Cycle-magic graphs ${ }^{\text {W/ }}$

A. Lladó*, J. Moragas
Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Jordi Girona, 1, E-08034 Barcelona, Spain
Received 10 August 2006; received in revised form 26 November 2006; accepted 11 March 2007
Available online 15 March 2007

Abstract

A simple graph $G=(V, E)$ admits a cycle-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given cycle C. Then the graph G is C-magic if there exists a total labelling $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to $C, \sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ is constant. When $f(V)=\{1, \ldots,|V|\}$, then G is said to be C-supermagic.

We study the cyclic-magic and cyclic-supermagic behavior of several classes of connected graphs. We give several families of C_{r}-magic graphs for each $r \geqslant 3$. The results rely on a technique of partitioning sets of integers with special properties. © 2007 Elsevier B.V. All rights reserved.

Keywords: Edge coverings; Magic labelings

1. Introduction

Let $G=(V, E)$ be a finite simple graph. An edge-covering of G is a family of subgraphs H_{1}, \ldots, H_{k} such that each edge of E belongs to at least one of the subgraphs $H_{i}, 1 \leqslant i \leqslant k$. Then it is said that G admits an $\left(H_{1}, \ldots, H_{k}\right)$ (edge)covering. If every H_{i} is isomorphic to a given graph H, then G admits an H-covering.

Suppose that $G=(V, E)$ admits an H-covering. A bijective function

$$
f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}
$$

is an H-magic labelling of G whenever, for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to H,

$$
f\left(H^{\prime}\right)=\sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)
$$

is constant. In this case we say that the graph G is H-magic. If $f(V)=\{1, \ldots,|V|\}, G$ is said to be H-supermagic. The constant value that every copy of H takes under the labelling f is denoted by $m(f)$ in the magic case and by $s(f)$ in the supermagic case. Fig. 1 shows an example of a C_{3}-supermagic labelling.

[^0]

Fig. 1. C_{3}-supermagic covering.

The notion of H-magic graphs was introduced in [4] as an extension of the magic valuation given by Rosa [6] in 1967, see also [5], which corresponds to the case $H=K_{2}$. Supermagic labellings were treated in [2]. For these and other related labelling notions see the survey of Gallian [3].
When $H=K_{2}$ we say that a K_{2}-magic or supermagic graph is simply magic or supermagic. Many authors in this case use the terminology edge-magic or super edge-magic graph.
In this paper we study H-magic labellings when H is a cycle C_{r}. In this case we speak of cycle-magic labellings and cycle-magic graphs. A related notion of face-magic labellings of a planar graph G asks for a total labelling such that the sum over vertices and edges of each face of a planar embedding of G is constant; see, for instance, Baca [1]. When all faces have the same number r of edges, a C_{r}-magic labelling of G is also a face magic labelling of the graph.

The paper is organized as follows. In Section 3 we show that the wheel W_{n} with n odd is C_{3}-magic and that the Cartesian product of a C_{4}-free supermagic graph with K_{2} is C_{4}-magic. In particular, the odd prisms and books are C_{4}-supermagic. In Section 4 we show that the windmill $W(r, k)$ is C_{r}-magic, thus providing a family of C_{r}-magic graphs for each $r \geqslant 3$. It is also shown that subdivided wheels and uniform Θ-graphs are cycle-magic. All these results rely on a technique of partitioning sets of integers with special properties introduced in [4]. This is explained in Section 2.

