removed in Step 2 above.

There are at least 4|F2(b)| red edges connecting the small sets of F with the large and
thin sets of F . However, there are at most 4

∑
I∈F,I is large r(I) red edges of this kind due

to the fact that α(I) � 4r(I) for all large I ∈ F . Thus, it is

r �
∣∣F2(a)

∣∣ +
∑

I∈F,I is large

r(I) �
∣∣F2(a)

∣∣ + ∣∣F2(b)
∣∣.

This leads us with Eq. (3) to

(5)b3 = b1 + 2r − 2|F1| − 2|F2| � b1 − 2|F1| � b1 − 2|F1|.
With Eqs. (4) and (5) we can rewrite Eq. (1) to

|R| = 2b1 + b2
<

2b1 + b2 = 1
.
|V | 2(b1 + b2 + b3) 2(2b1 + b2 − 2δ(2b1 + b2)) 2 − 4δ

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 481
However, it is |R|
|V | > 1

2 +ε due to the condition of the lemma. This leads to contradiction
for δ � ε

1+2ε
and we set δ = ε

1+2ε
as mentioned above.

This shows that after the removal operations there remains a large and thin set I ∈ F

with α(I) > 4r(I). In the remainder we show how we can find a set S ⊂ I which, together
with small sets connected to it, fulfills the lemma.

Let GI = (I,EI) be the subgraph of black edges induces by I . It is |EI | = |I | − 1 +
r(I). Construct a reduced graph Ĝ = (V̂ , Ê) from GI in the following way. In a first step
successively delete all vertices of degree one until no such vertices remain. In a second
step delete all paths of vertices of degree 2 (they connect vertices of degree 3) and replace
each path with a single edge. For each new edge e ∈ Ê denote with T (e) the deleted tree
consisting of the replaced path and all (recursively) adjacent vertices deleted in step one,
i.e. I = V̂ ∪ ⋃

e∈Ê
T (e).

It is |Ê| = |V̂ |− 1 + r(I). Ĝ is regular of degree 3 and, thus, it is |Ê| = 3
2 |V̂ |. It follows

that |V̂ | = 2(r(I) − 1) and |Ê| = 3(r(I) − 1).
Call an edge e ∈ Ê fat if it is s(T (e)) > 4

δ
α(T (e)). Let x = ∑

e∈Ê, e not fat α(T (e)). For

a v ∈ V̂ let e(v) be the set of non-fat edges incident to v and let n(v) = ∑
e∈e(v) α(T (e)).

Clearly, it is
∑

v∈V̂
n(v) = 2x.

Assume that x � 3r(I) − 1. Then, at least 1
4α(I) + 1 of the red connections belong to

fat edges. Thus, it is

s(I) �
∑

e∈Ê, e is fat

s
(
T (e)

)
>

4

δ

∑
e∈Ê, e is fat

α
(
T (e)

)
� α(I) + 1

δ
.

This is a contradiction to I being thin. Therefore, it is x > 3r(I) − 1.
There exists a vertex v ∈ V̂ with n(v) � 4 because otherwise it would be

x = 1

2

∑
v∈V̂

n(v) � 3

2
|V̂ | = 3

(
r(I) − 1

)
.

Distinguish between the following cases.

(1) If n(v) = 4, then the union of v ∪ ⋃
e∈e(v) T (e) and the 4 adjacent small sets has a size

of at most 16
δ

+ 1 and has at least 4 internal red edges and at most 3 external black
edges, fulfilling the lemma.

(2) If n(v) � 5 and v ∈ V̂ is incident to two non-fat edges e1, e2 ∈ e(v) with α(T (e1)) =
α(T (e2)) = 2, then the union of v ∪ T (e1) ∪ T (e2) and the 4 adjacent small sets has a
size at most 16

δ
+ 1 and, again, has at least 4 internal red edges and at most 3 external

black edges, fulfilling the lemma.

Thus, if we remain unsuccessful there is a non-fat edge e ∈ e(v) with α(T (e)) � 3. In
the following we show how to find a set in T (e) which, together with small sets connected
to it, fulfills the lemma.

T (e) has two external black edges with respect to GI . Mark both vertices of I\T (e)

which are connected to T (e) via a black edge. Let K be the union of T (e) and both marked
vertices. K is a tree and both marked vertices are leaves. Remember that it is α(T (e)) � 3

482 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
and s(T (e)) � 4
δ
α(T (e)). Take one of the marked leaves as the root of a tree with directed

edges pointing from the root to the leaves. For each v ∈ K let T (v) be the subtree with
root v.

Now designate the vertices v in the tree which have the following properties: (i) T (v)

does not contain a marked vertex, (ii) α(T (v)) = 2 and (iii) T (v) does not contain any
vertex which has the properties (i) and (ii), i.e. v is as low as possible in the tree. If it is
s(T (v)) � 20

δ
for a designated vertex v, then the union of T (v) with the two adjacent small

sets has two internal red edges and only one external black edge (the one connecting v to
the rest of the tree) and the lemma is fulfilled. Now let s(T (v)) > 20

δ
for all designated

vertices v.
Construct a graph G̃ = (Ṽ , Ẽ) with Ṽ ⊂ K being the union of the designated vertices,

the two marked vertices and all paths between them. Let y be the number of designated
vertices. Thus, G̃ has a root with degree 1, y + 1 leaves and y vertices of degree 3.

Let P̃ be the set of paths of vertices of degree 2 in G̃. It is |P̃ | = 2y + 1. For each
vertex v on these paths let w be its (possible) neighbor in K\Ṽ . Clearly, T (w) ∩ Ṽ = ∅
because α(T (w)) � 1 due to the construction above. Let U(v) = {v} ∪ T (w) if w exists
and U(v) = {v} otherwise.

For a path P ∈ P̃ let U(P) = ⋃
v∈P U(v), α(P) = α(U(P)), and s(P) = s(U(P)). It

is

α
(
T (e)

) = 2y +
∑
P∈P̃

α(P).

Furthermore, it is

s
(
T (e)

)
>

20

δ
y +

∑
P∈P̃

s(P).

The fact that s(T (e)) � 4α(T (e))
δ

leads us to

(6)0 � 4

δ
α
(
T (e)

) − s
(
T (e)

)
<

∑
P∈P̃

(
4

δ
α(P) − s(P)

)
− 12

δ
y.

Let P̃ + = {P ∈ P̃ ; 4
δ
α(P) � s(P)}. From Eq. (6) it follows

(7)
∑

P∈P̃+

(
4

δ
α(P) − s(P)

)
>

12

δ
y.

