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Abstract Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main
treatment strategies–vaccination and small molecule anti-influenza drugs are currently available. As an
effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more
effective for the first line of protection against the virus during an epidemic outbreak, especially in the
early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein
blockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and
peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of
resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent
need for developing new anti-influenza drugs against resistant forms of influenza A virus. In this review,
we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new
strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant
M2 proteins and neuraminidases, and other viral proteins not associated with current drugs.
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1. Introduction

Influenza A virus belongs to a family of RNA viruses termed the
orthomyxoviridae. It is the main cause of seasonal or pandemic flu,
an infectious disease characterized by high morbidity and significant
mortality. Since influenza A virus is under continuous evolvement
due to antigenic mutation, adaptation, and reassortment, highly
virulent strains may appear unexpectedly, resulting in epidemics
locally or pandemics worldwide such as the 1918 H1N1 (Spanish
flu), 1957 H2N2 (Asian flu), 1968 H3N2 (Hong Kong flu), 2005
H5N1 (bird flu), 2009 H1N1 (swine flu), and more recently H7N9
(bird flu) of 2013. Influenza A virus pandemic may cause significant
social health crisis and loss of life. For example, the pandemic of
“Spanish flu” (H1N1) in 1918–1919 alone caused at least 20 million
deaths. Besides, seasonal flu affects about 20% world population
and causes 250,000 to 500,000 deaths per year based on a recent
study1.

The potential of devasting pandemic influenza outbreaks has
attracted a great amount of resources and efforts in the search for
possible prevention and effective treatment methods of influenza A
infections. Currently, two main strategies against the virus are
available, which are vaccination and small molecule anti-influenza
drugs. Anti-influenza small molecule drugs present the first line of
protection against the virus during an epidemic outbreak, especially
in the early stages, as an effective vaccine usually takes at least 6
months to develop for the circulating strains. Furthermore, vaccina-
tion has limited effectiveness in treatment of immunocompromised
patients. Moreover, anti-influenza drugs have demonstrated benefit
in clinical practices in terms of shortening the disease duration and
reducing the risk of influenza-caused serious complications and
death if patients are treated in a timely fashion. For all of these
reasons, anti-influenza drugs are necessary for the control of
influenza A virus pandemics. Currently, two major classes of drugs
are approved by FDA for anti-influenza A virus treatment:
admantane-based M2 ion channel protein blockers (amantadine
and rimantadine) and neuraminidase inhibitors (oseltamivir, zana-
mivir, and peramivir). However, the continuous evolvement of
influenza A virus and the rapid emergence of resistance to current
drugs, particularly to admantanes2 and oseltamivir3,4, has raised
great concern for a possible pandemic flu, highlighting an urgent
need for developing new anti-influenza drugs against resistant
influenza A virus. In this review, we discuss recent progress made
in small-molecule drug development to overcome influenza A virus
resistance with a focus on novel drug design strategies targeting the
mutant M2 ion channel proteins and neuraminidases, as well as
other viral proteins not associated with current drugs.
2. Life cycle of influenza A virus: a brief introduction

Influenza A virus life cycle is divided into several sequential steps (see
Fig. 1). The virus first attaches to host cell surface sialic acid (SA)
receptor via the viral surface glycoprotein hemagglutinin. The influenza
virus then enters into the cell via receptor-mediated endocytosis,
followed by low-pH-induced membrane fusion of the viral envelope
with the endosomal membrane of the cell. In this step, the viral M2
protein transports protons from the late endosome into interior of the
virus. The resulting acidification induces the conformation change of
viral hemagglutinin, which leads to hemagglutinin-mediated membrane
fusion followed by the dissociation of viral M1 matrix protein from the
viral ribonucleoprotein complexes (vRNPs), resulting in the release of
vRNPs into cytoplasm. The vRNPs containing viral genome are then
transported into the nucleus to start transcription; mRNAs formed in
the transcription process are transported to cytoplasm and are translated
into proteins necessary for viral particle replication. Newly synthesized
viral genome segments and proteins are assembled to form new vRNPs
in the nucleus, which are then transported from nucleus back into the
cytoplasm for final packaging. The exportation of vRNPs from the
nucleus requires viral nucleoprotein (NP). New virions are then
assembled in the cell membrane in a process called budding. During
the process, part of the cell membrane is wrapped around virions to
form lipid viral envelopes. Finally, neuraminidase (NA) on the surface
of new budding viruses cleaves terminal sialic acid (SA) residues from
hemagglutinin (HA) and new viruses are released to start a new cycle
of infection and replication. All of these steps in the life cycle of
influenza A virus are essential for its virulence, replication, and
transmission. Development of small molecule based inhibitors that
block any of these steps can generate potential efficient strategies to
treat or prevent influenza A infections. In the following sections, we
will go through new strategies currently being used or proposed for
overcoming the resistance of influenza A virus to current M2 ion
channel blocker drugs (amantadine and rimantadine) and NA inhibitor
drugs (e.g. oseltamivir).
3. Drug development targeting mutant M2 ion channel
protein

