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SUMMARY

Accumulating evidence has suggested a role for
p53 activation in various age-associated conditions.
Here, we identified a crucial role of endothelial p53
activation in the regulation of glucose homeostasis.
Endothelial expression of p53 was markedly upregu-
lated when mice were fed a high-calorie diet. Disrup-
tion of endothelial p53 activation improved dietary
inactivation of endothelial nitric oxide synthase that
upregulated the expression of peroxisome prolifera-
tor-activated receptor-g coactivator-1a in skeletal
muscle, thereby increasingmitochondrial biogenesis
and oxygen consumption. Mice with endothelial
cell-specific p53 deficiency fed a high-calorie diet
showed improvement of insulin sensitivity and less
fat accumulation, compared with control littermates.
Conversely, upregulation of endothelial p53 caused
metabolic abnormalities. These results indicate that
inhibition of endothelial p53 could be a novel thera-
peutic target to block the vicious cycle of cardiovas-
cular and metabolic abnormalities associated with
obesity.

INTRODUCTION

The transcriptional factor p53 is a tumor suppressor protein that

is activated by various stresses, such as oncogenic stimuli, hyp-

oxia, and oxidative stress (Serrano and Blasco, 2001; Stewart

and Weinberg, 2006). It is thought to be a defensive mechanism

against malignant transformation. Accumulating evidence has

suggested a role of p53 activation in various age-associated

conditions, including vascular senescence (Chen and Goligor-

sky, 2006; Minamino and Komuro, 2007, 2008), heart failure

(McTernan et al., 2003; Plutzky, 2011; Sano et al., 2007), and dia-

betes (Chang et al., 2004; Minamino et al., 2009). Atherogenic
C

factors like oxidized low density lipoprotein and angiotensin II

have been shown to upregulate cell-cycle regulators, includ-

ing p53, contributing to vascular dysfunction (Minamino and

Komuro, 2007, 2008). It has also been reported that vascular

p53 is activated in patients with diabetes (Brodsky et al., 2004;

Montooth et al., 2003; Orimo et al., 2009) and the development

of cardiovascular complications is accelerated by this disease

(Beckman et al., 2002; Puigserver et al., 1998). However, it re-

mains unclear whether activation of vascular p53 contributes

to metabolic abnormalities associated with obesity.

Central obesity and associated inflammation of visceral fat are

thought to play a major role in the development of insulin resis-

tance (Gordon, 2007; Hotamisligil, 2006). There is evidence

that microvascular dysfunction also promotes insulin resistance

by impairing glucose uptake into skeletal muscle (Clark, 2008;

Jonk et al., 2007). The initial human study demonstrated that in-

sulin-stimulated vasodilation contributes significantly to insulin-

mediated glucose uptake, which is impaired in patients with

type 2 diabetes (Laakso et al., 1990). Subsequent studies have

shown that an insulin-stimulated increase in the number of

perfused capillaries in the skeletal muscles, a phenomenon

known as capillary recruitment, has a more important influence

on glucose uptake than the insulin-induced increase of total

blood flow (Clark et al., 2003). In individuals with insulin resis-

tance, the influence of insulin on microvascular perfusion is

markedly impaired (Czernichow et al., 2010; Muris et al., 2012),

suggesting that insulin regulates glucose uptake and insulin

sensitivity via a feedforward mechanism. Consistent with this

notion, capillary recruitment and glucose tolerance are impaired

in mice with endothelial deletion of Irs-2 (Kubota et al., 2011). In

contrast, mice with endothelial cell-specific insulin receptor

knockout do not exhibit glucose intolerance (Vicent et al.,

2003). Moreover, the development of microvascular dysfunction

precedes the onset of insulin resistance (Clark, 2008), indicating

that additional mechanisms may contribute to vascular dysfunc-

tion associated with diabetes.

In the present study, we investigated the role of endothelial

p53 in glucose homeostasis. We found that a high-calorie diet
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Figure 1. Upregulation of Endothelial p53

under Diabetic Conditions

(A) Human umbilical vein endothelial cells

(HUVECs) transfected with siRNA targeting p53

(sip53) or control siRNA (siControl) were treated

with high glucose (HG) or with palmitic acid (PA) for

24 hr. Expression of p53 and p21 was examined

by western blot analysis.

(B) Real-time PCR assessing the expression of

CDKN1A (p21) in HUVECs prepared as in Fig-

ure 1A (n = 3).

(C and D) Immunohistochemistry for p53 (C) and

real-time PCR assessing expression of Cdkn1a

(p21) (D) in the aorta of mice fed a normal chow

(Chow) or a high-fat/high-sucrose (HFHS) diet

(n = 5). Arrows indicate p53-positive endothelial

cells (Brown).

(E) Immunohistochemistry for isolection B4

(Brown), a marker of endothelial cells, and p53

(Red) in lung and quadricepsmuscle tissue of mice

prepared as in Figure 1C.

