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a b s t r a c t

This paper presents an application of Laguerre matrix polynomial series to the numerical
inversion of Laplace transforms of matrix functions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and notation

The use of the Laplace transform to calculate the solution of different types of problems is very well known. In these
problems it is necessary to calculate the Laplace inverse transform of certain functions. This inverse can be difficult to
compute using techniques of complex analysis, and there exist numerous numerical methods for its evaluation [1,2].
Laguerre scalar polynomials Lα

n (t) have been used for the Laplace inverse transform of scalar functions [1,2, p. 11–12].
In particular, Davies and Martin in their review and comparison of methods indicate that the method based on Laguerre
polynomials offers exceptional precision for a wide range of functions [2, p. 30]. In the solution of matrix problems using
the method of the Laplace transform it is equally necessary to calculate the inverse Laplace transform of certain matrix
functions. The commonmethod for matrix problems is to try to decouple the system to scalar equations. However, in many
circumstances this is impossible or it increases the computational cost.

In this paper, the application of Laguerre matrix polynomial series to the numerical inversion of the Laplace transform of
matrix functions is studied. Laguerre matrix polynomials were introduced in [3] and theorems for the expansion of matrix
functions in series of Laguerre matrix polynomials have been given in [4,5] recently.

This paper is organized as follows. Section 2 deals with notation and some preliminary results on Laguerre matrix
polynomials. Section 3 deals with the numerical inversion of Laplace transforms using Laguerre matrix polynomials.
Section 4 provides an illustrative example from circuit theory. Conclusions are given in Section 5.

2. Preliminaries

Throughout this paper for a complex number z, ℜ(z) denotes its real part. For a matrix A in Cr×r its spectrum σ(A)
denotes the set of all the eigenvalues of A and β(A) = min{ℜ(z); z ∈ σ(A)}. If f (z) and g(z) are holomorphic functions of
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the complex variable z, which are defined in an open set � of the complex plane, and A is a matrix in Cr×r with σ(A) ⊂ �,
then from the properties of the matrix functional calculus [6, p. 558], it follows that f (A) g(A) = g(A) f (A). The reciprocal
gamma function denoted by Γ −1(z) = 1/Γ (z) is an entire function of the complex variable z. Then, the image of Γ −1(z)
acting on A, denoted by Γ −1(A) is a well-defined matrix. Furthermore, if A + nI is invertible for every integer n ≥ 0, where
I is the identity matrix in Cr×r , then Γ (A) is invertible, its inverse coincides with Γ −1(A), and by [7, p. 253] it follows that
A (A + I) · · · (A + (n − 1)I) = Γ (A + nI) Γ −1(A), n ≥ 1.

We recall some properties of Laguerre matrix polynomials which have been stated in [3]. If λ is a complex number with
ℜ(λ) > 0 and A is a matrix in Cr×r with A + nI invertible for every integer n ≥ 1, the nth Laguerre matrix polynomial
L(A,λ)
n (x) is defined by [3, p. 58]

L(A,λ)
n (x) =

n−
k=0

(−1)k

k! (n − k)!
(A + I)n [(A + I)k]−1 (λx)k, (2.1)

where (A + I)n = (A + I) (A + 2I) · · · (A + nI), n ≥ 1, (A + I)0 = I . Note that the parameter λ is a scaling of variable x.
Hence from (2.1), one gets

L(A,λ)
n (x) = L(A,1)

n (λ x) , (2.2)

and from (4.17.2) [8, p. 77] it is easy to show that Laguerre scalar polynomials Lα
n (x) are a particular case of Laguerre matrix

polynomials where

Lα
n (x) = L(A,1)

n (x), A = α. (2.3)

The generating function of Laguerre matrix polynomials is given in [3, p. 57]

G(x, t, λ, A) = (1 − t)−(A+I) exp


−λxt
1 − t


=

−
n≥0

L(A,λ)
n (x)tn, t ∈ C, |t| < 1, x ∈ C, (2.4)

and the next Rodrigues’ formula is satisfied [3]:

L(A,λ)
n (x) =

x−Aeλx

n!
dn

dxn

e−λxxA+nI , n ≥ 0. (2.5)