M2 ion channel protein is a tetrameric transmembrane protein
forming proton ion channels across the viral membrane6. It functions
as a proton transporter which delivers protons from the late endosome
into virus interior. The resulting acidification induces the hemagglu-
tinin conformation change, leading to hemagglutinin-mediated mem-
brane fusion and subsequent release virus RNA into cytoplasm of the
host cell to initiate subsequent virus replication steps. M2 ion channel
blockers bind to the interior of the ion channel, block the influx of
protons, and prevent hemagglutinin-mediated membrane fusion. The
proton blocking effects may result from an electrostatic repulsion
potential from the charged amino group7. Currently, two M2 ion
channel blockers approved by the FDA are amantadine (Symme-
trelTM, Endo Pharmaceuticals) and rimantadine (FlumadineTM, Forest
Pharmaceuticals). But the emergence of drug-resistant mutations of
the M2 protein renders these two drugs ineffective against most
circulating strains7. Three major mutations identified in transmissible
strains are L26F, V27A, and S31N2,8, all of which are located on the
transmembrane domain (residues 24–46) of the M2 protein. Among
them, S31N mutation is the prevailing alteration presented in more
than 95% of resistant viruses9,10.

Many efforts have been undertaken to make derivatives of
amantadine in order to find new M2 inhibitors against these mutant
M2 proteins Fig. 2). Replacement of the amine group with
pyrrolidine, azetidine, and aziridine rings did not lead to compounds
with better antiviral activities11–13. In 2010, Zarubaev, et al.14,
reported a tetrazole derivative of adamantane (1) which exhibits a
highly potent antiviral activity against a rimantadine-resistant
influenza strain containing a S31N mutation. More recently,
DeGrado and coworkers15 rationally designed a spirane-
adamantane derivative (2) with potent efficacy against both the
V27A and L26P mutant strains of influenza virus with an activity
comparable to amantadine to the wide-type strain. They also further
developed the arylmethyl substituted amantadine derivative
M2WJ332 (3) and the benzyl-substituted derivative (4). These
two compounds showed both inhibitory activity against S31N and
wild type M2 proteins. Notably, M2WJ332 has shown an even



Figure 1 A schematic presentation of influenza A virus life cycle (adapted with permission from Ref. 5 life cycle Copyright 2012 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim).

Figure 2 Structures of M2 ion channel blockers.
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higher potency against the resistant S31N M2 protein than that of
amantadine against wild type M2 protein. Evidences from NMR
and molecular dynamic studies supported the drug bound inside the
channel between the side chains of Asn31. Very recently, a new
dual M2 inhibitor (5) was discovered by the same group to have
novel flip-flop dual binding modes16. The drug binds to M2 proteins
in different orientations depending upon whether it is a wide type
S31 or mutant S31N M2 ion channel protein. Dual-binding
inhibitors based upon the similar design strategy may provide
new M2 blockers against amantadine or rimantadine resistant
influenza virus A strains. Other scaffolds such as pinanamine
derivatives17–20 and spiranamine derivatives15,21,22 have also been
explored as new M2 ion blockers. As exemplified by compound
620, pinanamine derivatives have shown low inhibiting effects
towards resistan S31 mutant virus, while several spiranamine
analogs, such as the spiranamine and a silico analog 7, have shown
activity against V27A and L26P mutant virus.