(F) Expression of p53 was examined by western

blot analysis in endothelial cells isolated from the

lungs and lower limb skeletal muscles of mice fed

chow or an HFHS diet. Scale bar, 20 mm. *p < 0.05,

**p < 0.01. Data are shown as the means ± SEM.
increased endothelial expression of p53. Despite no difference

of food intake, deletion of endothelial p53 significantly improved

fat accumulation and insulin resistance in a dietary obesity

model. In addition, endothelial p53 negatively regulated the

activation of endothelial nitric oxide synthase (eNOS), which

modulates the expression of peroxisome proliferator-activated

receptor-g coactivator-1a (Pgc-1a) in skeletal muscle, so mito-

chondrial biogenesis was increased by endothelial p53 deletion

in this model. Furthermore, we found that endothelial p53 defi-

ciency led to an increase of glucose uptake into skeletal muscle

by upregulating glucose transporter (Glut) 1 expression in endo-

thelial cells. Conversely, overexpression of endothelial p53 led to

impairment of glucose metabolism. These findings indicate that

inhibition of endothelial p53 improves metabolic abnormalities

by increasing energy consumption and glucose uptake. They

also suggest that dietary activation of endothelial p53 may be

a cause of vascular dysfunction that induces insulin resistance

in diet-induced obesity.

RESULTS

Metabolic Abnormalities Increase p53 Activity in
Endothelial Cells
Features of the diabetic state, such as hyperglycemia and hyper-

lipidemia, have been shown to cause DNA damage in endothelial

cells (Minamino and Komuro, 2007, 2008). In agreement with
1692 Cell Reports 7, 1691–1703, June 12, 2014 ª2014 The Authors
these reports, we found that exposure

of human endothelial cells to high glucose

or palmitic acid upregulated the ex-

pression of p53 protein (Figure 1A). We

also confirmed that these stimuli sig-

nificantly increased the expression of
cyclin-dependent kinase inhibitor 1a (CDKN1A, known as p21)

at both the mRNA and protein levels in a p53-dependent manner

(Figures 1A and 1B), leading to cell-cycle arrest in G1 phase (Fig-

ure S1A). Likewise, the endothelial expression of p53 protein and

Cdkn1amRNAwas upregulated in the aorta when the mice were

fed a high-fat/high sucrose diet (Figures 1C and 1D). Increased

expression of p53 was also observed in microvessels of the

lungs and skeletal muscle in mice on a high-calorie diet

(Figure 1E). We subsequently examined p53 expression in endo-

thelial cells (CD31+ CD45�) isolated from these tissues and

confirmed that expression of endothelial cell-specific genes

was significantly increased in the isolated cell fractions com-

pared with whole samples or depleted fractions (Figures S1B

and S1C). Moreover, expression of p53 protein was significantly

higher in endothelial cells isolated from the tissues of mice fed a

high-calorie diet compared with cells frommice on a normal diet

(Figure 1F). These findings suggested that a high-calorie state

activates p53 in endothelial cells.

Dietary Endothelial p53 Activation Contributes to the
Development of Metabolic Abnormalities
To further investigate the role of endothelial p53 in glucose

homeostasis, we established endothelial cell-specific p53

knockout (EC-p53 KO) mice (Tie2-Cre; Trp53loxP/loxP). Expres-

sion of p53 and its target genes (including Cdkn1a) were signifi-

cantly decreased in organs with a high vascularity, including the



lungs (Figure S2A). There were no differences of body weight

and glucose metabolisms between EC-p53 KO mice and their

control littermates on a normal diet (Figures 2A and 2B). In

contrast, EC-p53 KO mice had a significantly lower body weight

compared with control mice when fed a high-calorie diet (Fig-

ure 2A). Furthermore, compared with control littermates, EC-

p53 KO mice showed improvement of insulin sensitivity and

glucose tolerance alongwith a lower plasma insulin level (Figures

2C and 2D) and less accumulation of both visceral and subcu-

taneous fat, whereas their lean mass was unchanged (Figures

2E and S2B) and there was no difference of dietary intake

between the two groups (Figure 2F). Insulin-induced phosphor-

ylation of Akt was restored in the liver, skeletal muscle, and

epididymal fat of EC-p53 KO mice (Figures S2C–S2E). Expres-

sion of proinflammatory cytokines was also downregulated in

fat tissue of EC-p53 KO mice (Figures 2G and S2F). Although

we did not find any differences of core body temperature or

locomotor activity between EC-p53 KO mice and their control

littermates (Figure 2H), oxygen consumption was significantly

increased by disruption of endothelial p53 expression (Figure 2I).

These results indicated that deletion of endothelial p53 attenu-

ates fat accumulation and weight gain due to a high-calorie

diet by increasing energy expenditure and therefore improves

metabolic abnormalities related to dietary obesity.

Because Tie2 can be expressed by hematopoietic cells

(Tang et al., 2010), we additionally established Pdgfb-Cre-ER;

Trp53loxP/loxP mice as a model of endothelial cell-specific p53

deletion. In this model, the efficiency of tamoxifen-induced Cre

recombinase activity has previously been tested with ROSA26-

lacZ reporter mice, revealing that recombination was achieved

in most of the endothelial cells of the capillaries and small arteri-

oles in adult animals (Benedito et al., 2009; Claxton et al., 2008).