For each vertex v ∈ T (e) of degree 3 let P(v) ⊂ P̃ + be the set of paths incident to v and
let n(v) = ∑

P∈P(v) α(P).
We first show that there is one such vertex v with n(v) � 4. Assume that no such vertex

exists, i.e. it is n(v) � 3 for all vertices of degree 3. Notice that there are y such vertices.
This implies

(8)
∑

P∈P̃+
α(P) �

∑
v has degree 3 in T (e)

n(v) � 3y

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 483
which is a contradiction due to Eq. (7).
Thus, there exists a vertex v ∈ T (e) of degree 3 with n(v) � 4. A path P ∈ P̃ + corre-

sponds to a non-fat edge as described above and, similar to above, we distinguish between
the following cases.

(1) If n(v) = 4, then the union of v ∪ ⋃
P∈P(v) U(e) and the 4 adjacent small sets has a

size of at most 16
δ

+ 1 and has at least 4 internal red edges and at most 3 external black
edges, fulfilling the lemma.

(2) If n(v) � 5 and v is incident to two paths P1,P2 ∈ P(v) with α(P1) = α(P2) = 2,
then the union of v ∪U(P1)∪U(P2) and the 4 adjacent small sets has a size of at most
16
δ

+ 1 and, again, has at least 4 internal red edges and at most 3 external black edges,
fulfilling the lemma.

We conclude that we either found a set of size at most 16
δ

+ 1 fulfilling the lemma or
there is a path P ∈ P̃ + with α(P) � 3 and α(U(v)) � 1 for each v ∈ P .

We will take 3 small sets which are connected to
⋃

v∈P U(v) via a red edge and unify
them with a subpath of P such that the subpath connects the 3 small sets. This union is a
positive set. We will show that there are 3 small sets such that the connecting subpath is
not too long, i.e. such that the size of the union is at most 20

δ
.

For each v ∈ P we denote a weight of w(v) to v which is the size of the union of U(v)

and the (possible) small set connected to U(v) via a red edge. It is s(P) = ∑
v∈P w(v).

Furthermore, v is called a red vertex if there is a red edge connecting a small set with
any vertex of U(v). Due to the construction above, at most one vertex of U(v) may be
connected to a small set. Thus, there are α(P) red vertices ri , 1 � i � α(P), and there
are α(P) + 1 (possible empty) paths Pi , 1 � i � α(P) + 1, of non-red vertices in P . Let
w(Pi) = ∑

v∈Pi
w(v) be the weight of a subpath and let yi = w(ri) + w(Pi+1), 1 � i �

α(P), be the sum of the weight of a red vertex and the path on one side of this red vertex.
It is

∑α(P)
j=1 yj � s(P).

Let � = min{yi + yi+1 + yi+2;1 � i � α(P) − 2}. It is

(
α(P) − 2

)� � 3
α(P)∑
j=1

yj � 3s(P)

and, because of s(P) � 4
δ
α(P), it is

� � α(P)

α(P) − 2
· 12

δ
.

If α(P) � 4, then the union of P and the adjacent small sets is of size at most 20
δ

and has 2
external black edges and at least 3 internal red edges, fulfilling the lemma. If α(P) � 5,
it is α(P)

α(P)−2 � 5
3 and the definition of � ensures that there is an 1 � i � α(P) − 2 such

that the union of U(vi) ∪ U(Pi+1) ∪ U(vi+1) ∪ U(Pi+2) ∪ U(vv+2) and the 3 small sets
connected to vi , vi+1 and vi+2 is a positive set with a size of at most 20

δ
. �

Lemma 2 will be used in Lemma 6 to show the first step of the local improvement step
for 4-regular graphs.

484 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Fig. 2. Repeatedly delete all vertices of degree 1 (doted paths) until there are only vertices of degree 2 and 3
(cycles) remaining.

Lemma 2. Let G = (V ,E) be a graph with a maximum degree of 3, e = |E| � (1 +β)|V |,
β > 0 and |V | � 8

β
. There is a set S ⊂ V of size |S| = O(

log(|V |)
β

) with at least |S| + 1
internal edges. Furthermore, S can be computed in time O(|V |).

Proof. Let x, y and z be the number of vertices of degree 3, 2 and 1. Then x + y + z = n

and 3x + 2y + z = 2e. It holds

x − z = 3x + 2y + z − 2n = 2e − 2n � 2βn and

y = n − x − z � (1 − 2β)n − 2z.

In a first step, repeatedly delete all vertices of degree 1. Adjacent vertices of degree 2
become vertices of degree 1. Adjacent vertices of degree 3 become vertices of degree 2
and, possibly, vertices of degree 1 later on. These new vertices of degree 1 are also deleted
until only vertices of degree 2 and 3 are left as shown in Fig. 2 (right). Thus, all connected
components without any cycles and all induced subtrees will be deleted.

For each initial vertex of degree 1, the vertices along the path to the closest vertex of
degree 3 are deleted and that vertex of degree 3 becomes a vertex of degree 2. Therefore,
for each initial vertex of degree 1 the number of vertices of degree 3 decreases by at most 1.
Although many vertices of degree 2 may be deleted, in the worst case a vertex of degree 1
is directly connected to a vertex of degree 3 and, thus, for each initial vertex of degree 1
the number of vertices of degree 2 may increase by at most 1. Let x1 and y1 be the number
of vertices with degree 3 and 2 after step one. Now it holds

x1 � x − z � 2βn and y1 � y + z � (1 − 2β)n − 2z + z � (1 − 2β)n.

In the second step delete long paths of vertices of degree 2. The average length of the paths
is

y1
3
2x1

� 1 − 2β

3β
=: λ.

Now delete all paths of a length of at least 4λ+ 2 one after another. Let r be the number of
such paths. The number of deleted vertices of degree 2 is at least r(4λ + 2). Each deletion
of a path transforms two vertices of degree 3 to vertices of degree 2. The original number
of vertices of degree 2 is y1. However, this number can increase by 2 for each deleted path.

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 485
In general, at most y1 + 2r vertices of degree 2 can be deleted, thus

4r
1 − 2β

3β
+ 2r = r(4λ + 2) � (1 − 2β)n + 2r.

This leads to r � 3
4βn. The above implies that the number x2 of vertices of degree 3 after

step two fulfills

x2 � x1 − 2r �
(

2 − 3

2

)
βn = 1

2
βn � 4.