2. Notation and preliminary results

We will use the following notations.
For any two integers $n<m$ we denote by $[n, m]$ the set of all consecutive integers from n to m. For a set $I \subset \mathbb{N}$ we write, $\sum I=\sum_{x \in I} x$. Note that, for any $k \in \mathbb{N}$,

$$
\sum(I+k)=\sum I+k|I| .
$$

Finally, given a total labelling f of a graph $G=(V, E)$, we denote by

$$
f(G)=\sum f(V)+\sum f(E)
$$

However, we will use the same notation although G is not a graph but a set of vertices and edges.
Let $P=\left\{X_{1}, \ldots, X_{k}\right\}$ be a partition of a set X of integers. The set of subset sums of P is denoted by $\sum P=$ $\left\{\sum X_{1}, \ldots, \sum X_{k}\right\}$. If all elements of P have the same cardinality, then P is said to be a k-equipartition of X.
We shall describe a partition $P=\left\{X_{1}, \ldots, X_{k}\right\}$ of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ by giving a k-coloring on the elements of X in such a way that X_{i} contains all the elements with color $i, 1 \leqslant i \leqslant k$. For example, the coloring ($1,2,1,2,2,1$) means that $X_{1}=\left\{x_{1}, x_{3}, x_{6}\right\}$ and $X_{2}=\left\{x_{2}, x_{4}, x_{5}\right\}$. When some pattern of colors $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ is repeated t times we write $\left(c_{1}, c_{2}, \ldots, c_{r}\right)^{t}$. For instance, the coloring $(1,2,1,2,2,1)$ is denoted by $(1,2)^{2}(2,1)$.

We say that a k-equipartition $P=\left\{X_{1}, \ldots, X_{k}\right\}$ of a set of integers $X=\left\{x_{1}<x_{2}<\cdots<x_{h k}\right\}$ is well-distributed if for each $0 \leqslant j<h$, the elements $x_{l} \in X$, with $l \in[j k+1,(j+1) k]$, belong to distinct parts of P. For instance, $P_{1}=\{\{1,4,5\},\{2,3,6\}\}$ and $P_{2}=\{\{1,3,5\},\{2,4,6\}\}$, are well-distributed 2-equipartitions of $X=[1,6]$ while $P_{3}=$ $\{\{1,2,3\},\{4,5,6\}\}$ is not.

We will use the next two lemmas proved in [4] for k-equipartitions. It is easily checked that the proofs given in [4] provide in fact well-distributed partitions.

Lemma 1 (Gutiérrez and Lladó [4]). Let h and k be two positive integers. For each integer $0 \leqslant t \leqslant\lfloor h / 2\rfloor$, there exists a well-distributed k-equipartition P of $[1, h k]$ such that $\sum P$ is an arithmetic progression of difference $d=h-2 t$.

Lemma 2 (Gutiérrez and Lladó [4]). Let h and k be two positive integers. If h or k are not both even, there exists a well-distributed k-equipartition P of $[1, h k]$ such that $\sum P$ is a set of consecutive integers.

Next lemma provide well-distributed equipartitions where all the parts have the same sum.

Lemma 3. Let $h \geqslant 3$ be an odd integer. If either

(1) k is odd and $X=[1, h k]$, or
(2) k is even and $X=[1, h k+1] \backslash\{k / 2+1\}$.
there is a well-distributed k-equipartition P of X such that $\left|\sum P\right|=1$.
Proof. (1) By Lemma 2 there is a well-distributed k-equipartition $P^{\prime}=\left\{Y_{1}, \ldots, Y_{k}\right\}$ of the interval $Y=[1,(h-1) k]$ such that

$$
\sum P^{\prime}=\left\{\sum Y_{1}+(i-1): 1 \leqslant i \leqslant k\right\}
$$

Consider the partition $P=\left\{X_{1}, \ldots, X_{k}\right\}$ of $[1, h k]$, where

$$
X_{i}=Y_{i} \cup\{(1-i)+h k: \quad 1 \leqslant i \leqslant k\}
$$

It is clear that P is a k-equipartition of $[1, h k]$.
As P^{\prime} is a well-distributed k-equipartition of $[1,(h-1) k]$ and there is one element of each part in $[(h-1) k+1, h k]$, P is also well-distributed.

In addition, for any $1 \leqslant i \leqslant k$ we have,

$$
\sum X_{i}=\sum Y_{1}+(i-1)+(1-i)+h k=\sum Y_{1}+h k
$$

which is independent of i and therefore $\left|\sum P\right|=1$.
(2) Let k be an even number and $X=[1, h k+1] \backslash\{k / 2+1\}$.