Although endogenous Pdgfb is also expressed by nonendothe-

lial cells, the previous study demonstrated that the transgene

expression was endothelial cell-specific in various tissues, in-

cluding skeletal muscle (Claxton et al., 2008). We also confirmed

the endothelial cell-specific expression of the transgene in the

skeletal muscle of Pdgfb-Cre-ER; Trp53loxP/loxP mice, by local-

izing expression of enhanced green fluorescent protein that is

encoded by the transgene of these mice (Figures S2G and

S2H). In Pdgfb-Cre-ER; Trp53loxP/loxP mice, expression of p53

was significantly decreased in isolated endothelial cells, but

not in bone marrow cells (Figure S2I). When fed a high-calorie

diet, Pdgfb-Cre-ER; Trp53loxP/loxP mice showed less weight

gain, as well as improved insulin sensitivity and glucose toler-

ance, compared with their control littermates similar to Tie2-

Cre; Trp53loxP/loxP mice (Figures S2J and S2K).

We also found that glucose uptake by skeletal muscle and

brown adipose tissue was significantly increased in EC-p53 KO

mice on a high-calorie diet, but not when these mice were fed a

normal diet (Figures 2J, S2L, and S2M). These results suggest

that activation of endothelial p53 reduces the energy consump-

tion and mediates various metabolic abnormalities in diabetes.

Inhibition of p53 Activation in Endothelial Cells
Increases Mitochondrial Biogenesis in Skeletal Muscle
We next investigated the mechanisms by which inhibition of

endothelial p53 activation increased oxygen consumption in a
C

model of dietary obesity. There were no differences in the weight

of brown adipose tissue and the expression of uncoupled protein

1 between the two groups (Figures S3A and S3B). It has been

reported that skeletal muscle makes the great contribution to

energy expenditure, both at rest and during exercise (Butler

and Kozak, 2010). Several studies using genetically modified

mice have suggested that an increase of mitochondrial biogen-

esis in skeletal muscle leads to increased energy expenditure

and protection against dietary obesity (Aguilar et al., 2007; Nar-

kar et al., 2008). Accordingly, we next investigated the pheno-

typic features of skeletal muscle in EC-p53 KO mice.

It has been reported that activation of endothelial p53 leads to

various functional abnormalities, including decreased produc-

tion of nitric oxide (NO), which regulates vascular relaxation,

angiogenesis, and mitochondrial biogenesis (Arany, 2008;

Chen and Goligorsky, 2006; Leone et al., 2005; Minamino and

Komuro, 2007, 2008). We therefore hypothesized that p53-

induced inhibition of eNOS might affect oxygen consumption

in skeletal muscle. Consistent with this concept, phosphoryla-

tion of eNOS was markedly decreased in control mice fed a

high-calorie diet, and this decrease was significantly reversed

in EC-p53 KO mice (Figure 3A). Likewise, expression of p21 in

aortic endothelial cells wasmarkedly increased by a high-calorie

diet, and this increase was diminished by deletion of endothelial

p53 (Figure S3C). Because NO has been reported to induce

mitochondrial biogenesis via upregulation of PGC-1a (Lin et al.,

2002), we next examined the effect of endothelial p53 on the

expression of Pgc-1a (also known as Ppargc1a) and its regu-

lating molecules related to mitochondrial biogenesis, such as

nuclear respiratory factor (Nrf)-1 and mitochondrial transcription

factor A (Tfam) (Arany, 2008; Arany et al., 2008; Leone et al.,

2005), in skeletal muscle cells by using a coculture system. Over-

expression of p53 in endothelial cells led to a decrease of

phosphorylated eNOS (Figure 3B) that was associated with

downregulation of Ppargc1a, Nrf-1, and Tfam in cocultured

skeletal muscle cells (Figure 3C). Treatment with an NO donor

attenuated the decreased expression of Pgc-1a, Nrf-1, and

Tfam (Figure 3C). We also found that Pgc-1a expression and

the mitochondrial DNA content were significantly reduced in

the skeletal muscle of control mice on a high-calorie diet

compared with mice on a normal diet, whereas these abnormal-

ities were improved in EC-p53 KO mice (Figures 3D and 3E).

Expression of Pgc-1a-target genes related to the metabolic

pathways (in particular the fatty acid oxidation-related pathway)

was significantly increased in the skeletal muscle of EC-p53 KO

mice (Figure S3D). There was no significant difference of the

respiration rate of mitochondria isolated from skeletal muscle

between the two groups (Figure S3E). These results suggest

that endothelial p53modulates mitochondrial biogenesis in skel-

etal muscle by regulating eNOS activity.

In contrast, the vessel density in skeletal muscle and the

expression of endothelial cell-specific genes were not altered

by inhibition of endothelial p53 (Figures S3F and S3G). Laser

Doppler analysis did not detect any difference of blood flow be-

tween the two groups (Figure S3H). Moreover, microangiogra-

phy using fluorescent microspheres showed that microvascular

perfusion did not differ between the two groups before and

after insulin stimulation (Figure S3I), supporting a crucial role of
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NO-induced mitochondrial biogenesis in improving the meta-

bolism of EC-p53 KO mice. These results raised the possibility

that microvascular perfusion was also regulated by NO-indepen-

dent mechanisms in EC-p53 KO mice.

To further investigate the role of eNOS, we established EC-

p53-eNOS double knockout mice (Tie2-Cre; Trp53loxP/loxP;

eNOS +/�) and fed these animals a high-calorie diet. Disruption

of eNOS inhibited the increase of Pgc-1a expression and the

mitochondrial DNA content caused by endothelial p53 deletion

(Figures 3F and 3G). Consequently, there was less improvement

of metabolic abnormalities acquired by endothelial p53 deletion

in EC-p53-eNOS double knockout mice (Figure 3H).