Note that from (2.1) one gets L(A,λ)
0 (x) = I and in the following we take L(A,λ)

−1 (x) = 0. Hence, Laguerre matrix polynomials
satisfy the three-term recurrence relation (3.10) of [3, p. 59] for n ≥ 0 (see Theorem 3.1 [3, p. 60]), resulting

(n + 1)L(A,λ)
n+1 (x) + [λxI − (A + (2n + 1)I)]L(A,λ)

n (x) + (A + nI)L(A,λ)
n−1 (x) = 0, n ≥ 0, (2.6)

which will be useful to calculate the nth polynomial in terms of the polynomials of order n − 1 and n − 2.

3. Application to the inverse Laplace transform of matrix functions

Todevelop the proposedmethodwe start offwith the Laplace transform F(s) of an unknownCr×m-valuedmatrix function
f (t), which we want to approximate. In the following, we will assume that such function f (t) formally admits the following
left-series expansion of Laguerre matrix polynomials [4]:

f (t) = tAe−ct
−
k≥0

L(A,λ)
k (t)k! Γ −1(A + (k + 1)I) bk. (3.1)

Here c , λ > 0 and A ∈ Cr×r are parameters, bk ∈ Cr×m, and β(A) > −1/2 (see Theorem 5.1 [4, p. 1032]). In an analogous
way, the right-series expansion of Laguerre matrix polynomials could have been chosen [4, p. 1032]. Taking into account
(3.1) yields

t−Aect f (t) =

−
k≥0

L(A,λ)
k (t)k! Γ −1(A + (k + 1)I) bk, (3.2)

and using Laguerre matrix polynomial series expansion theorem (Theorem 5.1 [4, p. 1032]) one can conclude that the
coefficients bk take the following form

bk = λA+I
∫

∞

0
e−(λ−c)tL(A,λ)

k (t) f (t)dt. (3.3)

These coefficients are unknownbecause f (t) is unknown. In order to determine them,weuse f (t) Laplace transform, i.e. F(s),
taking s = σ + iω. Then, using (3.1), one gets

F(s) =

∫
∞

0
f (t) e−st dt =

∫
∞

0
tAe−(s+c)t

−
k≥0

L(A,λ)
k (t)k! Γ −1(A + (k + 1)I) bk dt. (3.4)
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Fig. 1. Electrical circuit.

Taking into account (2.2) with the additional assumption that the series summation and integration can be interchanged,
yields

F(s) =

−
k≥0

[∫
∞

0
tAe−(s+c)tL(A,1)

k (λt) dt
]

k! Γ −1(A + (k + 1)I) bk.

Taking u = λt in the last expression, it follows that

F(s) =

−
k≥0

λ−A−I
[∫

∞

0
uAe−(s+c)u/λL(A,1)

k (u) du
]
k! Γ −1(A + (k + 1)I) bk. (3.5)

Considering (2.5) and expression 7.414 (8) [9, p. 845], which states that∫
∞

0
e−pt tα Lα

n (t) dt =
Γ (α + n + 1)(p − 1)n

n! pα+n+1
, ℜ(α) > −1, ℜ(p) > 0, (3.6)

using (2.3) and taking into account that the right-hand side of (3.6) is a holomorphic function of α, by the matrix functional
calculus [6] acting on α it follows that∫

∞

0
e−p t tA L(A,1)

n (t) dt =
Γ (A + (n + 1)I)(p − 1)n

n!
p−A−(n+1)I , β(A) > −1, ℜ(p) > 0. (3.7)

Using (3.5) and (3.7), one obtains F(s) =
∑

k≥0

 s+c−λ
s+c

k
(s + c)−A−I bk. Finally, after using the bilinear transformation

z = (s + c − λ)/(s + c) on the previous expression, the following approximation can be made