At present, no M2 blocker is active against both wild type and all
circulating M2-mutant strains, likely due to difficulties in tuning the
structure of small molecule-based inhibitors to fit each of the
individual mutant M2 ion channel proteins. Recently, the allosteric
binding site outside of the ion channel of M2 protein was proposed
to be a possible target for developing inhibitors against resistant M2
proteins23, though no small molecule has been identified as of yet.
4. Drugs development targeting neuraminidase (NA)

4.1. NA and current NA inhibitor drugs

NA is one of the two major glycoproteins on the surface of viral
lipid envelope. It functions as a sialidase to cleave off the terminal
sialic acid (SA) on the budding virus, disrupting interactions
between SA receptor and virus hemagglutinin24,25. The SA
binding site of NA is highly conserved among different influenza
A strains26. Therefore, NA inhibitors which mimic SA structure in
its transition state during NA catalyzed hydrolysis, represent a



Figure 3 Residues around the SA active site of NA (N1) with
oseltamivir and the relative positions of 150 and 430 loop of N1 versus
N9 (N1: light blue, PDB 2HU0, N9: yellow, PDB 2C4A) (adapted
with permission from Ref. 34, Copyright 2012 Elsevier Ltd.).
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class of anti-influenza drugs with broad activities against different
influenza virus strains.

At present, three NA inhibitors have been approved by the FDA,
which are zanamivir (RelenzaTM, GlaxoSmithKline), oseltamivir
(TamifluTM, Roche), and peramivir (RapivabTM, BioCryst). Zana-
mivir, a 4-deoxy-4-guanidino derivative of SA27, was the first
approved NA inhibitor. It is administered through inhalation due to
its poor oral bioavailability. This route of administration is often not
possible for young children or some patients with respiratory
disease. Thus, it is not as widely used as oseltamivir, the only
orally administered drug among the above three approved agents.
Oseltamivir is a prodrug, which quickly converts to the active form,
oseltamivir carboxylate (GS4071), by an esterase-catalyzed hydro-
lysis reaction inside the body28. The replacement of the glycerol
moiety with a hydrophobic 3-pentyloxy as well as the replacement
of 4-guanidino group with an amine group make oseltamivir more
lipophilic than zanamivir, and thus achieve a higher oral bioavail-
ability than zanamivir (80% vs. 20%). The third drug paramivir,
administered intravenously29, was recently approved by the FDA in
December 2014 to treat adult influenza A infections. Structurally,
paramivir is distinct from zanamivir and oseltamivir since it contains
a unique five-membered ring. On the other hand, it contains
structural features of both zanamivir and oseltamivir, the hydrophilic
pharmacorphore of 4-guanidino group of zanamivir and the hydro-
phobic 3-pentanyloxy moiety of oseltamivir. Laninamivir30, another
drug which is structurally similar to zanamivir, has been approved
in Japan as an octanoyl prodrug (InavirTM, Daiichi Sankyo. Biota).
It is currently involved in clinical trials in the United States.
4.2. An overview of resistance to NA inhibitors

Although the SA binding site of the viral NA is highly conserved, a
number of mutations arise as a result of drug-induced selective
pressure31, leading to the decreased sensitivity to NA inhibitors. The
frequency of resistant mutations induced by NA inhibitors is
relatively low compared with amantadine and rimantadine32, as
the mutation often significantly reduces viral fitness in infection and
replication. However, emergence of compensatory mutations may
restore viral infectivity and ability to replicate in the host cell33.
Understanding the mutation type and molecular mechanism behind
the observed resistance helps to design new NA inhibitors against
resistant strains.