Now consider a graph that consists of the x2 vertices with degree 3 and edges between
them if they are connected via a path along vertices of degree 2. The length g of a shortest
cycle in a graph is called the girth of a graph. If the girth is odd, it is g � 2 log(n+2

3) + 1
and if the girth is even it is g � 2 log(n+2

2) (see e.g. [14]). Thus, in a 3-regular graph with
x2 vertices there is a cycle with at most O(log(x2)) vertices. Now perform a breath-first
search which starts from the cycle vertices until either a new path between any two cycle
vertices or a cycle in one of the search trees is found. It is easy to see that such a new path
as well as such a new cycle consists of at most O(log(x2)) vertices. The set S that consists
of the first cycle and either the path or the second cycle has |S| = O(log(x2)) and |S| + 1
internal edges.

After transforming S back to the original graph, the paths between the vertices of de-
gree 3 consist of at most O(λ · log(n)) vertices of degree 2. Thus, |S| = O(

log(n)
β

) and S

has |S| + 1 internal edges.
The construction of S requires several steps, each of which can be performed in time

O(|V |). Thus, the set S can be constructed in time O(|V |). �

3. Upper bound on the bisection width of 3-regular graphs

In this section we derive a new upper bound on the bisection width of 3-regular graphs.
The proof is based on the iterative local improvement scheme described in the previous
section. We will use Lemma 3 for the first step of the improvement scheme and Lemma 4
for the second step as described in Section 1.3. These lemmas will be used to prove the
theorem at the end of this section. Lemma 1 will be used to prove Lemma 3.

In the following we state the Lemmas 3 and 4 which are used for the two steps of the
local improvement scheme. Before we do so, we classify the vertices.

Definition 2. The vertices of V0 (or V1) are classified according to their distance to the
cut. It is V0 = C � D � E with C vertices being at a distance of 1 to the cut, i.e. they are
incident to a cut edge. D vertices are at a distance of 2 and E vertices at a distance of at
least 3. D vertices are further classified with respect to the number of adjacent C vertices.
I.e. D = D3 � D2 � D1 and each Dx vertex is adjacent to x vertices in C. Overall, it is
V0 = C � D3 � D2 � D1 � E.

The values c, d3, d2, d1 and e specify the number of vertices of each type and the values
c(X), d3(X), d2(X), d1(X) and e(X) denote the number of the according vertices in a set
X ⊂ V .

486 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Lemma 3. Let π be a bisection of a 3-regular graph G = (V ,E) with V = V0 � V1. If
cut(π) > (1

3 + 2ε)|V0|, ε > 0, then there is an at least 1-helpful set of size O(1
ε
) in V0.

Proof. We focus on part V0 of the bisection only. Let m := |V0|.
There are some structures which would directly lead to small 1-helpful sets.

(i) If a C vertex is incident to two or three cut edges, it is an at least 1-helpful set by
itself.

(ii) A set of three connected C vertices is 1-helpful.
(iii) If there are two adjacent C vertices and one of them is adjacent to a D3 vertex, then the

union of the adjacent C vertices, the D3 vertex and its two other adjacent C vertices
form a 1-helpful set of size 5.

(iv) Another 1-helpful set can be formed if two D3 vertices are adjacent to a common C

vertex. Then, the union of both D3 vertices and their adjacent C vertices is a 1-helpful
set of size 7.

(v) Let v be a vertex which is adjacent to a C vertex which itself is adjacent to another C

vertex or a D3 vertex. If both other neighbors of v are from C ∪ D2 ∪ D3, the union
of the mentioned vertices and their adjacent C vertices forms an at least 1-helpful set
of size at most 11.
Not that case (v) describes a quite general type of helpful sets. (v) includes the cases
(iii) and (iv).

In the remainder we can assume that these types of structures do not exist. Especially,
since (i) is excluded, it is c = cut(π).

We derive the helpful set in three steps.

1. Perform several transformations on the edges between vertices of V0 to avoid certain
structures in the graph. Let Ḡ = (V , Ē) be the transformed graph.

2. Derive a 1-helpful set H̄ of size O(1
ε
) in Ḡ.

3. Inverse the transformations in the reverse order. The helpfulness of the set might de-
crease. In this case, we include some further vertices to the set during the inverse
transformations and derive a 1-helpful set H of G with |H | = O(|H̄ |).

We manipulate the edges between vertices of V0 and transform G into a graph Ḡ =
(V , Ē) which has no adjacent C vertices and no D3 vertices.

We perform two types of transformations. The transformation type 1 is performed until
there are no adjacent C vertices. Then, transformation type 2 is performed until there are no
D3 vertices. The transformations are illustrated in Fig. 3. Each transformation deletes two
edges {α,β} and {γ, δ} and includes two edges {α,γ } and {β, δ}. Thus, the graph remains
3-regular.

Transformation type 1. Avoid adjacent C vertices (illustrated in Fig. 3, left). It is α,β ∈ C,
γ ∈ D1 ∪D2 (due to (ii) and (iii) above) and there is a δ ∈ D1 ∪E (due to (ii) and
(v) above).

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 487
Fig. 3. The transformations of the edges. Left: Adjacent C vertices. Right: A D3 vertex.

Transformation type 2. Avoid D3 vertices (illustrated in Fig. 3, right). It is α ∈ D3, β ∈ C,
γ ∈ D1 ∪ D2 (due to (iii) and (iv) above) and there is a δ ∈ D1 ∪ E (due to (v)
above).

Notice that the transformations of type 1 do not generate a new pair of adjacent C

vertices and that the transformations of type 2 neither generate a new pair of adjacent C

vertices nor a new D3 vertex.
The graph Ḡ = (V , Ē) is the result after all transformations.
We now show how a 1-helpful set in Ḡ can be transformed to a 1-helpful set in G. We

inverse all previous transformations and do these inversions in the reverse order. Consider
a transformation of the graph and assume there is a 1-helpful set H̄ of the graph after this
transformation.

Clearly, if {α,β, γ, δ} ∩ H̄ = ∅, the inverse transformation does not change the helpful-
ness of H̄ . Furthermore, the helpfulness of H̄ does not change if the size of |{α,β, γ, δ} ∩
H̄ | is 1, 3 or 4. To be more precise, the helpfulness of H̄ may only decrease if α,γ ∈ H̄

and β, δ /∈ H̄ or if β, δ ∈ H̄ and α,γ /∈ H̄ .
For these two cases we describe the following enlargements of H̄ in order to keep it at

least 1-helpful.

Inverse of transformation type 2.
(i) If α,γ ∈ H̄ , β, δ /∈ H̄ : Let H = H̄ ∪ {β}.

(ii) If β, δ ∈ H̄ , α,γ /∈ H̄ : Let H = H̄ ∪ {α,γ } ∪ {v ∈ C; {v,α} ∈ E}.
Inverse of transformation type 1.