Φ(z) = (s + c)A+IF(s) =

−
k≥0

bkzk ≈

N−1−
k=0

bkzk, (3.8)

where the truncation error is supposed to be sufficiently small. This bilinear transformation projects the line s = σ +

iw, −∞ < ω < ∞ onto the unit circle and the right semi-plane delimited by the line to the interior of the unit circle. Thus,
Φ(z) will be a periodic function on z = eiθ with period 2π , and clearly from the bilinear transformation one gets

s = σ + iω =
λ

1 − eiθ
− c =

λ

2
− c +

iλ
2

cot(θ/2). (3.9)

Since F(s) is known, the matrix coefficients bk can be approximated from (3.8) employing trigonometric interpolation, in
combination with the efficient Fast Fourier Transform (FFT) algorithm, see [2, p. 12, 29], [10, p. 246], and once these matrix
coefficients are obtained, the unknown matrix function f (t) can be approximated using series (3.1).

4. An example from circuit theory

Consider the electrical circuit of Fig. 1, formed with a source of v(t) volts (V), three resistors of R1, R2 and R3 Ohms (�),
one inductance of L Henries (H) and a capacitor of C Farads (F). We want to approximate the voltage outputs vo1(t) and
vo2(t). The circuit current intensities i1(t) and i2(t) in Amperes (A) satisfy [11]

D I ′(t) + B I(t) = E v(t),

D =


L 0
0 R2 + R3


, B =

 R1 + R2 −R2

−
(R1 + R2)R2

L
1
C

−
R2
2

L

 , I(t) =


i1(t)
i2(t)


, E =


1
R2

L

 (4.1)
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and then one can obtain the output voltages as vo1(t) = R2 (i1(t) − i2(t)), vo2(t) = R3 i2(t). Thus we need to obtain both
currents i1(t) and i2(t). Denoting the Laplace transforms of I(t) and v(t) as L{I(t)} and L{v(t)}, with s = σ + jω, taking
Laplace transforms in (4.1) one obtains

L{I(t)} = (sD + B)−1
[E L{v(t)} + DI(0+)], (4.2)

where I(0+) denotes limt−→0+ I(t). Let the circuit elements be R1 = 2�, R2 = 6�, R3 = 4�, L = 2H, C = 0.5 F, and
let the voltage circuit source be switched on at t = 0 generating a voltage of 12 V. Thus v(t) = 0 for t < 0, i1(0+) = 0,
i2(0+) = 0, and

L{I(t)} = (sD + B)−1 12
s

E = 12 F(s) E, (4.3)

where F(s) =
(sD+B)−1

s is the Laplace transform of certain matrix function f (t) which we want to approximate. Using the
minimal theorem [6, p. 571], the exact solution I(t) is given by:

I(t) =


i1(t)
i2(t)


=


−3.375e−2t

+ 1.875e−0.4t
+1.5

−2.250e−2t
+ 2.250e−0.4t


. (4.4)

Assuming that f (t) admits a series expansion of type (3.1) it follows that

I(t) = 12 f (t) E = 12


tAe−ct

−
k≥0

L(A,λ)
k (t)k! Γ −1(A + (k + 1)I) bk


E, (4.5)

where c , λ > 0 and A ∈ Cr×r are parameters, and β(A) > −1/2. Then, taking z = eiθ in (3.8) and considering (3.9) one gets

Φ

eiθ


= (s + c)A+IF(s) ≈

N−1−
k=0

bkeikθ , (4.6)

where s is given by (3.9) andΦ(eiθ ) is a periodic function of period 2π . If this function has a smooth variation, bk coefficients
can be approximated using the Fast Fourier Transform algorithm by, see section 3.9.5 [10, p. 246]

bk ≈
1
N

N−1−
n=0

(sn + c)A+I F(sn) e
−i2πkn

N , sn =
λ

2
− c +

iλ
2

cot(θn/2), θn =
2πn
N

, n = 0, 1, . . . ,N − 1. (4.7)

Note that θn values can be selected to avoid the evaluation of (s+ c)A+I F(s) in s = λ/2− c ± i∞. For example, we can take

sn =
λ

2
− c +

iλ
2

cot(θn/2), θn =
(2n + 1)π

N
, n = 0, 1, . . . ,N − 1. (4.8)

In this case, taking into account the Fourier transform properties, it follows that