Residues surrounding the active site provide direct interactions
with SA and SA-mimicing drugs (Fig. 3). To understand the cause of
resistance, the details of the drug binding mode must also be
understood. In the case of oseltamivir, the predominating resistant
mutation is H274Y. Notably, it does not cause zanamivir resistance.
The hydrophobic 3-pentyloxy group in oseltamivir induces a reposi-
tion of the Glu276 side chain to achieve optimal hydrophobic
interactions. The H274Y mutation blocks these side chain conforma-
tional changes and thus reduces the drug binding efficiency of
oseltamivir35. While the hydrophilic glycerol moiety in zanamivir
interacts with Glu276 through hydrogen bonding in the same way as
the natural substrate SA, no conformational rearrangement is
required. Therefore, H274 mutation does not cause zanamivir
resistance. As paramivir shares the similar hydrophobic interaction
with Glu276 as does oseltamivir, H274 mutation may also reduce
paramivir sensitivity31. Compared to oseltamivir, drug resistance to
zanamivir and laninamivir are rare in clinic to date31, likely due to
two reasons. First, their structures are more similar to the natural
substrate SA. Secondly, these two drugs are less frequently
administered. Therefore, the drug-induced selectivity pressure is
low. However, resistance to these drugs is still possible, as a
recombinant H3N2 virus containing the E276D mutation has shown
resistance to both zanamivir and oseltamivir in one study26. In
addition, compensatory mutation residues outside the binding pocket
may also contribute to resistance fitness. For example, the compen-
satory mutations R222Q and V234M associated with H274Y
significantly enhance the influenza virus infectivity and its ability to
replicate in the host cells, likely due to the restoration of the flexibility
of the Glu276 residue previously restricted by the mutation H274Y33.

4.3. Drug development targeting mutant NA

Currently, NA-based drug development against resistant influenza
A virus aims to search for novel compounds effective to treat
predominant H274 mutant strains. Although zanamivir and lani-
namivir are still effective against H274 mutation, they are also
associated with unfavorable pharmacokinetics and must be admi-
nistered through inhalation or intravenously. New generations of
NA inhibitors should have both excellent activity against resistant
strains and improved oral bioavailability. Several strategies are
employed to achieve this goal.

4.3.1. Structure-based rational drug design
Structure-based drug design is centered upon an understanding of the
dynamic process of NA binding with a substrate and provides new
opportunities to design new NA inhibitors. Crystal structures of N1 and
N8 NA when each immerged with oseltamivir for a short period time
revealed the presence of a transient “150-cavity” near the substrate
binding pocket36. The initial binding of SA or NA inhibitors requires
the adaptive opening of a 150-loop, and thus generates the 150-cavity.
Several C-3 or C-4 modified Neu5Ac2en derivatives (e.g. 8,
Fig. 4)37,38, zanamivir derivatives (e.g. 9)39, and oseltamivir derivatives
(e.g. 10)40 were designed and synthesized. The extended side chain at
the 3 or 4 positions was believed to bind with the 150-cavity. These
compounds demonstrated antiviral activity against both wide-type and
oseltamivir-resistant influenza A virus, suggesting the use of the 150-
cavity as a novel drug target in NA inhibitor design against resistant
strains. However, there is a limitation for 150-cavity targeting NA
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inhibitors since the 150 cavity is likely be seen only in group 1
influenza A virus (N1, N4, N5, N8), but not in group 2 (N2, N9).
Recently, the flexible “430-loop” generated cavity near the active SA
binding site was proposed to be a new potential target to design NA
inhibitors against both group-1 and group-2 NAs41,42. This cavity is
much larger than SA binding site and thus could possibly accom-
modate a larger molecular scaffold than current NA inhibiting drugs.
An and coworkers reported that the small molecule NA inhibitor
NSC89853 (11), which is structurally different from other SA mimics,
could possibly bind to the pocket formed by the 430-loop based on
molecular modeling43. Feng, et al.44 , recently designed and synthe-
sized a series of zanamivir analogs with an extended side chain at 1-
position (e.g., 12) projected towards the 430-loop. The most potent
compound 12 shows an IC50 in low nmol/L range against both group-1
and group-2 NAs, demonstrating the potential of “430-cavity” as a
powerful strategy in the design of new NA inhibitors.
Figure 4 Sialic acid and neur
4.3.2. Bioisosteric design
Bioisosteric replacement of substituents in current NA inhibitors
remains a powerful strategy in the design of new NA inhibitors. Fang
and coworkers45 replaced the 2-carboxylic acid group with a
phosphonic acid and the obtained phosphonate congeners exhibiting
strong antiviral activities against both wide and H274 mutants.
Continuous efforts in structural modification of oseltamivir, particu-
larly the replacement of the 5-amino group with other bioisosteric
groups such as guanidine (13)46, N-methylguanidine (14)47, amidine
(15)48, amidoxime (16)48, etc., led to a number of potent NA
inhibitors. Many of them were effective against the H274 mutation,
but most of them were not able to retain the superior oral
bioavailability of oseltamivir. Very recently, Schade and coworkers48