(i) If α,γ ∈ H̄ , β, δ /∈ H̄ : Let H = H̄ ∪ {β}.
(ii) If β, δ ∈ H̄ , α,γ /∈ H̄ : Let H = H̄ ∪ {α,γ }.

We have to ensure that an inverse transformation does not increase the size of the set
too much. Each inverse transformation enlarges the set by at most a constant number of
vertices. We show that all inverse transformations together increase the size of the set by
not more than a constant factor.

Consider the enlargement of case (ii) of the inverse transformation type 2. We count the
number of C vertices of the set which are not adjacent to a D3 vertex which is also in the
set. At the beginning, all C vertices of the set fulfill this condition. Each time the inverse

488 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
transformation of type 2 increases the set, this value decreases by at least one because of
the vertex β . This value cannot increase, because each new C vertex in the set is already
adjacent to a D3 vertex of the set. Thus, the number of enlarging transformations of case
(ii) of type 2 is bounded by the initial number of C vertices in the set. The case (i) only
includes new C vertices. This number is at most 3 times the number of D vertices in the
final set.

For the inverse of type 1 we count the number of C vertices which are not adjacent
to another C vertex which is also in the set. At the beginning, all C vertices of the set
fulfill this condition. Each time the inverse transformation of type 1 increases the set, this
value decreases by at least one. This value cannot increase, because each new C vertex in
the set is already adjacent to another C vertex in the set. Thus, the number of enlarging
transformations of type 1 is bounded by the initial number of C vertices in the set.

Overall, all inverse transformations together enlarge the size of the set by at most a
constant factor.

It is left to show that we can find a small helpful set in Ḡ. It is d3 = 0 (due to transfor-
mation type 2) and 2c = 2d2 + d1 (due to transformation type 1). Furthermore, because of
|V0| < 3c (due to the condition in the lemma) it is (similar to Eq. (2))

(9)e = |V0| − c − d2 − d1 < 2c − d2 − d1 = 2d2 + d1 − d2 − d1 = d2 .

In the following we construct a new graph and apply Lemma 1. The new graph K

consists of the D and E vertices of Ḡ, i.e. K = (U,F) with U = D � E. Let F = B � R

with black edges B and red edges R. The black edges are the edges between the D and E

vertices as in Ḡ. Furthermore, there is a red edge between two vertices if they are adjacent
to a common C vertex in Ḡ, i.e. |R| = c. Thus, K is 3-regular with a maximum red degree
of 2, due to the fact that there are no D3 vertices. It is

|R| = c >

(
1

3
+ 2ε

)
(c + d2 + d1 + e)

>

(
1

3
+ 2ε

)
3

2
(d2 + d1 + e) =

(
1

2
+ 3ε

)
|U |.

Thus, K fulfills the requirements of Lemma 1 for ε̄ = 3ε. We use Lemma 1 to derive a set
S of D and E vertices with size O(1

ε̄
) = O(1

ε
).

The number bext of external black edges of S with respect to K is equal to the number
of edges between S and other D and E vertices in V0. The number rint of internal red edges
of S with respect to K is equal to the number of C vertices in V0 which are connected to
two vertices in S. Lemma 1 ensures rint > bext.

Let Ŝ be the union of S with all adjacent C-vertices. It is |Ŝ| = O(1
ε
). Each external

black edge connects Ŝ with V0\Ŝ. The external red edges are neutral, because they connect
S via a C vertex to V0\Ŝ. Thus, such a C vertex has one edge to V1 and one edge to V0\Ŝ.
Each internal red edge is a C vertex which is connected to two vertices in S. Thus, such a
vertex has one edge to V1 and no edges to V0\Ŝ. Overall, there are rint + rext edges between
Ŝ and V1 and bext + rext edges between Ŝ and V0\Ŝ. This leads to H(Ŝ) = rint − bext > 0
and Ŝ fulfills the lemma. �

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 489
The following lemma is used for the second step of the local improvement strategy. We
denote with ‘log(x)’ the logarithm of x to the basis 2.

Lemma 4. Let G = (V ,E) be a connected 3-regular graph and let π be a bisection of G.
If |V1(π)| < 3 · cut(π) and 0 < x < |V1(π)|, then there is a set S ⊂ V1(π) with |S| = x

and H(S) � −1 − �log(|S|)�.

Proof. We first discuss the following cases.

(i) If x � 2, any set S of x vertices which are incident to a cut edge has the desired
property H(S) � −1 − log(|S|).

(ii) If we find a set Z ⊂ V1(π) with |Z| � x and H(Z) � 0, we can move Z from V1 to V0
without increasing the cut size. It remains to apply the lemma again with x̄ = x −|Z|.
Notice that in the case H(Z) > 0 the move may result in |V1| � 3 · cut. In this case
vertices which are incident to a cut edge can be moved from V1 to V0 until we either
moved a total of x vertices or until it holds |V1| < 3 · cut. In the latter case we apply
the lemma again.

(iii) If we find a set Z ⊂ V1(π) with x
2 � |Z| � x and H(Z) � −1, we can move Z from

V1 to V0 with increasing the cut size by at most 1. It remains to apply the lemma again
with x̄ = x −|Z| < x

2 . This will construct a set S̄ with |S̄| = x −|Z| and H(S̄) � −1−
log(|S̄|), and a unified set S = Z ∪ S̄ with |S| = x and H(S) � −1 − 1 − log(|S̄|) �
−1 − log(|S|).

In the following we can exclude the existence of certain small 0-helpful sets as illus-
trated in Fig. 4. One example are C vertices incident to two or three cut edges and any set
of two adjacent C vertices. A D3 vertex, together with its adjacent C vertices, also forms
a 0-helpful set.

In the remainder there are no such sets, i.e. it is cut = c, d3 = 0 and 2c = 2d2 + d1.
Because of |V1| < 3c it holds Eq. (9).

Consider the graph induced by the vertex set D ∪ E and its connected components. Let
F be the family of these components. For a set I ⊂ V1(π) define the enlarged set Z(I) =
I ∪ {v ∈ C; ∃w ∈ I with {v,w} ∈ E} which includes the adjacent C-vertices. Clearly, each

Fig. 4. Sets Z with H(Z) � 0.

490 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
set Z(I) for an I ∈ F is at least 0-helpful. If there is a set Z(I), I ∈ F , with |Z(I)| � x,
we proceed as discussed in case (ii).

Consider a connected component I ∈ F and let K = (I, J) be the subgraph of G in-
duced by I . The E vertices in K have degree 3, D1 vertices have degree 2 and D2 vertices
have degree 1. It is easy to see that e(I) � d2(I) iff K contains a cycle and e(I) = d2(I)−2
otherwise. Because of Eq. (9) there is an I ∈ F for which the induced subgraph is a tree.