F {x(θ)} = e−i2π f θ0F {x(θ + θ0)}, (4.9)

where F {x(θ)} denotes the Fourier transform of x(θ) and therefore

bk ≈ e
−iπk
N

1
N

N−1−
n=0

(sn + c)A+I F(sn) e
−i2πkn

N , (4.10)

which can be evaluated using the Fast Fourier Transform algorithm, and then, the desired intensities can be approximated
using (4.5). Let us approximate intensities i1(t) and i2(t) using N = 25

= 32, with

A =


2/3 −1/3

−2/3 1/3


, λ = 12, c = 1, (4.11)

and the values of sn given by (4.8). All calculations have beenperformedwithMATLABmathematic package. Fig. 2(a) presents
the real and imaginary parts of the component Φ1,1(eiθ ) of Φ(eiθ ) = (s + c)A+I F(s) for that parameters. The rest of the
components vary in a similar smooth way.

Fig. 3(b) presents the variation in absolute value of component i = j = 1 of coefficients bk. It decreases for k =

1, 2, . . . , 16, and remains almost constant for k > 16, probably due to rounding errors. The rest of the components vary in
a similar way. That suggests us to use only the first 16 coefficients to obtain a better precision. Fig. 3(b) presents the error
for both intensities in t = 0.5 with the above-mentioned parameters A, c and λ, varying the number of coefficients used in
the series evaluation, from the total 32 obtained. The error has a minimum around 16 coefficients as expected. In the scalar
case, Piessens and Branders [12] allow to use fewer terms than the total N obtaining better results than using all of them.
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a b

Fig. 2. (a) Φ11(eiθ ). (b) Mean absolute error for intensities approximation in t = 0, 0.1, . . . , 0.5, varying N .

ba

Fig. 3. (a) Absolute value of component i = j = 1 of bk coefficients. (b) Mean absolute error for intensities approximation in t = 0, 0.1, . . . , 0.5, varying
the number of coefficients finally used in the series evaluation.

Table 1
Exact values of intensities i1(t) and i2(t) and their approximation error for N = 6 and N = 14.

Error with Laguerre matrix polynomials
t i1(t) i2(t) i1(t)(N = 6) i2(t)(N = 6) i1(t)(N = 14) i2(t)(N = 14)

0 0 0 0.1539e−6 0.3079e−6 0.8535e−15 0.1707e−14
0.1 0.5383 0.3196 0.4364e−7 0.1075e−6 0.1110e−14 0.1166e−14
0.2 0.9685 0.5688 0.2034e−6 0.1288e−6 0.6661e−15 0.5551e−15
0.3 1.3107 0.7607 0.4068e−6 0.1242e−6 0.1776e−14 0.1887e−14
0.4 1.5813 0.9063 0.3341e−6 0.1894e−6 0.2220e−15 0.8882e−15
0.5 1.7935 1.0144 0.1536e−6 0.1402e−6 0.1776e−14 0.3109e−14

Table 1 presents the exact values of intensities i1(t) and i2(t) for t = 0, 0.1, . . . , 0.5 s, and the approximation error
for Laguerre approximation with N = 6 and N = 14. In this case, the errors decrease from order 10−6 to order 10−14.
In all the computations we have eliminated the residual imaginary part of the approximated intensities, which is due to
rounding errors in the evaluation of the Fast Fourier Transform. Note that once the coefficients bk are obtained (4.5) provides
a continuous approximated expression of the intensities depending on variable t . Fig. 2(b) presents the mean absolute error
in the approximation of the intensities for the same values of variable t , varying N . It decreases quickly with N , and for
N > 16 the error does not decrease any more probably due to the machine precision.
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5. Conclusions

In this paper, an application of Laguerre matrix polynomial expansions to the inversion of Laplace transforms of
matrix functions has been presented. The proposed method has the advantage that provides a continuous series which
approximates the solution. Laguerre matrix polynomials involved in the series can be evaluated efficiently using the three-
term recurrence relation (2.6) and,moreover, the evaluation of the coefficients bk using the Fast Fourier Transform algorithm
is efficient when using a number of points N of power 2.
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