reported a 5-amidoxime substituted oseltamivir analog 16 which not
only has a superior antiviral activity, but also has an oral bioavail-
ability comparable to oseltamivir.
aminidase (NA) inhibitors.
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4.3.3. Screening of natural products
Natural products including extracts from traditional medicinal
plants continue to serve as a source of new anti-influenza drug
leads. Grienke and coworkers49 screened the seed extracts of
Alpinia katsumadain, and identified the extract compound
katsumadain A with a NA-inhibiting activity at low mM ranges
against several strains of H1N1 swine influenza virus including
one oseltamivir-resistant strain. Due to the large molecular
volume, the binding site of katsumadain A is likely extended
into the cavities formed by 430-loop or 245-loop based on
docking analysis. Katsumadian A could serve as a leading
compound for rational design of new NA inhibitors with novel
binding modes. Other studies on tropical medicinal plants50,
flavonoids51,52, and chalcones53 have also been reported. These
natural products may help in the development of safer and less
toxic NA inhibitors for resistant influenza virus A strains.
5. Drug development targeting other viral proteins

Influenza A virus has eight segmented RNA genes and encodes
twelve known peptides: PA, PB1, PB2, PB1-F2, N40, HA, NA,
NP, M2 ion channel, M1 matrix proteins, NS1, and NS2. Besides
the M2 ion channel protein and NA discussed previously, other
Figure 5 Anti-influenza drugs targeting other vi
viral proteins may also have potentials as drug targets. Many of
them have already been under investigation for drug development
against resistant influenza A virus.
5.1. Hemagglutinin based anti-influenza drug development

Hemagglutinin (HA) is a membrane-binding glycoprotein on the
surface of an influenza virus. It is responsible for virus attachment to
sialic acid receptors on the cell membrane in the initial stage of virus
infection. It also facilitates the fusion of viral and cell membranes
after the virus enters the cell via receptor-mediated endocytosis for
subsequent release of viral nucleocapsids into cell cytoplasm54.
Accordingly, two strategies have been adopted in anti-virus drug
development.

The first strategy is to interfere with hemagglutinin binding to
sialic acid receptors. One approach is the addition of SA-containing
receptor-mimics as competing inhibitors. Such inhibitors include
sialic acid containing natural compounds55,56 and synthetic multi-
valent SA-containing inhibitors57. Multivalent SA-containing inhibi-
tors offer better results than monovalent ones in inhibiting virus
attachment58. However, multivalent SA-containing compounds often
suffer from poor solubility, immunoreactivity, and toxicity issues59.
One solution is to use liposome-based drug delivery system to
ral proteins besides M2 ion channel and NA.
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encapsulate inhibitors as exemplified by the sialylneolacto-N-tetraose
c (LSTc)-bearing liposomes developed by Hendricks, et al.57.