Set $A=[1, k+1] \backslash\{k / 2+1\}$ and $B=[k+2, h k+1]$. Clearly, $|A|=k,|B|=(h-1) k$ and $X=A \cup B$.
Consider now the partition $P=\left\{X_{1}, \ldots, X_{k}\right\}$ given by the following k-coloring of $A \cup B$.
Color the k elements of A by

$$
(k / 2, k / 2-1, \ldots, 1)(k, k-1, \ldots, k / 2+1)
$$

Now color the $(h-1) k$ elements of B by

$$
(k / 2+1,1, k / 2+2,2, \ldots, k, k / 2)(k, k-1, \ldots, 1)^{((h-3) / 2)+1}(1,2, \ldots, k)^{((h-3) / 2)}
$$

It is clear by the coloring that P is well-distributed. Moreover, for $1 \leqslant i \leqslant k / 2$, we have,

$$
\begin{aligned}
\sum X_{i}-\sum X_{1}= & (k / 2+1-i-k / 2)+(k+1+2 i-k-3) \\
& +\left(\frac{h-3}{2}+1\right)(1-i)+\frac{h-3}{2}(i-1)=0
\end{aligned}
$$

A similar computation shows that $\sum X_{i}-\sum X_{1}$ takes the same value when $k / 2<i \leqslant k$, so that $\left|\sum P\right|=1$.
Remark 4. Note that the statements of the three above lemmas can be extended to any integer translation of the set X.

3. C_{3} and C_{4}-magic graphs

Let $W_{n}=C_{n}+\{v\}$ denote the wheel with a rim of order n. Clearly W_{n} admits a covering by triangles. As an application of Lemma 2, we next show that any odd wheel is a C_{3}-supermagic graph.

Theorem 5. The wheel W_{n} for $n \geqslant 5$ odd, is C_{3}-supermagic.
Proof. Denote by $v_{1}, v_{2}, \ldots, v_{n}$ the vertices in the n-cycle of the wheel W_{n} and by v its central vertex. For $1 \leqslant i \leqslant n$ let $N_{i}=\left\{v_{i}, v_{i} v\right\}$.
Define a total labelling f of W_{n} on [1, $\left.3 n+1\right]$ as follows. Set $f(v)=1, f\left(v_{n} v_{1}\right)=2 n+2$ and for $1 \leqslant i<n$, $f\left(v_{i} v_{i+1}\right)=3 n+2-i$. Therefore, $f\left(E\left(C_{n}\right)\right)=[2 n+2,3 n+1]$.

We have to define f on $N=\cup_{i=1}^{n} N_{i}$ in such a way that $f(N)=[2,2 n+1]$.
Since n is odd, by Lemma 2 there is a well-distributed n-equipartition $P=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $X=1+[1,2 n]$, such that $\sum X_{i}=\sum X_{1}+(i-1) . X_{i}=\left\{x_{i, 1}<x_{i, 2}\right\}$. Since P is well-distributed, we have $1<x_{i, 1} \leqslant n+1$ and $n+1<x_{i, 2} \leqslant 1+2 n$.

Let α be the permutation of $[1, n]$ given by

$$
\alpha(i)= \begin{cases}i / 2, & i \text { even, } \\ (n+i) / 2, & i \text { odd. }\end{cases}
$$

Since n is odd, α is a permutation of $[1, n]$. Moreover, $\alpha(i)+\alpha(i+1)=i+(n+1) / 2$ for $1 \leqslant i \leqslant n-1$ and $\alpha(n)+$ $\alpha(1)=(3 n+1) / 2$.