Mechanism of the p53-Induced Decrease of eNOS
Phosphorylation in Endothelial Cells
Next, we investigated how p53 induced a decrease of eNOS

activity in endothelial cells. Previous studies have demonstrated

that the p53-binding element exists in the promoter region of

NOS3 (a gene encoding eNOS) (Mortensen et al., 1999) and

that p53 negatively regulates eNOS expression at the transcrip-

tional level (Kim et al., 2008; Kumar et al., 2011). In our models,

activation of p53 did not downregulate eNOS protein production,

but its level of phosphorylation was decreased (Figures 3A and

3B), suggesting the presence of another regulatory mechanism

for eNOS that involves phosphorylation. We therefore examined

the expression of various kinases and phosphatases that regu-

late eNOS phosphorylation (Kukreja and Xi, 2007) and found

that p53 suppressed the phosphorylation of Akt, a well-known

kinase upstream of eNOS, in endothelial cells (Figure 4A).

Conversely, phosphorylation of Akt was increased by knock-

down of p53 in human endothelial cells (Figure S4A). We also

found that the expression of phosphatase and tensin homolog

(PTEN) and pleckstrin homology-like domain, family A, member

3 (PHLDA3) was positively regulated by p53 (Figures 4B, S4A,

and S4B), both of which are known to be target genes of p53

that inhibit Akt phosphorylation in cancer cells (Cantley and

Neel, 1999; Kawase et al., 2009; Stambolic et al., 2001). Accord-

ingly, we examined the effect of deletion of these genes on

eNOS phosphorylation in endothelial cells. The p53-induced

decrease of eNOS phosphorylation was not altered by deletion

of PHLDA3 (Figure S4C), but knockdown of PTEN reversed the
Figure 2. Effect of Endothelial p53-Deficiency on Glucose Metabolism

(A) Body weight of EC-p53 KO mice and their littermate controls (Control) on a no

Control-HFHS versus EC-p53KO-HFHS; yp < 0.05, yyp < 0.01, yyyp < 0.001, Contro

HFHS. The right photograph shows the appearances of EC-p53 KO mouse and

(B and C) Glucose tolerance test (GTT) and insulin tolerance test (ITT) were exa

n = 13, C).

(D) Plasma insulin levels during GTT in mice on the HFHS diet (n = 9).

(E) CT analysis of EC-p53 KOmice and littermate controls (Control) after 8 weeks o

fat and subcutaneous fat (n = 13).

(F) Food intake of EC-p53 KO mice and littermate controls (Control) on the HFHS

(G) Real-time PCR analysis forCcl2 of the epididymal fat of EC-p53 KOmice and li

(HFHS) diet (n = 3–4).

(H) Oxygen consumption of EC-p53 KOmice and littermate controls (Control) on th

phase (Light) and the dark phase (Dark) (n = 8).

(I) The core body temperature and the activity of EC-p53 KO mice and littermate

(J) Glucose uptake by skeletal muscles in lower extremities of EC-p53 KO mice a

Data are shown as the means ± SEM.

C

downregulation of phospho-Akt and phospho-eNOS in p53-

infected cells (Figures 4A, 4C, 4D, and S4C), suggesting that

p53-induced PTEN transactivation negatively regulates the

Akt-eNOS pathway.

Endothelial p53 Negatively Regulates Glucose Uptake
into Skeletal Muscle by Downregulating GLUT1
Expression
It has been reported that disruption of Glut4 in skeletal muscle

impairs glucose uptake and induces insulin resistance (Kim

et al., 2005), whereas Pgc-1a upregulates the expression of

Glut4 (also known as Slc2a4) in skeletal myocytes (Michael

et al., 2001). Although EC-p53 KO mice had higher levels of

Pgc-1a compared with control littermates, there was no signifi-

cant difference of Glut4 expression in skeletal muscle between

the two groups (Figure 5A). It has also been reported that p53

directly suppresses tumor cell expression of glucose trans-

porters, among which GLUT1 is amajor modulator of endothelial

glucose transport into skeletal muscle (Russell and Kahn, 2007).

We found that overexpression of p53 led to downregulation of

GLUT1 (also known asSLC2A1) expression in human endothelial

cells (Figure 5B). Exposure of these cells to high glucose resulted

in the upregulation of p53 expression (Figure 1A) and inhibited

glucose transport (Figure 5C). The high glucose-induced

decrease of glucose transport in endothelial cells was improved

by knockdown of p53 (Figures 5D and S5A), and this effect was

dependent on GLUT1 expression (Figures 5D and S5B). Consis-

tent with these in vitro data, the expression of vascular Glut1

(Slc2a1) was downregulated in control mice on a high-calorie

diet, and this downregulation was reversed by disruption of

endothelial p53 (Figures 5E and S5C).