The second strategy involves prevention the formation of a low-
pH induced conformation of hemagglutinin, a key step leading to
fusion of the host endosomal membrane and the viral lipid
envelop. The antiviral activity of this group of compounds is
derived from their capability of stabilizing the nonfusogenic
conformation of the hemagglutinin. The first compound in this
class is tert-butylhydroquinone, which was discovered in 199360.
Evidence from NMR study has shown that it binds to the stem
loop region in H7 HA and stabilizes the neutral pH conforma-
tion61. Several anti-influenza A virus compounds with a similar
mechanism were found later. Most of the compounds in this class
were subtype-dependent with a low resistance barrier, and under-
went no further investigation60,62–65. One exception is arbidol
(ARB), currently an approved drug in Russia and China to treat
influenza virus infection (Fig. 5)66,67. Aribidol was shown to
stabilize the HA by a 0.2 pH unit reduction at the transition
phase66. Recent studies pointed out that both the binding of the
ARB to the polar head groups of phospholipids in the cell
membrane and the presence of the aromatic residues of the viral
surface proteins could contribute to its antivirus activity67. A better
understanding the details of the drug binding mode and resulting
effects on hemagglutinin and lipid interaction would help to design
new ARB-like molecules.
5.2. RNA polymerase as the drug target

Influenza A's RNA polymerase is a heterotrimeric protein containing
three subunits PB1, PB2, and PA. It is responsible for transcription
and replication of the virus genome. All three subunits are important
for its functions. PB1 has polymerase activity, and PB2 is involved in
cap-binding of host cell pre-mRNAs, whereas PA possesses the
endonuclease domain which cleaves capped host pre-mRNAs and
initiates transcription. Influenza virus polymerase is highly conserved
among different strains68 and contains multiple sites for potential anti-
virus drug development. Currently, three major classes of drugs are
under development: RNA synthesis inhibitors, cap-snatching inhibi-
tors, and inhibitors targeting protein–protein interactions between the
three polymerase subunits (e.g. PA–PB1, PB1–PB2).

RNA synthesis inhibitors are mainly nucleoside mimics such as
favipiravir (T-705)69 and ribavirin (Fig. 5)70. Inside the cells, T-
705 is metabolized to its active form T-705 ribofuransosyl 5-
triphosphate and functions as a purine mimic to inhibit viral RNA-
dependent RNA polymerase. Notably, favipiravir does not inter-
fere with mammalian cell RNA or DNA synthesis, so it is nontoxic
to the host cell. Moreover, the drug has been shown to be effective
against a broad range of influenza strains including amantadine
and oseltamivir resistant strains. It demonstrated anti-virus activity
against the H5N1 avian flu, recently emerged 2009 H1N1 swine
flu, and 2013 H7N9 bird flu71. Additionally, favipiravir was
reported to have a low resistance rate69. Favipiravir was approved
in Japan in 2014 as a stockpiling drug (AviganTM) during periods
of a possible influenza pandemic. Currently, favipiravir is under
clinical trials in the United States. Ribavirin, another compound in
this class, is converted to ribavirin monophosphate and functions
as an inosine 50-monophosphate (IMP) dehydrogenase in the
guanosine 50-triphosphate sodium salt hydrate (GTP) synthesis
pathway, leading to the inhibition of viral RNA synthesis70.

Cap-snatching is a key process in virus RNA transcription. During
the cap-snatching process, PB2 first binds to the 50-methyl cap of host
pre-mRNA which is then cleaved by PA's endonuclease site to produce
a capped primer for transcription initiation72. Both the PB2 cap-binding
site and PA0s endonuclease site appear to be potential drug targets.
From their calcuations, Lv, et al.73, found two small molecules RO and
PPT28, which have a higher affinity with the viral PB 2 cap-binding
domain than a known cap analog, m7GTP. RO and PPT28 could serve
as potential anti-influenza drugs targeting PB2 cap-binding domain.
PA's endonuclease active site resides in the N-terminal region of PA
and is highly conserved. X-ray crystal structures reveal a conserved
cleft in the active site74,75. A number of cap-snatching inhibitors
discovered targeting the endonuclease site have been reported including
4-substituted 2,4-dioxobutanoic acid derivatives76, flutimide (Fig. 5)77,
and N-hydroxamic acid/N-hydroxyimide78. Most of these compounds
did not undergo further development, partially due to their unknown
binding mode to allow for further optimization of their structures.
Recently, the X-ray crystal structures of the PA endonuclease domain
bound with several inhibitors in this class were reported by two
different groups79,80. These structures provide a better understanding of
the binding of the inhibitors at the PA endonuclease active site and may
help in designing new PA inhibitors with improved activities.