Let I ∈ F be a connected component with the induced subgraph T = (I, J) being a
tree. Assign a weight w(v) to each vertex v in the tree with w(v) = |Z({v})|. For each
vertex v this is one higher than the number of C vertices adjacent to v. Thus, each leaf has
a weight of 3, each vertex of degree 2 has a weight of 2 and each vertex with a degree of 3
has a weight of 1. It is

∑
v∈L w(v) = |Z(L)| for an L ⊂ I if there are no C vertices which

are connected to two vertices of L. It is
∑

v∈L w(v) > |Z(L)| for an L ⊂ I if there is at
least one such vertex.

With |Z(I)| > x it is
∑

v∈T w(v) > x. Clearly, for this type of weight distribution there
is an edge in T which separates T into T1 and T2 with x

2 �
∑

v∈T1
w(v) � x.

If |Z(T1)| <
∑

v∈T1
w(v), it is |Z(T1)| < x and H(Z(T1)) � 0 and we proceed with

case (ii) above. If |Z(T1)| = ∑
v∈T1

w(v), it is x
2 � |Z(T1)| � x and H(Z(T1)) � −1. We

proceed with case (iii) above. �
Theorem 1. For any ε > 0 there is a value n(ε) such that the bisection width of any 3-
regular graph G = (V ,E) with |V | > n(ε) is at most (1

6 + ε)|V |.

Proof. We start with an arbitrary bisection and follow the iterative local improvement
scheme described in Section 1.3. As long as the cut is above the bound, we repeatedly use
Lemmas 3 and 4 to calculate a new bisection with a lower cut. Thus, we can limit our
focus on one iteration of the two lemmas. Let π0 be a balanced bisection at the start of the
iteration with cut(π0) > (1

6 + ε)|V |.

Step 1. We construct a small helpful set S ⊂ V0. Set k = 3 · �log(1
ε
)�. The value of k is

discussed below. We apply Lemma 3 several times. Each time we find an at least
1-helpful set. We proceed until we reach a total helpfulness of at least k, i.e. we
apply the lemma k′ times with k′ � k. Let Si ⊂ V0, 1 � i � k′, with |Si | = O(1

ε
)

be the sets constructed with Lemma 3. After a 1-helpful set Si is constructed, it is
moved from V0 to V1 and the next set Si+1 is constructed. Let S = ⊎

1�i�k′ Si . It

is |S| = k′ · O(1
ε
) = k · O(1

ε
) and H(S) � k.

It remains to show that the requirement of Lemma 3 is fulfilled before each con-
struction of a helpful set. Let ε̄ = ε

2 . It is |V | � 2|V0| − 1 and cut(π0) > (1
3 +

2ε̄)|V0(π0)|− (1
6 + ε̄)+ ε̄|V | at the beginning. Let n(ε) be large enough such that

ε̄|V | � k + (1
6 + ε̄) for all |V | > n(ε). Thus, it is cut(π0) > (1

3 + 2ε̄)|V0(π0)| + k.
Each application of Lemma 3 decreases the size of the cut. We perform the lemma
as long as cut(π) > cut(π0) − k > (1

3 + 2ε̄)|V0(π0)| � (1
3 + 2ε̄)|V0(π)| with π

being the current bisection. Thus, the condition cut(π) > (1
3 + 2ε̄)|V0(π)| is true

before each application.
Let π1 be the new bisection with cut(π1) = cut(π0) − H(S).

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 491
Step 2. If H(S) = k, it is cut(π1) = cut(π0) − k. If H(S) > k, it is cut(π1) < cut(π0) − k

and we change π1 by iteratively moving border vertices from V1 to V0 until we
either get to cut(π1) = cut(π0) − k or to a balanced bisection (in this case we are
already finished). Each move of a border vertex decreases the imbalance of the
bisection and increases the cut by at most one.
Let i := |V1(π1)| − n

2 be the imbalance of π1. It is i � k · O(1
ε
). We use Lemma 4

to find a balancing set S̄ ⊂ V1(π1) with |S̄| = i.
Lemma 4 can only be applied if |V1(π1)| < 3 · cut(π1). The fact cut(π0) >

(1
6 + ε)n implies |V1(π1)| = n

2 + i < 3 cut(π0)− 3ε ·n+ i = 3 cut(π1)+ 3k − 3ε ·
n + i � 3 cut(π1) if 3k + i � 3ε · n. Clearly, there is a value n(ε) such that this
equation holds for all graphs with n > n(ε).
We use Lemma 4 to get a set S̄ ⊂ V1(π1) with |S̄| = i and H(S̄) � −1 − log(i).
The move of S̄ from V1 to V0 results in a balanced bisection π2 with cut(π2) �
cut(π1) + 1 + log(i).

We need to ensure cut(π2) < cut(π0) in order to show a decrease of the cut size. It is
cut(π2) � cut(π0) − k + 1 + log(i) and i � k · x 1

ε
. for some constant x. Choosing k =

3 · log(1
ε
) fulfills k > 1 + log(k · x 1

ε
) for 1

ε
� 26 and 1

ε
� x. �

4. Upper bound on the bisection width of 4-regular graphs

In this section we are presenting a new upper bound on the bisection width of 4-regular
graphs. The proof is based on the iterative local improvement scheme described in Sec-
tion 1.3.

We categorize the vertices of a 4-regular graph according to their number of external
edges in the bisection as shown in Fig. 5. Notice that these categories differ from the ones
in Section 3.

Definition 3. Let G = (V ,E) be a 4-regular graph and let π(G) be a bisection of V . A-
vertices are incident to 3 or 4 cut edges, B-vertices are incident to 2 cut edges, C-vertices
are incident to 1 cut edge and D-vertices are not incident to any cut edge.

Fig. 5. A, B , C and D vertices.

492 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Whenever this categorization is used, only one part of the bisection is considered and
the values a = |A|, b = |B|, c = |C| and d = |D| denote the cardinalities of the sets in the
according part.

Lemmas 5 and 2 are used in Lemma 6 to show the first step of the local improve-
ment step. Lemma 7 shows the second step of the local improvement. These two steps are
combined in Theorem 2 to improve the upper bound for large 4-regular graphs. It is an
extension and improvement of the local improvement Helpful-Set approach of [13]. At the
end of this section we will list an algorithm for calculating a bisection of 4-regular graphs
which corresponds to the results of this section.