To examine the role of GLUT1 in muscle glucose transport,

we treated EC-p53 KO mice with small interfering RNA

(siRNA)-targeting Slc2a1 and analyzed glucose uptake by

skeletal muscle. We confirmed that this treatment led to signif-

icant downregulation of endothelial gene expression in various

tissues, including skeletal muscle, by using a siRNA targeting

the endothelial cell-specific gene Flk-1 (Figure S5D). We found

that knockdown of endothelial Glut1 significantly inhibited

glucose uptake by skeletal muscle in EC-p53 KO mice (Fig-

ure 5F), suggesting that endothelial p53 modulates glucose
rmal chow (Chow) or a high-fat/high-sucrose (HFHS) diet (n = 5–10). *p < 0.05,

l-Chow versus Control-HFHS; #p < 0.05, EC-p53KO-Chow versus EC-p53KO-

littermate control after 8 weeks on the HFHS diet.

mined in 12-week-old mice as prepared in Figure 2A (chow: n = 6, B; HFHS:

n the HFHS diet. The graph shows percent of fat tissue/bodyweight for visceral

diet (n = 5).

ttermate controls (Control) on a normal chow (Chow) or a high-fat/high-sucrose

e HFHS diet. The graph indicates average oxygen consumption during the light

controls (Control) on the HFHS diet (n = 7).

nd littermate controls (Control) on the HFHS diet (n = 14). *p < 0.05, **p < 0.01.
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Figure 4. Endothelial p53 Upregulates the

Expression of PTEN that Downregulates

the Akt-eNOS Pathway

(A) Expression of p53, PTEN, phospho-eNOS,

eNOS, phospho-Akt, and Akt were examined by

western blot analysis in HUVECs infected with

adenovirus encoding LacZ (Ad-LacZ) or p53 (Ad-

p53) and transfected with siRNA-targeting PTEN

(siPTEN) or control siRNA (siControl). HUVECs

were cultured in growth factor-free medium for

24 hr and were harvested after stimulation for 1 hr

with growth factors (hEGF, hFGF-B, VEGF, and

R3-IGF-1).

(B) Quantitative analysis of expression of PTEN

protein levels in HUVECs infected with Ad-LacZ or

Ad-p53 (n = 3).

(C andD) Quantitative analyses of phosphorylation

levels of Akt (C) and eNOS (D) in HUVECs as

prepared in Figure 4A (n = 4). *p < 0.05, **p < 0.01,

***p < 0.001. Data are shown as the means ± SEM.
uptake by skeletal muscle through regulation of Glut1 expres-

sion in endothelial cells.

Histological examination showed that Glut1 was predomi-

nantly expressed by the endothelium, with its expression being

markedly decreased whenmice were fed a high-calorie diet (Fig-

ure S5C). This decrease of Glut1 expression was attenuated in

EC-p53 KO mice (Figure S5C). Although we could not exclude

the possibility that deletion of endothelial p53 might regulate

Glut1 expression by smooth muscle cells through non-cell-

autonomous mechanisms, these results indicated that endothe-

lial p53 mainly influences Glut1 expression in the endothelium.
Figure 3. Influence of Endothelial p53 Activity on Mitochondrial Biogenesis in Skeletal Muscle

(A) Expression of phosphoendothelial NO synthase (eNOS) and eNOS were examined by western blot analys

controls (Control) after 8 weeks on a normal chow (Chow) or a high-fat/high-sucrose (HFHS) diet (n = 3).

(B) Expression of p53, phospho-eNOS, and eNOS were examined by western blot analysis in HUVECs infecte

(Ad-p53) (n = 3).

(C) HUVECs as prepared in Figure 3B were treated with S-Nitrosoglutathione (GSNO), an NO donor, or vehicle

was examined by real-time PCR (n = 3).

(D) Real-time PCR analysis assessing expression of Ppargc1a (Pgc-1a) in the skeletal muscle of mice as pre

(E) Mitochondria DNA contents in the skeletal muscle of mice as prepared in Figure 3A (n = 5).

(F and G) Real-time PCR assessing expression of Ppargc1a (Pgc-1a) (F) andmitochondria DNA contents (G) in

EC-p53 KO mice, eNOS hetero knockout mice (Control-eNOS+/�), and EC-p53-eNOS double knockout mice

**p < 0.01, ***p < 0.001.

(H) Glucose tolerance test (GTT) and insulin tolerance test (ITT) were examined in 12-week-old mice as pre

Control versus EC-p53KO; yp < 0.05, Control versus Control-eNOS+/�; #p < 0.05, ##p < 0.01, EC-p53KO ve

means ± SEM.
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Presumably, endothelial p53 would be

even more important for regulating Glut1

expression in skeletal muscle capillaries,

which only have a few pericytes.

Overexpression of p53 by
Endothelial Cells Exacerbates
Insulin Resistance and Fat
Accumulation
The activity of p53 is tightly regulated and

immediately diminishes in the absence of

critical stress to avoid unwanted conse-
quences. Mdm2 and Mdm4 have been identified as negative

regulators of p53, and their essential role in the regulation of

p53 expression has been demonstrated in a variety of genetic

mouse models (Wade et al., 2010). To test whether upregulation

of endothelial p53 causes metabolic abnormalities, we estab-

lished endothelial cell-specific Mdm4 KO (EC-Mdm4 KO) mice

(Pdgfb-Cre-ER; Mdm4loxP/loxP) on a high-calorie diet. In this

model, expression of Mdm4 was deleted in the vascular

endothelium by treatment with tamoxifen, leading to upregula-

tion of endothelial p53 expression (Figures 6A and 6B). We

initially attempted to establish mice with endothelial cell-specific
es in the aortas of EC-p53 KO mice and littermate

d with adenovirus encoding LacZ (Ad-LacZ) or p53

. Expression of Ppargc1a (Pgc-1a),Nrf1, and Tfam

pared in Figure 3A (n = 5).