Define f on each N_{i} by the bijection from N_{i} to $X_{\alpha(i)}$ given by

$$
f\left(v_{i}\right)=x_{\alpha(i), 1} \quad \text { and } \quad f\left(v v_{i}\right)=x_{\alpha(i), 2} .
$$

Note that $1<f\left(v_{i}\right) \leqslant n+1$ and $n+1<f\left(v v_{i}\right) \leqslant 2 n+1$, so that $f(V(N))=[2, n+1]$ and $f(E(N))=[n+2,2 n+1]$. Hence, if f is C_{3}-magic, then it is C_{3}-supermagic.

Let us show that $\sum f(H)$ is constant in every triangle H of W_{n}. Now we prove that f take the same sum in every subgraph H of W_{n} isomorphic to C_{3}. Since $n \geqslant 5$, each triangle H has vertex set either $\left\{v, v_{i}, v_{i+1}\right\}$ for some $1 \leqslant i<n$, or $\left\{v, v_{n}, v_{1}\right\}$. Therefore,

$$
\begin{aligned}
\sum f(H) & =\sum f\left(N_{i}\right)+\sum f\left(N_{i+1}\right)+f\left(v_{i} v_{i+1}\right)+f(v) \\
& =2 \sum X_{1}+\alpha(i)+\alpha(i+1)-2+(3 n+2-i)+1 \\
& =2 \sum X_{1}+i+(n+1) / 2+(3 n+1)-i \\
& =2 \sum X_{1}+(7 n+3) / 2 \\
& =\sum f\left(N_{n}\right)+\sum f\left(N_{1}\right)+f\left(v_{n} v_{1}\right)+f(v) .
\end{aligned}
$$

which is independent of i as claimed. This completes the proof.
Fig. 2 shows an example of the C_{3}-supermagic labelling defined in the above proof.
Remark 6. In Fig. 3 two quite different C_{3}-magic labellings of the wheels W_{4} and W_{6} are displayed. We do not know if the wheel $W_{2 r}$ with $r>3$ is a C_{3}-magic graph.

Another application of Lemma 2 provides a large family of C_{4}-supermagic graphs. Clearly, for any graph G, the Cartesian product $G \times K_{2}$ can be covered by 4 -cycles.

Theorem 7. Let G be a C_{4}-free supermagic graph of odd size. Then, the graph $G \times K_{2}$ is C_{4}-supermagic.
Proof. Let n and m be, respectively, the order and size of $G=(V, E)$. We have to show a C_{4}-supermagic total labelling of $G \times K_{2}$ with the integers in $[1,3 n+2 m]$.

Fig. 2. C_{3}-supermagic labelling of W_{7}.

Fig. 3. C_{3}-magic labelings of W_{4} and W_{6}.

For each vertex $x \in V(G)$ denote by $x_{0}, x_{1} \in V\left(G \times K_{2}\right)$ the corresponding vertices in the two copies of G and $x_{0} x_{1} \in E\left(G \times K_{2}\right)$ the edge joining them. Denote by $A_{x}=\left\{x_{0}, x_{1}, x_{0} x_{1}\right\}$ and by $A=\cup_{x \in V} A_{x} \subset V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$. We have $|A|=3 n$. Now, for each edge $x y \in E(G)$, denote by $B_{x y}=\left\{x_{0} y_{0}, x_{1} y_{1}\right\}$ the corresponding edges in the two copies of G and $B=\cup_{x y \in E(G)} B_{x y}$. We have $|B|=2 m$. Clearly, $\{A, B\}$ is a partition of the set $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$.

By Lemma 2 there is a well-distributed n-equipartition $P_{1}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $[1,3 n]$, such that $\sum X_{i}=a+i$ for some integer a.

Since m is odd, Lemma 2 also ensures a well-distributed m-equipartition $P_{2}=\left\{Y_{1}, \ldots, Y_{m}\right\}$ of $3 n+[1,2 m]$ such that $\sum Y_{i}=b+i$ for some integer b.