The interactions between the polymerase0s subunits have recently
been proposed to be attractive targets81, as their proper assembly is
crucial for the normal activities of the polymerase. Evidence from
crystallography data show that the protein–protein interactions between
subunits PA and PB1 involve relatively few residues82,83, suggesting
great promise in designing small-molecule based inhibitors. Muratore,
et al.84, screened a library of 3 million compounds in silico based on
one of the reported crystal structures82, and identified several
compounds (17–19) as effective inhibitors against PA–PB1 binding
in an ELISA-based assay and in cells (Fig. 5). Particularly, compound
17 was demonstrated to be active against an oseltamivir-resistant
strain84. These compounds were identified as lead compounds for
further antivirus drug development85. Studies with compound 19 and
its analogs have shown that cycloheptathiophene-3-carboxamide scaf-
fold is promising for new anti-influenza virus drug development85.
Very recently, continuous efforts along this line led to the discovery of
new RNA-dependent RNA polymerase (RdRP) inhibitors (20, 21)
through dissection of the thiophene-3-carboxamide molecule via a
molecular interaction field (MIF)-based scaffold-hopping method86.
Serendipitously, the same group also discovered that the compound
AL18 (22), previously reported as a potent inhibitor of human
cytomegalovirus DNA polymerase87, blocks the PA/PB1 interaction
and inhibits influenza A virus replication88. In another study, Fukuoka
and coworkers89 performed a docking simulation-based screening of
�4000 drugs. Benzbromarone, diclazuril, and trenbolone acetate, were
identified as three successful hit compounds with strong anti-influenza
activities (Fig. 5). Two compounds, benzbromarone and diclazuril,
were confirmed to be bound to PA and decreased the activity of the
viral RNA polymerase89. More recently, Kessler, et al., discovered
benzofurazan-based novel inhibitors targeting PA–PB1 binding inter-
faces using an ELISA-based high-throughput screening method.
However, this serie of compounds has unfavorable toxicity profiles
for in vivo use. Overall, the PA–PB1 binding interface has emerged to
be a potential fruitful target for a new generation of anti-influenza A
drug development.

Similar anti-viral opportunities are also seen in PB1–PB2
interactions, since the crystal structure of the binding interface of
PB1–PB2 shows that only a small section of PB1 (residues 678–
757) and of PB2 (residues 1–37) are involved in the interface90. To
date, several synthetic-peptide-based inhibitors have been reported
to be able to interfere with PB1–PB2 interactions and disrupt
normal function of the polymerase91,92. However, nonpeptide
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small-molecule based inhibitors remain to be discovered. One
particular challenge is to design small-molecules fitting in the flat
PB1–PB2 interface.

5.3. Nucleoprotein (NP) as the drug target

The influenza virus nucleoprotein (NP) is one of the most
abundant viral proteins produced in the virus replication process
inside the host cell. During the viral life cycle, NP binds with
influenza viral RNA and polymerase subunits (PB1, PB2, and PA)
to form the viral ribonucleoprotein complexes (vRNPs). It also
involved in vRNPs nuclear import, replication, and export93,94. NP
has emerged as a novel target for anti-virus drug development
because of its important structural and regulatory roles in virus
replication. Recent large-scale sequence analysis of influenza A
virus NP has identified several already known functional region as
well as new highly conserved sites as potential drug-targets95.

Currently, NP-based antiviral drug development has formed two
major classes of inhibitors that target on NP interaction with virus
RNA96 and block formation of vRNPs by the mechanism of NP
oligomerization97–99. Naproxen, an approved nonsteroidal anti-
inflammatory drug that inhibits inducible cyclooxygenase-2
(COX-2), was the first inhibitor discovered through in silico virtual
screening to inhibit the NP-RNA interactions (Fig. 5)96. It is
effective against H1N1 and H3N2 strains both in vitro and
in vivo. Single-point mutation experiments indicated that naproxen
targets the RNA binding groove of NP and prevents its interaction
with virus RNA. Naproxen serves as a lead compound for further
development, particularly as a dual-functional drug with both
antiviral and anti-inflammatory benefits. Nucleozin (Fig. 5) and its
derivatives represent the other class of small molecules targeting NP
oligomerization97–99. Nucleozin was first identified in 2010 by two
independent groups97,100. It appears to exert inhibitory effects at
both early and late stages in the influenza virus life cycle101.
Nucleozin not only inhibits viral RNA and protein synthesis, but
also stabilizes NP self-oligomerization and promotes nonfunctional
aggregates of NP. Moreover, it blocks the exportation of the vRNPs
from the nucleus and facilitates the formation of large perinuclear
aggregates of vRNPs along with the cellular protein Rab11101.