the skeletal muscle of littermate controls (Control),

(EC-p53KO-eNOS+/�) on the HFHS diet. *p < 0.05,

pared in Figure 3F (n = 4–6). *p < 0.05, **p < 0.01,

rsus EC-p53KO-eNOS+/�. Data are shown as the

3, June 12, 2014 ª2014 The Authors 1697



Figure 5. Effect of Endothelial p53 Activity on Glucose Transport into Skeletal Muscle

(A) Real-time PCR assessing expression of Slc2a4 (Glut4) in the skeletal muscle of EC-p53 KO mice and littermate controls (Control) on the HFHS

diet (n = 8).

(B) Real-time PCR analysis assessing expression of SLC2A1 (GLUT1) in HUVECs infected with adenovirus encoding LacZ (Ad-LacZ) or p53 (Ad-p53) (n = 3).

(C) Relative glucose transport index was measured in HUVECs cultured under the normal or high-glucose condition (n = 3) as described in the Experimental

Procedures.

(D) Relative glucose transport index in HUVECs transfected with siRNA-targeting p53 or GLUT1 (n = 3).

(E) Real-time PCR analysis for Slc2a1 (Glut1) of the aorta of EC-p53 KOmice and littermate controls (Control) on a normal chow (Chow) or a high-fat/high-sucrose

(HFHS) diet (n = 5).

(F) Glucose uptake by skeletal muscle in lower extremities of EC-p53 KO mice and littermate controls (Control) on the HFHS diet treated with siRNA-targeting

Glut1 or control siRNA (n = 5–10). *p < 0.05, **p < 0.01. Data are shown as the means ± SEM.
deletion of Mdm4 by using noninducible Tie2-Cre mice, but

we failed to obtain adult Tie2-Cre; Mdm4loxP/loxP mice, presum-

ably due to lethality of this deletion during embryonic develop-

ment. In contrast to EC-p53 KO mice, phosphorylation of

eNOS in the aorta and Pgc-1a expression in the skeletal

muscle were significantly reduced in EC-Mdm4 KO mice

compared with their control littermates (Figures 6B and 6C).

Likewise, endothelial Glut1 expression was markedly downre-

gulated in EC-Mdm4 KO mice (Figure 6D). Consequently,

insulin sensitivity and glucose tolerance were significantly

impaired by endothelial p53 activation (Figure 6E). We also

found that dietary obesity and fat accumulation were exacer-
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bated in EC-Mdm4 KO mice compared with their control

littermates (Figures 6F and 6G), even though there was no

difference in food intake between the two groups (Figure 6H).

We noted that expression of Ppargc1a in skeletal muscle

was significantly decreased as early as 5 weeks after p53 acti-

vation in the endothelium, followed by upregulation of proin-

flammatory cytokine expression in fat tissue of EC-Mdm4 KO

mice (Figures S6A and S6B). These results suggest that

endothelial p53 activation decreases mitochondrial biogenesis

in skeletal muscle, leading to fat accumulation and inflamma-

tion, and exacerbates metabolic abnormalities associated

with obesity.



Figure 6. Upregulation of Endothelial p53 Exacerbates Metabolic Abnormalities

(A) Real-time PCR assessing expression ofMdm4 in the lungs of EC-Mdm4 KO mice and littermate controls (Control) on a high-fat/high-sucrose (HFHS) (n = 5).

(B) Expression of p53, phospho-eNOS, and eNOS was examined by western blot analyses in the aortas of mice as prepared in Figure 6A (n = 3).

(C and D) Real-time PCR assessing expression of Ppargc1a (Pgc-1a) in the skeletal muscle (C) and Slc2a1 (Glut1) in the aorta of mice (D) in 16-week-old mice

(8 weeks after gene deletion) prepared in Figure 6A (n = 4–6).

(E) Glucose tolerance test (GTT) and insulin tolerance test (ITT) were examined in 16-week-old mice prepared in Figure 6A (n = 7).

(F–H) Body weight (F), CT analysis (G), and food intake (H) of 16-week-old mice as prepared in Figure 6A (n = 5–7). *p < 0.05. Data are shown as themeans ± SEM.
DISCUSSION

Alterations of the metabolic state could directly affect the func-

tion of vascular cells via the bloodstream. Endothelial cells exist

throughout the vascular system from the great vessels to the

capillaries and regulate the tissue microenvironment by produc-

ing various molecules, such as nitric oxide and inflammatory

cytokines. We observed upregulation of p53 protein expression

in various organs/tissues (particularly highly vascular organs) of

mice fed a high-calorie diet. We found that the increased ex-

pression of p53 was localized to the endothelium and that this

change accelerated the onset of metabolic abnormalities, such
C

as obesity and insulin resistance, by reducing energy expendi-

ture and glucose transport. Inhibition of endothelial p53 attenu-

ated fat accumulation and inflammation, leading to improvement

of insulin resistance inmice fed a high-calorie diet. Our results do

not exclude the possibility that endothelial p53 regulates micro-

vascular perfusion but rather provide an additional insight into

how excessive calorie intake promotes vascular dysfunction

and thereby induces metabolic abnormalities.