Let f be a supermagic labelling of G with supermagic sum $s(f)$. Define a total labelling f^{\prime} of $G \times K_{2}$ as follows. For $x \in V(G)$ define f^{\prime} on A_{x} by any bijection from A_{x} to $X_{f(x)}$ (the bijection depends on f.) Similarly, for $x y \in E(G)$ define f^{\prime} on $B_{x y}$ by any bijection from $B_{x y}$ to $Y_{f(x y)-n}$ (again the bijection depends on f.) Then, the map f^{\prime} is a bijection from $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$ to $[1,3 n+2 m]$. In addition, as P_{1} is well distributed in [1,3n], we can choose f^{\prime} verifying $f^{\prime}\left(V\left(G \times K_{2}\right)\right)=[1,2 n]$.

Now let H be a subgraph of $G \times K_{2}$ isomorphic to a 4-cycle. Since G is C_{4}-free, every 4-cycle H of $G \times K_{2}$ has the form,

$$
V(H) \cup E(H)=A_{x} \cup A_{y} \cup B_{x y}
$$

where $x, y \in V(G)$ and $x y \in E(G)$. Then, the sum of the elements in any 4-cycle H of $G \times K_{2}$ is

$$
\begin{aligned}
f^{\prime}(H) & =f^{\prime}\left(A_{x}\right)+f^{\prime}\left(A_{y}\right)+f^{\prime}\left(B_{x y}\right) \\
& =2 a+f(x)+f(y)+b+f(x y)-n \\
& =2 a+b+s(f)-n .
\end{aligned}
$$

independent of H.
As an application of Theorem 7 we have next Corollary.

Corollary 8. The following two families of graphs are C_{4}-supermagic for n odd.
(1) The prims, $C_{n} \times K_{2}$.
(2) The books, $K_{1, n} \times K_{2}$.

4. C_{r}-magic graphs

In this section we give a family of C_{r}-supermagic graphs for any integer $r \geqslant 3$. Let C_{r} be a cycle of length $r \geqslant 3$. Consider the graph $W(r, k)$ obtained by identifying one vertex in each of $k \geqslant 2$ disjoint copies of the cycle C_{r}. The resulting graphs are called windmills, and $W(3, k)$ is also known as the friendship graph. Note that windmills clearly admit a C_{r}-covering. We next show that they are C_{r}-supermagic graphs.

Theorem 9. For any two integers $k \geqslant 2$ and $r \geqslant 3$, the windmill $W(r, k)$ is C_{r}-supermagic.
Proof. Let G_{1}, \ldots, G_{k} be the r-cycles of $W(r, k)$ and let v their only common vertex. Denote by $G^{*}=W(r, k) \backslash\{v\}$ and its set of vertices and edges by V^{*} and E^{*}, respectively. Therefore we have, $\left|V^{*}\right|=(r-1) k$ and $\left|E^{*}\right|=r k$.

We want to define a C_{r}-supermagic total labelling f of $W(k, r)$ with the integers of $[1,(2 r-1) k+1]$ such that $f(V(W(r, k)))=f\left(V^{*} \cup\{v\}\right)=[1,(r-1) k]+1$.
Suppose first that k is odd. Let $f(v)=1$.
By Lemma 3(i) there is a k-equipartition $P_{1}=\left\{X_{1}, \ldots, X_{k}\right\}$ of the set $1+[1,(2 r-1) k]$ such that $\left|\sum P_{1}\right|=1$. Furthermore, as it is well distributed, in each set X_{i} there are $r-1$ elements less or equal than $1+(r-1) k$.

Define f on each $G_{i}^{*}=G_{i} \backslash\{v\}, 1 \leqslant i \leqslant k$, by any bijection from G_{i}^{*} to X_{i} such that $f\left(V_{i}^{*}\right) \subset[1,(r-1) k]+1$.
Suppose now that k is even. Now, let $f(v)=k / 2+1$.
By Lemma 3(ii) there is a k-equipartition $P=\left\{X_{1}, \ldots, X_{k}\right\}$ of the set $[1,(2 r-1) k+1] \backslash\{k / 2+1\}$ such that $\left|\sum P\right|=1$. Furthermore, there are $r-1$ elements less or equal than $1+k(r-1)$ in each set X_{i}.