5.4. Nonstructrual protein I (NS1) as the drug target

The NS1 protein of influenza A virus has multiple functions102. It
suppresses the host responses to the virus infection, in particular the
interferon(IFN)-mediated response103, through binding with viral
dsRNA104, CPSF30105, the ubiquitin-ligase TRIM25106, and phosphoi-
nositide 3-kinase (PI3K)107. The distinct binding sites of NS1 with these
biomolecules provide potential opportunities for drug discovery108.
Currently, drug development targeting the NS1 protein is still in the
early stages.

Serving as a proof of concept that NS1 could be a feasible target, a
few lead compounds that inhibit NS1 functions were identified by either
a yeast-based assay109 or virtual screening110. Engel and coworkers109

tested 2000 compounds in yeast model expressing NS1. Four
compounds were found to reverse the growth inhibiting effect of
NS1. These compounds potentially exhibited antivirus activity by
blocking NS1-mediated IFN response. Further derivatization of these
compounds leads to the compound JJ3297 (23) (Fig. 5)111, which
facilitated the restoration of an IFN-like antiviral state and inhibited
virus replication and spread in a RNase L dependent manner. Very
recently, Ai et al.110 screened a library of more than 30,000 compounds
from traditional Chinese medicine using a structural-based docking
method, and identified two compounds 32056 and 31674 that show
antiviral activities by stably binding to the CPSF30-binding site of NS1.
In addition, several compounds interfering with NS1/viral RNA binding
were identified either through virtual112 or high-throughput screening
methods113,114.
6. Combination therapy

Combination therapy uses several antivirus drugs with different
mechanisms of action in one regime to achieve greater efficacy than
one drug dose alone based on drug synergistic effect. It allows for
lower doses of each component, resulting in reduced side effects. In
addition, it may significantly increase the selection barrier for
resistance. Thus, it presents a promising strategy for the treatment
of influenza A virus, particularly for severe and immunocompromised
patients115. A combination of amantadineþoseltamivir116 as well as
favirpiravirþoseltamivir117 have demonstrated enhanced drug effi-
cacy in H5N1 infected mice. Recently, combination therapy with
three antiviral drugs (amantadine, ribavirin, and oseltamivir) in
patients with severe A/H1N1 2009 (pH1N1) influenza in Korea has
reduced the 14-day mortality118. In another study, triple-combination
antiviral drug therapy showed similar pharmacokinetics to mono-drug
therapy and demonstrated increased safety in immunocompromised
patients118,119. Currently, several combination therapies based on
approved and/or new drugs are under investigation.
7. Conclusions

The rapid emergence of influenza virus A resistance to current anti-
virus drugs and the unpredictable nature of a potential influenza
pandemic outbreak has impelled scientists and researchers to search
for new antiviral strategies to overcome resistance and provide for
better prophylactic and therapeutic outcomes than what current
drugs can offer us. Recent progress in basic molecular biology,
biophysics, and virology has provided important information
regarding the molecular and structural basis behind the resistant
influenza A virus and has helped to guide new drug development
strategies for antiviral treatments. These new strategies target the
mutant M2 proteins, neuraminidases, or other viral proteins. Ideally,
the next generation of antivirus drug should have strong potency
against a broad range of current resistant strains with a much higher
resistance barrier. A number of small-molecule based drugs have
been identified through structure-based drug design and in vitro or
in vivo screening. A few have advanced into different phases of
clinical trials. They may provide new options for drug treatment and
prevention of influenza virus A infections in the near future, either
alone or in combination with other drugs, to keep flu pandemics
under check.
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