The transcriptional coactivator PGC-1a was first identified

through its interaction with nuclear receptor peroxisome prolifer-

ator-activated receptor-g in brown adipose tissue and was

found to regulate adaptive thermogenesis (Puigserver et al.,
ell Reports 7, 1691–1703, June 12, 2014 ª2014 The Authors 1699



1998). Recent evidence suggests that PGC-1a may have a crit-

ical role in skeletal muscle regulation by modulating a number of

gene expression programs (Arany, 2008), including those for

mitochondrial biogenesis, angiogenesis, and fiber composition.

It has been reported that PGC-1a modulates skeletal adapta-

tions by interacting with various transcription factors, such as

NRF-1, NRF-2, the estrogen-related receptors, and myocyte

enhancer factor-2 (Arany, 2008). Consistent with our results,

forced expression of Pgc-1a in skeletal muscle was reported

to increase oxidative type I fibers along with increased expres-

sion of mitochondrial markers in mice (Lin et al., 2002).

Conversely, Pgc-1a-deficient mice have fewer mitochondria

and a lower respiratory capacity in oxidative skeletal muscle

(Leone et al., 2005). Furthermore, Pgc-1a-deficient mice show

striking failure to restore limb blood flow after an ischemic insult,

whereas transgenic expression of Pgc-1a in skeletal muscle has

a protective effect (Arany et al., 2008). In contrast, we did not find

any changes of vessel density or expression of proangiogenic

factors in the skeletal muscle of EC-p53 KO mice, presumably

because NO-induced upregulation of Pgc-1a has different tran-

scriptional effects.

Although expression of PGC-1a and mitochondrial genes is

coordinately repressed in the skeletal muscles of diabetic

patients (Mootha et al., 2003; Patti et al., 2003), the role of skel-

etal muscle PGC-1a in insulin resistance remains equivocal. For

example, mice with Pgc-1a overexpression in skeletal muscle

are not sensitized to insulin signaling (Calvo et al., 2008; Miura

et al., 2003), although upregulation of Pgc-1a in skeletal muscle

is associated with improvement of insulin sensitivity in various

genetic models (Iwabu et al., 2010; Oike et al., 2005). It is note-

worthy that the expression of Glut4 was significantly downregu-

lated in mice with overexpression of Pgc-1a in skeletal muscle.

Thus, increasing Pgc-1a expression by transgenic intervention

could have unfavorable effects andmay not improve glucose ho-

meostasis in diabetic models. In our study, we found that disrup-

tion of endothelial p53 increased glucose uptake by upregulating

endothelial Glut1 expression, whereas skeletal muscle expres-

sion of Glut4 was unchanged. Hence, endothelial p53 activity

may affect various pathways involved in glucose homeostasis

rather than simply increasing PGC-1a expression.

We found that p53 plays a critical role in glucose homeostasis

by regulating the expression of genes, such as PTEN and

SLC2A1, presumably through its action as a transcription factor.

It is possible that p53 also regulates the expression of various

molecules secreted by the vascular endothelium and media,

which could influence the metabolism of neighboring cells via a

paracrine mechanism. Angiogenesis and vascular functions

have been shown to modulate obesity and adipose metabolism

(Cao, 2013), which could be involved in endothelial p53-induced

insulin resistance. Because overexpression of p21 has been re-

ported to alter the expression of various genes, including proin-

flammatory cytokines (Kunieda et al., 2006; Miyauchi et al.,

2004), it is also conceivable that upregulation of p21 expression

by a high-calorie diet had an additional influence on glucose

homeostasis in our model.

It is generally accepted that the endothelium does not play a

rate-limiting role in glucose metabolism. However, there is evi-

dence suggesting that Glut1 has a rate-limiting role in deter-
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mining endothelial glucose transport in an insulin-independent

manner (Alpert et al., 2005; Huang et al., 2012; Rajah et al.,

2001). For example, Huang et al. (2012) reported that a decrease

of Glut1 expression by endothelial cells in mice reduces glucose

uptake into various tissues, including the heart, leading to

impaired glucose clearance and glucose intolerance. In the pre-

sent study, we found that a high-calorie diet downregulated

Glut1 expression in endothelial cells in association with the upre-

gulation of p53 expression, whereas the deletion of endothelial

p53 inhibited diet-induced downregulation of Glut1 expression

and improved glucose uptake by skeletal muscle. For analysis

of glucose uptake in mice, we used a minimal dose of 2-deoxy-

glucose that did not stimulate insulin secretion, so our results

demonstrate a role of endothelial Glut1 in insulin-independent

glucose transport.

In conclusion, our results indicate that endothelial p53 regu-

lates glucose metabolism by modulating mitochondrial biogen-

esis and glucose uptake into skeletal muscle. There is evidence

that features of the diabetic state, such as hyperglycemia and

hyperinsulinemia, lead to upregulation of endothelial p53 expres-

sion through mechanisms involving an increase of oxidative

stress and activation of stress-response kinases, thus promoting

the development of cardiovascular complications (Chen and

Goligorsky, 2006; Minamino and Komuro, 2007, 2008). The pre-

sent findings demonstrate the mechanism of a vicious cycle in

which upregulation of endothelial p53 induces metabolic abnor-

malities that in turn promote cardiovascular dysfunction. Inhibi-

tion of endothelial p53 could be a new therapeutic strategy for

blocking this vicious circle in obese patients.