In this case, define also $f\left(G_{i}^{*}\right)$ by any bijection from V_{i}^{*} to X_{i} such that $f\left(V_{i}^{*}\right) \subset[1,(r-1) k+1] \backslash\{k / 2+1\}$.
In both cases, for each $1 \leqslant i \leqslant k$,

$$
f\left(G_{i}\right)=\sum X_{i}+f(v)
$$

Hence f is a C_{r}-supermagic labelling of the windmill $W(k, r)$.
Fig. 4 shows examples of cycle-supermagic labellings of windmills for different parities of the cycles.

Fig. 4. C_{k} supermagic labelling of $W(k, k)$ for $k=3,4$.

Fig. 5. The subdivided wheel $W_{6}(3,2)$.

Next, we consider a family of graphs obtained by subdivisions of a wheel. The subdivided wheel $W_{n}(r, k)$ is the graph obtained from a wheel W_{n} by replacing each radial edge $v v_{i}, 1 \leqslant i \leqslant n$ by a $v v_{i}$-path of size $r \geqslant 1$, and every external edge $v_{i} v_{i+1}$ by a $v_{i} v_{i+1}$-path of size $k \geqslant 1$. It is clear that, $\left|V\left(W_{n}(r, k)\right)\right|=n(r+k)+1$ and $\left|E\left(W_{n}(r, k)\right)\right|=n(r+k)$.

Fig. 5 shows a subdivided wheel of W_{6}.
Theorem 10. Let r and k be two positive integers. The subdivided wheel $W_{n}(r, k)$ is $C_{2 r+k}$-magic for any odd $n \neq$ $2 r / k+1$. Furthermore, $W_{n}(r, 1)$ is $C_{2 r+1}$-supermagic.

Proof. Let $n \geqslant 3$ be an odd integer.
Denote by v the central vertex of the subdivided wheel $W_{n}(r, k)$ and by $v_{1}, v_{2}, \ldots, v_{n}$ the remaining vertices of degree >2. For $1 \leqslant i \leqslant n$ let P_{i} be the $v v_{i}$-path of length $r \geqslant 1$.

Let $P_{i}^{*}=P_{i} \backslash\{v\}, 1 \leqslant i \leqslant n$ and $P^{*}=\cup_{i=1}^{n} P_{i}^{*}$.
Suppose first $k=1$.
In this case, we want a $C_{2 r+1}$-magic labelling f on $W_{n}(r, 1)$ with the integers in $[1,1+2 n r+n]$ such that $f(V)=$ $[1, n r+1]$. Let $f(v)=1$ and $f\left(v_{n} v_{1}\right)=2 n r+2$ and label the remaining edges of the external cycle of $W_{n}(r, 1)$ by $f\left(v_{i} v_{i+1}\right)=2 n r+2+n-i, 1 \leqslant i<n$.

The only elements left to label are the ones in P^{*}, with $\left|P^{*}\right|=2 n r$. Since $n \geqslant 3$ is odd, Lemma 2 ensures the existence of a well-distributed n-equipartition $P=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $1+[1,2 n r]$ such that $\sum X_{i}=a+i, 1 \leqslant i \leqslant n$ for some constant a. Moreover, as P is well distributed, each X_{i} has r elements in $1+[1, n r+1]$. Now define f on each P_{i}^{*} by a bijection with $X_{\alpha(i)}$ which assigns the first r values of $[1, n r]$ to the vertices, where α is the following permutation of $[1, n]$.

$$
\alpha(i)= \begin{cases}i / 2, & i \text { even } \\ (n+i) / 2, & i \text { odd }\end{cases}
$$