Lemma 5. Let π be a bisection of a 4-regular graph G = (V ,E). Let B be the set of
B vertices and D be the set of D vertices in V0(π). Then there is an at least 2-helpful
set S0 ⊂ V0(π) of size at most 3�log(n)� + 1 in V0(π) or there is an injective function
f :B → D with the property: for each u ∈ B there is a path of a length of at most �log(n)�
from u to f (u) along C vertices in V0(π). The set S0, or the function f with the paths from
u to f (u) for each u ∈ B , can be computed in time O(|V |).

Proof. An A vertex in V0(π) is a 2-helpful set by itself and we are finished if such a vertex
exists. Thus, in the remainder we may assume that no such vertex exist.

In the following we are trying to find small 2-helpful sets. Clearly, a B vertex is a 0-
helpful set by itself. A cycle of C vertices is a 0-helpful set, too. We will search for a short
path of C vertices which connects either two B vertices or a B vertex with a short cycle of
C vertices. Both cases are 2-helpful sets.

Perform a breath-first search which starts from all B vertices simultaneously and pro-
ceeds along C vertices only. Thus, there is a search tree for each B vertex. Let t = �log(n)�
be the maximal depth of the search trees. Proceed until either (a) a depth of t is reached,
(b) a certain 2-helpful set is found in any search tree or (c) in each search tree 2 D vertices
are found, i.e. each such D vertex is connected to the according B vertex via a path of C

vertices and the length of the path is at most t . A 2-helpful set occurs if there are either (i)
a C vertex in two different search trees of two B vertices B1 and B2 or (ii) a cycle-edge
within one search tree. In case (i) the two B vertices B1 and B2 and the path of C vertices
between them is a 2-helpful set of size at most 2t + 1. In case (ii), the cycle of C vertices,
the B vertex and the path between the cycle and the B vertex is a 2-helpful set of size at
most 2t + 1, too.

If there is no such 2-helpful set to be found, we can show that there are at least 2 D

vertices in each search tree. Otherwise, we show that the size of a single search tree already
exceeds the total number of vertices. Consider one search tree. The B vertex of this search
tree is adjacent to the root of a binary tree of C vertices of depth t − 1 as shown in Fig. 6.

Fig. 6. If at most one D vertex can be found, the search tree consists of at least one complete binary tree of C

vertices of depth t − 1, i.e. there would be at least 2 + 2t − 1 � n + 1 vertices in the search tree.

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 493
The other branch adjacent to B may be blocked by one D vertex. Thus, the size of this
search tree is at least 2 + 2t − 1 � n+ 1. This contradiction shows that at least 2 D vertices
were found in each search tree.

Now construct a bipartite graph which consists of the B and D vertices, such that a
vertex B will be connected to a vertex D if it was reached in the search. B vertices have
a degree of 2 in this graph. If a D-vertex has a degree of at least 3, the union of this D

vertex and 3 paths to the B vertices is a 2-helpful set S with |S| � 3t + 1. Otherwise,
the D vertices have a degree of at most 2. Clearly, we are left with a bipartite graph with
the B vertices having a degree of 2 and the D vertices having a maximum degree of 2.
A maximum matching in such a graph leads us to an injective function f :B → D. Due to
the maximal depth of search during the construction of the trees we can guarantee that for
each u ∈ B there is a path of length at most �log(n)� from u to f (u) along C vertices.

The breath-first search performed to find S can be done in linear time. If such a set S is
not found then the search trees for different B vertices have disjoint sets of edges. We stop
when two D vertices have been found per search tree. Therefore each edge belongs to at
most 2 paths from B vertices to D vertices. �
Lemma 6. Let π be a bisection of a 4-regular graph G = (V ,E) with V = V0 �V1, |V0| �
|V1|. If cut(π) > (0.8 + ε) · |V0| and |V0| � 80

25ε
for some ε > 0, then there is an at least

2-helpful set of size O(1
ε
(log(n))2) in V0(π). This set can be calculated in time O(|V |).

Proof. Consider only the vertices of part V0(π) throughout this proof. Lemma 5 shows
that there is either a 2-helpful set S of size O(log(n)) or there is an injective function
f :B → D which assigns each vertex of B to a different vertex of D, connected with a
path of length O(log(n)) along B or C vertices. The proof is finished if the first case holds
true.

Now construct a new graph Ḡ = (V̄ , Ē), which is a copy of G with some transforma-
tions. The vertices u ∈ B and f (u) ∈ D are transformed to two C vertices as shown in
Fig. 7. Choose any neighbor x of u in part V1(π) and any neighbor w of f (u) with w �= u

and {u,w} /∈ E. There is such a vertex w, because f (u) has got 4 and u has only got 2 inter-
nal neighbors. Now delete the edges {u,x} and {f (u),w} and include the edges {u,w} and
{x,f (u)}. This is performed for any u ∈ B . The transformations can be performed all in
one step, due to the function being injective. The involved B and D vertices are becoming
C vertices and the result is a graph Ḡ with only C and D vertices.

Fig. 7. Transform u ∈ B and f (u) ∈ D to C-vertices.

494 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Only C vertices are incident to cut edges, i.e. c = cut(π). The number of edges in the
new graph Ḡ between C and D vertices cannot exceed 4d and, therefore, the number of
edges between C vertices is at least 3c−4d

2 = 3c−4(r−c)
2 = 7

2c − 2r where r = |V0|.
Furthermore, consider the graph H = (U,F) which consists of all C vertices and

edges between C vertices. It holds |U | = c = cut(π) and |F | � 7
2 |U | − 2r > 7

2 |U | −
2·cut(π)
0·8+ε

= 7
2 |U | − 2|U |

0.8+ε
= (1 + β)|U | with β := 25ε

8+10ε
. It follows from |V0| � 80

25ε
that

|U | = cut(π) � (0.8 + ε)|V0| � 8
β

. Lemma 2 ensures that there is a set S ⊂ U of size

O(1
ε

log(|U |)) = O(1
ε

· logn) with at least |S| + 1 internal edges. With respect to graph Ḡ,
the set S of C vertices with |S| + 1 edges is at least 2-helpful.

S is at least 2-helpful with respect to Ḡ, but we need a 2-helpful set with respect to G.
We perform the transformations from G to Ḡ in the reverse direction. Again, the function
being injective allows the performance of all reverse transformations in one step. In each
reverse transformation we possibly enlarge the set S such that it remains 2-helpful. The
result is a 2-helpful set S with respect to G. In each reverse transformation, a pair of
vertices u and f (u) is transformed back to B and D vertices and the edges are set back to
the old constellation.