EXPERIMENTAL PROCEDURES

Animal Models

All animal study protocols were approved by the Chiba University review

board. C57BL/6 mice were purchased from the SLC Japan. Mice were fed a

high-fat/high sucrose (HF/HS) diet (Maeda et al., 2002) or normal chow from

4 to 12 weeks of age before metabolic analyses were performed. Mice that

expressed Cre recombinase in endothelial (Tie2-Cre) were purchased from

Jackson Laboratories. We then crossed Tie2-Cre mice (with a C57BL/6 back-

ground) with mice that carried floxed Trp53 alleles (with a C57BL/6 back-

ground) (Marino et al., 2000) to generate endothelial cell-specific p53 knockout

mice. These mice used in this study were 12–14 weeks old. To inhibit NOS

activity, we crossed endothelial cell-specific p53 knockout mice with eNOS

knockout mice that were purchased from Jackson Laboratories to establish

endothelial cell-specific p53 and eNOS double knockout mice. We also

crossed Pdgfb-Cre-ER mice (with a C57BL/6 background) (Claxton et al.,

2008) with mice that carried floxed Trp53 alleles or floxed Mdm4 alleles (with

a C57BL/6 background) (Grier et al., 2006) to generate other endothelial cell-

specific p53 knockout mice or endothelial cell-specific Mdm4 knockout

mice. These mutant mice received 10 mg kg�1 of tamoxifen (Sigma-Aldrich)

intraperitoneally once a day for 5 consecutive days at 8 weeks of age to induce

Cre-mediated recombination and were fed the HF/HS diet afterward. After

5–10 weeks, they were analyzed for metabolic parameters.

Cell Culture

Human umbilical vein endothelial cells (HUVECs) were grown in EBM-2 me-

dium (Lonza) with 2% FBS, growth factors (hEGF, hFGF-B, VEGF, and R3-

IGF-1), heparin, hydrocortisone, ascorbic acid, and antibiotics (50mg ml�1

gentamicin and 50 mg/ml amphotericin B). To examine the effects of exposure

to high glucose or palmitic acid, HUVECs were cultured in the medium with

30 mM glucose or 500 mM palmitic acid for 24 hr before harvesting. Palmitic

acid stock solution (5mM)waspreparedbyconjugationwithBSA, asdescribed



previously (Cousin et al., 2001). For the control, 5mMglucosewas added to the

basal medium, and D-mannitol and BSA solution were also added to adjust the

osmotic pressure. Growth factors were not added during exposure to high

glucose or palmitic acid. C2C12 mouse myoblasts were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) with 10% serum. To induce dif-

ferentiation into myotubes, C2C12 myoblasts were cultured in DMEMwith 2%

serum. The coculture assay system was established by using 24-well cell cul-

ture inserts (0.4mmpore size; BDFalcon). HUVECs andC2C12were seeded on

outer well and insert membrane, respectively. S-Nitrosoglutathione (GSNO,

5 mM; Sigma) was used as an NO donor to evaluate the effect of NO.

Physiological Analyses

We housedmice individually andmonitored their body weight and food intake.

The adiposity of mice was examined using CT (LaTheta, ALOCA) in accor-

dance with the manufacturer’s protocol. We performed computed tomogra-

phy scanning at 2 mm intervals from the diaphragm to the floor of the

abdominal cavity. Oxygen consumption was measured by using an O2/CO2

metabolic measurement system (model MK-5000; Muromachikikai) as

described previously (Oike et al., 2005). The core body temperature and

activity of mice were measured by using implantable intra-abdominal radiofre-

quency probes and receivers (TA10TA-F20 and RPC-1; Data Sciences Inter-

national) (Barber et al., 2004). The data were sampled in a continuous mode

and analyzed by Dataquest ART2.1. Blood flow in skeletal muscle was

measured with a laser Doppler perfusion analyzer (moorLDI2-IR; Moor Instru-

ments) in lower limbs denuded of skin.

Laboratory Tests

For the intraperitoneal glucose tolerance test, mice were fasted overnight and

were given glucose at a dose of 1 g kg�1 (bodyweight). For the insulin tolerance

test, mice were given human insulin intraperitoneally (1 U kg�1 body weight).

Tail vein blood was collected at 0, 15, 30, 60, and 120 min after administration,

and blood glucose levels were measured with Antisense III (HORIBA), whereas

plasma insulin levels were measured by insulin immunoassay (Morinaga).

Viral Infection and Transfection

Small interfering RNA (siRNA)-targeting p53 or Glut1 was purchased from

Invitrogen (designed by BLOCK-iT RNAi Designer) and introduced into human

endothelial cells by using Lipofectamine RNAiMax (Invitrogen) in accordance

with the manufacturer’s instructions. High-titer adenoviral stocks (109 pla-

que-forming units) were generated with the Adeno-X Expression System

(Clontech) in accordance with the manufacturer’s instructions.

Statistical Analysis

Data are shown as the mean ± SEM. Differences between groups were exam-

ined by Student’s t test or ANOVA followed by Bonferroni’s correction for

comparison of means. For all analyses, p < 0.05 was considered statistically

significant.
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