Note that, as n is odd, $\alpha(n)+\alpha(1)=n+(n+1) / 2$ and, for $1 \leqslant i<n$, we have $\alpha(i)+\alpha(i+1)=i+(n+1) / 2$.
Therefore, f is clearly a bijection from $W_{n}(r, 1)$ to $[1, n(2 r+1)+1]$, and $f(V)=[1, n r+1]$.
Now, since $n \neq 2 r+1$, for every subgraph H of $W_{n}(r, 1)$ isomorphic to $C_{2 r+1}$, we have either $V(H) \cup E(H)=$ $\{v\} \cup P_{n}^{*} \cup\left\{v_{n} v_{1}\right\} \cup P_{1}^{*}$ or

$$
V(H) \cup E(H)=\{v\} \cup P_{i}^{*} \cup\left\{v_{i} v_{i+1}\right\} \cup P_{i+1}^{*}
$$

for some $1 \leqslant i<n$.
Therefore, for each $1 \leqslant i<n$, we have

$$
\begin{aligned}
\sum f(H) & =\sum f\left(P_{i}^{*}\right)+\sum f\left(P_{i+1}^{*}\right)+f\left(v_{i} v_{i+1}\right)+f(v) \\
& =2 a+\alpha(i)+\alpha(i+1)+(n(2 r+1)+2-i)+1 \\
& =2 a+2 n r+\frac{3 n+7}{2}
\end{aligned}
$$

which is independent of i. A similar computation shows that $\sum f\left(P_{n}^{*}\right)+\sum f\left(P_{1}^{*}\right)+f\left(v_{n} v_{1}\right)+f(v)$ has the same value. Hence f is a $C_{2 r+1}$-supermagic labelling of $W_{n}(r, 1)$.

Suppose now $k>1$.
In this case, for each $1 \leqslant i \leqslant n$, let Q_{i} be the $v_{i} v_{i+1}$-path of length $k \geqslant 1$. Denote by $Q_{i}^{*}=Q_{i} \backslash\left\{v_{i}, v_{i+1}\right\}$ and $Q^{*}=\cup_{i} Q_{i}^{*}$.
By Lemma 2 there is a well-distributed n-equipartition $P_{2}=\left\{Y_{1}, \ldots, Y_{n}\right\}$, of the set $2 n r+[1, n(2 k-1)]$, such that for $1 \leqslant i \leqslant n, \sum Y_{i}=b+i$, for some constant b.

Define a total labelling f of $W_{n}(r, k)$ on $[1, n(2 k-1)]$ as follows. Set $f(v)=2 n(r+k)-n+1$. Define f on P_{i}^{*} by any bijection from P_{i}^{*} to $X_{\alpha(i)}$, where $P=\left\{X_{1}, \ldots, X_{k}\right\}$ and α are as in the above case. Define f on Q_{i}^{*} by any bijection to Y_{n+1-i}.

Since $n \neq 2 r / k+1$, every subgraph H of $W_{n}(r, k)$ isomorphic to $C_{2 r+k}$ verifies either $V(H) \cup E(H)=\{v\} \cup P_{n}^{*} \cup$ $Q_{n}^{*} \cup P_{1}^{*}$ or

$$
V(H) \cup E(H)=\{v\} \cup P_{i}^{*} \cup Q_{i}^{*} \cup P_{i+1}^{*},
$$

for some $1 \leqslant i<n$.
Then, for each $1 \leqslant i<n$ we have,

$$
\begin{aligned}
\sum f(H) & =\sum f\left(P_{i}^{*}\right)+\sum f\left(P_{i+1}^{*}\right)+f\left(Q_{i}^{*}\right)+f(v) \\
& =2 a+\alpha(i)+\alpha(i+1)+b+(n+1-i)+2 n(r+k)-n+1 \\
& =2 a+b+2 n(r+k)+\frac{n+5}{2} .
\end{aligned}
$$

It is also immediate to check that the labels of the remaining $(2 r+k)$-cycle have also the same sum.
Fig. 6 shows examples of cycle-supermagic labellings as defined in the above proof.
We finish by giving another family of cycle-supermagic graphs. Recall that, for a sequence k_{1}, \ldots, k_{n} of positive integers, the graph $\Theta\left(k_{1}, \ldots, k_{n}\right)$ consists of n internally disjoint paths of orders $k_{1}+2, \ldots, k_{n}+2$ joined by two end vertices u and v. When all the paths have the same size p, this graph, denoted by $\Theta_{n}(p)$, admits a $C_{2 p}$-covering. We next show that such a graph is $C_{2 p}$-supermagic.