It is easy to see that only in the case f (u) ∈ S and u,w /∈ S the helpfulness may decrease
by the reverse transformation. In this case the helpfulness decreases by two and we include
the path from u to f (u) into S. The enlargement of S increases the helpfulness by at
least 2, resulting in an at least 2-helpful set S. The length of each path is O(log(n)). Thus,
it is |S| = O(1

ε
(log(n))2).

The transformations of the graph and the used lemmas run in time O(|V |) each. Thus,
the 2-helpful set can be calculated in time O(|V |). �

Hromkovic and Monien [13] proved the following lemma for re-balancing a bisection
of a 4-regular graph without increasing the cut size too much.

Lemma 7. [13] Let π be a bisection of a 4-regular graph G = (V ,E) with |V0(π)| <

|V1(π)| � 5
4 cut(π) and cut(π) � 4. Then a bisection π̄ with |V0(π̄)|, |V1(π̄)| � � |V |

2 � and
cut(π̄) � cut(π) + 2 can be constructed.

The algorithmic idea of Lemma 7 is to move A and B vertices from the larger to the
smaller side (the cut size will not increase), followed by the move of cycles of C-vertices
(the cut size will not increase), finished by a move of a connected component of C-vertices
of a size equal to the remaining imbalance (this might increase the cut size by 2, but it
is applied at most once). These steps can be performed by a breath-search approach and,
thus, Lemma 7 needs a time of O(|V |).

We use Lemma 6 for the first step of the improvement scheme and Lemma 7 for the
second step as described in Section 1.3. These lemmas are used to prove the following
theorem for the bisection width of 4-regular graphs.

Theorem 2. For any ε > 0 there is a value n(ε) for which the bisection width of any 4-
regular graph G = (V ,E) with |V | > n(ε) is at most (0.4 + ε)|V |. Such a bisection can
be calculated in time O(|V |2).

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 495
Proof. Lemma 6 constructs a set of size O(1
ε
(log(n))2). Let α be a constant such that the

size of these sets is at most α 1
ε
(log(n))2. Furthermore, we choose n(ε) large enough such

that it holds (i) n(ε)
2 − 1 � 80

25ε
, (ii) n(ε) � 4

ε
+ 2, (iii) n(ε)

2 − 1 − 2α 1
ε
(log(n))2 � 80

25ε
, and

(iv) n(ε) � 4
5ε

2α 1
ε
(log(n))2 + 5.

We start with an arbitrary bisection. We follow the iterative local improvement scheme
as described in Section 1.3. As long as the cut is above the bound, we repeatedly use
Lemmas 6 and 7 to calculate a new bisection with a lower cut. Thus, we can limit our
focus on one iteration of the two lemmas. Let π0 be a balanced bisection at the start of the
iteration with cut(π0) > (0.4 + ε)|V |.

Step 1. W.l.o.g. let |V0| � |V1|. We construct a small helpful set S ⊂ V0 by applying
Lemma 6 one or two times. The first application of Lemma 6 leads us to an at
least 2-helpful set S1 ⊂ V0 and we move S1 to V1. If the cut size decreased by at
least 4, we do not apply Lemma 6 again and set S = S1. If the cut size decreased
by exactly 2 (note that a 4-regular graph can only have an even cut size), we apply
Lemma 6 again to get another at least 2-helpful set S2 ⊂ V0. We also move S2 to
V1 and set S = S1 � S2. Overall, it is |S| � 2α 1

ε
(log(n))2 and H(S) � 4.

It remains to show that the requirements of Lemma 6 are fulfilled before each
construction of a helpful set. From |V | � 2|V0| and from the bound (i) on n(ε)

it follows that the requirement of Lemma 6 is fulfilled for the first application.
We apply Lemma 6 a second time only if cut(π) = cut(π0) − 2 with π being the
current bisection. Then from the bound (ii) on n(ε) it follows cut(π) = cut(π0) −
2 > (0,8 + 2ε) · |V0(π0)| − 2 � (0,8 + ε) · |V0(π0)| > (0,8 + ε) · |V0(π)| and
together with (iii) the condition for Lemma 6 holds true again. Let π1 be the new
bisection. It is cut(π1) = cut(π0) − H(S) � cut(π0) − 4.

Step 2. If H(S) = 4, it is cut(π1) = cut(π0) − 4. If H(S) > 4, it is cut(π1) < cut(π0) − 4
and we change π1 by iteratively moving border vertices from V1 to V0 until we
either get to cut(π1) = cut(π0) − 4 or to a balanced bisection (in this case we are
already finished). Each move of a border vertex decreases the imbalance of the
bisection and increases the cut by at most two.
After these operations it is cut (π1) = cut(π0) − 4 and |V1(π1)| = �n

2 � + i, i �
2α

(log(n))2

ε
, where i is the size of imbalance which is at most the size of the set S

moved from V0 to V1 in Step 1. Thus, it is

5

4
cut(π1) = 5

4
cut(π0) − 5 >

(
1

2
+ 5

4
ε

)
· n − 5 �

∣∣V1(π1)
∣∣ = n

2
+ i

by the use of the bound (iv) on n(ε).
We use Lemma 7 to get a balanced bisection π2 with cut(π2) � cut(π1) + 2.

Thus, it is cut(π2) � cut(π1) + 2 � cut(π0) − 2. We repeat the local improvement iter-
ation until we arrive at a cut size fulfilling the bound.

This proof is an iteration of the Lemmas 6 and 7. Thus, each iteration takes time O(|V |).
Furthermore, the cut size is reduced by at least 2 in each iteration. Thus, the total time
requirement is O(|V |2). �

496 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
Table 1
Algorithm for 4-regular graphs fulfilling the bound of Theorem 2

Input: G = (V ,E), ε > 0. Output: π .

generate an arbitrary bisection π of V ;

WHILE cut(π) > (0.4 + ε)|V |

/* Step 1: construct and move a 4-helpful set (Lemma 6) */
IF there is an A vertex v ∈ V0 /* (Lemma 5) */

S1 = {v}:
ELSE

perform a breath-first-search from each B vertex along C vertices until either:
(i) a path of C vertices between two B vertices is found:

in this case let S1 be the path of C vertices and the two B vertices;
(ii) a cycle of C vertices is found:

in this case let S1 be the cycle of C vertices together with the path to the B vertex;
(iii) a depth of �log(|V |)� is reached:

in this case we know that each tree is connected to at least two D vertices;
IF there is a D vertex marked by at least three B vertices

let S1 be this D vertex together with the paths to three B vertices.
ELSE

construct a graph of C vertices as described in Lemma 6;
let S1 be a connected component with more edges than vertices; /* (Lemma 2) */
possibly enlarge S1 by (short) paths as described in Lemma 6;

END IF;
END IF;
move S1 to V1; /* S1 is at least 2-helpful */
IF S1 was only 2-helpful

calculate another 2-helpful set S2 ⊂ V0 and move it to V1; /* as before */
END IF;

/* Step 2: construct and move an at least -2-helpful balancing set (Lemma 7) */
WHILE π is not balanced

IF there is an A or B vertex in V1
move this vertex to V0;

ELSE IF there is a cycle of C vertices in V1
move it (or a part of it if π will become balanced) to V0;

ELSE
move a connected component of C vertices (of size equal to the imbalance) to V0;

END IF;
END WHILE;

END WHILE;

Table 1 shows the algorithm of Theorem 2 for 4-regular graphs. Although the asymp-
totic runtime of the algorithm is O(|V |2), it is left to say that this asymptotic analysis is
very pessimistic and may possibly be improved. Our experiences from an implementation
for 4-regular graphs [8] based on a weaker bound on the bisection [13] tell us that this
algorithm will most likely exhibit a nearly linear runtime behavior.

B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498 497
References

[1] N. Alon, On the edge-expansion of graphs, Combinator. Probab. Comput. 6 (1997) 145–152.
[2] T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sisper, Graph bisection algorithms with good average case behav-

iour, Combinatorica 7 (2) (1987) 171–191.
[3] S.L. Bezroukov, R. Elsässer, B. Monien, R. Preis, J.-P. Tillich, New spectral lower bounds on the bisection

width of graphs, in: Workshop on Graph-Theoretic Concepts in Computer Science (WG), in: Lecture Notes
in Comput. Sci., vol. 1928, Springer, Berlin, 2000, pp. 23–34.

[4] C.F. Bornstein, A. Litman, B.M. Maggs, R.K. Sitaraman, T. Yatzkar, On the bisection width and expansion
of butterfly networks, in: Proc. Int. Parallel Processing Symp. (IPPS), 1998, pp. 144–150.

[5] B. Bollobas, The isoperimetric number of random regular graphs, European J. Combin. 9 (1988) 241–244.
[6] L.H. Clark, R.C. Entringer, The bisection width of cubic graphs, Bull. Austral. Math. Soc. 39 (1988) 389–

396.
[7] P. Chiu, Cubic Ramanujan graphs, Combinatorica 12 (3) (1992) 275–285.
[8] R. Diekmann, B. Monien, R. Preis, Using helpful sets to improve graph bisections, in: D.F. Hsu, A.L. Rosen-

berg, D. Sotteau (Eds.), Interconnection Networks and Mapping and Scheduling Parallel Computations, in:
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 21, AMS, 1995, pp. 57–
73.

[9] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph the-
ory, Czechoslovak Math. J. 25 (100) (1975) 619–633.

[10] U. Feige, R. Krauthgamer, A polylogarithmic approximation of the minimum bisection, in: Proc. Symp. on
Foundations of Computer Science (FOCS), 2000, pp. 105–115.

[11] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput.
Sci. 1 (1976) 237–267.

[12] B. Hendrickson, R. Leland, The chaco user’s guide: Version 2.0, Technical Report SAND94-2692, Sandia
National Laboratories, Albuquerque, NM, 1994.

[13] J. Hromkovič, B. Monien, The bisection problem for graphs of degree 4 (configuring transputer systems),
in: J. Buchmann, H. Ganzinger, W.J. Paul (Eds.), Festschrift zum 60. Geburtstag von Günter Hotz, Teubner,
1992, pp. 215–234.

[14] D.A. Holton, J. Sheehan, The Petersen Graph, Cambridge University Press, Cambridge, 1993.
[15] G. Karypis, V. Kumar, METIS Manual, Version 4.0, University of Minnesota, Department of Computer

Science, 1998.
[16] A.V. Kostochka, L.S. Melnikov, On bounds of the bisection width of cubic graphs, in: J. Nesetril, M. Fiedler

(Eds.), Proc. Fourth Czechoslovakian Symp. on Combinatorics, Graphs and Complexity, Elsevier Science,
Amsterdam, 1992, pp. 151–154.

[17] A.V. Kostochka, L.S. Melnikov, On a lower bound for the isoperimetric number of cubic graphs, in: V.F.
Kolchin, et al. (Eds.), Probabilistic Methods in Discrete Mathematics, Proc. third Int. Petrozavodsk Conf.,
in: Progress in Pure and Applied Discrete Mathematics, vol. 1, TVP/VSP, 1993, pp. 251–265.

[18] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261–277.
[19] G.A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their application to

the design of expanders and concentrators, Probl. Inf. Transm. 24 (1) (1988) 39–46.
[20] B. Monien, R. Diekmann, A local graph partitioning heuristic meeting bisection bounds, in: 8th SIAM Conf.

on Parallel Processing for Scientific Computing, 1997.
[21] Y. Manabe, K. Hagihara, N. Tokura, The minimum bisection widths of the cube-connected cycles graph and

cube graph, Trans. IEICE J67-D (6) (1994) 647–654 (in Japanese).
[22] M. Morgenstern, Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime

power q , J. Combin. Theory Ser. B 62 (1) (1994) 44–62.
[23] B. Monien, R. Preis, Bisection width of 3- and 4-regular graphs, in: 26th International Symposium on Math-

ematical Foundations of Computer Science (MFCS), in: Lecture Notes in Comput. Sci., vol. 2136, Springer,
Berlin, 2001, pp. 524–536.

[24] B. Monien, R. Preis, R. Diekmann, Quality matching and local improvement for multilevel graph-
partitioning, Parallel Comput. 26 (12) (2000) 1609–1634.

[25] R. Preis, R. Diekmann, The PARTY partitioning-library, user guide, version 1.1, Technical Report TR-
RSFB-96-024, Universität Paderborn, 1996.

498 B. Monien, R. Preis / Journal of Discrete Algorithms 4 (2006) 475–498
[26] F. Pellegrini, SCOTCH 3.1 user’s guide, Technical Report 1137-96, LaBRI, University of Bordeaux, 1996.
[27] R. Preis, Analyses and design of efficient graph partitioning methods, Heinz Nixdorf Institut Verlagss-

chriftenreihe, Dissertation, Universität Paderborn, Germany, 2000.
[28] C. Walshaw, The Jostle User Manual: Version 2.2, University of Greenwich, 2000.

	Upper bounds on the bisection width of 3- and 4-regular graphs
	Introduction
	Definitions and previous results
	New results and outline of the paper
	Iterative local improvement with helpful sets

	Two technical lemmas
	Upper bound on the bisection width of 3-regular graphs
	Upper bound on the bisection width of 4-regular graphs
	References