Theorem 11. The graph $\Theta_{n}(p)$ is $C_{2 p}$-supermagic for $n, p \geqslant 2$.
Proof. Let u and v be the common end vertices of the paths P_{1}, \ldots, P_{n} in $\Theta_{n}(p)=(V, E)$. Denote by $\widetilde{P}_{i}=P_{i} \backslash\{u, v\}$, $1 \leqslant i \leqslant n$.
We want to define a total labelling f of $\Theta_{n}(p)$ with integers from the interval $[1,(2+(p-1) n)+n p]$ such that $f(V)=[1,2+(p-1) n]$.

b

Fig. 6. (a) C_{5}-supermagic labelling of $W_{7}(2,1)$. (b) C_{8}-magic labelling of $W_{3}(3,2)$.

Fig. 7. C_{6}-supermagic labelling of $\Theta_{4}(3)$ and C_{8}-supermagic labelling of $\Theta_{3}(4)$.

If n is odd, Lemma 3(i) provides a n-equipartition $P=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $2+[1,(2 p-1) n]$ such that $\sum X_{1}=\cdots=\sum X_{n}=a$, for some constant a, and, as it is well distributed, in each X_{i} there are $p-1$ integers less or equal than $2+(p-1) n$.

Define a total labelling f on $\Theta_{n}(p)$ as follows. Set $f(u)=1, f(v)=2$ and f on \widetilde{P}_{i} by a bijection from \widetilde{P}_{i} to X_{i} such that the $p-1$ numbers in each X_{i} that are less or equal than $2+(p-1) n$ are used for the $p-1$ vertices in each \widetilde{P}_{i}.

Every subgraph H of $\Theta_{n}(p)$ isomorphic to $C_{2 p}$ is of the form

$$
V(H) \cup E(H)=\{u\} \cup \widetilde{P}_{i} \cup\{v\} \cup \widetilde{P_{j}}
$$

for $1 \leqslant i<j \leqslant n$.
It is easy to check that $\sum f(H)=2 a+3$.
Assume now that n is even. By Lemma 3(ii) there exists a n-equipartition $P=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $[1,(2 p-$ 1) $n+2] \backslash\{1, n / 2+2\}$ such that $\sum X_{1}=\cdots=\sum X_{n}=a$, for some constant a. Moreover, since P is well-distributed, in each X_{i} there are $p-1$ numbers less or equal than $2+(p-1) n$.

Now, we proceed as before but setting $f(v)=n / 2+2$. It is immediate to check that we indeed get a $C_{2 p}$-supermagic labelling of $\Theta_{n}(p)$.

In Fig. 7 two supermagic labellings of $\Theta_{n}(p)$ for different parities of n and p are displayed.

References

[1] M. Baca, On magic labelings of convex polytopes, Ann. Discrete Math. 51 (1992) 13-16.
[2] H. Enomoto, A. Llado, T. Nakimigawa, G. Ringel, Super edge magic graphs, SUT J. Math. 34 (2) (1998) 105-109.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5, DS6 (2007).
[4] A. Gutiérrez, A. Lladó, Magic coverings, J. Combin. Math. and Combin. Comput. 55 (2005) 43-56.
[5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (4) (1970) 451-461.
[6] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, International Symposium, Rome, July 1966, New York and Dunod Paris (1967) pp. 349-355.

[^0]: ${ }^{2}$ Supported by the Spanish Research Council under project MTM2005-08990-C02-01 and by the Catalan Research Council under Grant 2005SGR00256

 * Corresponding author.

 E-mail addresses: allado@ma4.upc.es (A. Lladó), jmoragas@ma4.upc.edu (J. Moragas).

