

Available online at www.sciencedirect.com

Discrete Mathematics 307 (2007) 2925-2933

www.elsevier.com/locate/disc

Cycle-magic graphs[☆]

A. Lladó*, J. Moragas

Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Jordi Girona, 1, E-08034 Barcelona, Spain

Received 10 August 2006; received in revised form 26 November 2006; accepted 11 March 2007 Available online 15 March 2007

Abstract

A simple graph G = (V, E) admits a cycle-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given cycle C. Then the graph G is C-magic if there exists a total labelling $f: V \cup E \to \{1, 2, \ldots, |V| + |E|\}$ such that, for every subgraph H' = (V', E') of G isomorphic to C, $\sum_{v \in V'} f(v) + \sum_{e \in E'} f(e)$ is constant. When $f(V) = \{1, \ldots, |V|\}$, then G is said to be C-supermagic.

We study the *cyclic*-magic and *cyclic*-supermagic behavior of several classes of connected graphs. We give several families of C_r -magic graphs for each $r \ge 3$. The results rely on a technique of partitioning sets of integers with special properties. © 2007 Elsevier B.V. All rights reserved.

Keywords: Edge coverings; Magic labelings

1. Introduction

Let G = (V, E) be a finite simple graph. An edge-covering of G is a family of subgraphs H_1, \ldots, H_k such that each edge of E belongs to at least one of the subgraphs H_i , $1 \le i \le k$. Then it is said that G admits an (H_1, \ldots, H_k) -(edge)covering. If every H_i is isomorphic to a given graph H, then G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. A bijective function

$$f: V \cup E \to \{1, 2, \dots, |V| + |E|\},\$$

is an *H-magic labelling* of G whenever, for every subgraph H' = (V', E') of G isomorphic to H,

$$f(H') = \sum_{v \in V'} f(v) + \sum_{e \in E'} f(e)$$

is constant. In this case we say that the graph G is H-magic. If $f(V) = \{1, \ldots, |V|\}$, G is said to be H-supermagic. The constant value that every copy of H takes under the labelling f is denoted by m(f) in the magic case and by s(f) in the supermagic case. Fig. 1 shows an example of a C_3 -supermagic labelling.

E-mail addresses: allado@ma4.upc.es (A. Lladó), jmoragas@ma4.upc.edu (J. Moragas).

[↑] Supported by the Spanish Research Council under project MTM2005-08990-C02-01 and by the Catalan Research Council under Grant 2005SGR00256

^{*} Corresponding author.

Fig. 1. C_3 -supermagic covering.

The notion of H-magic graphs was introduced in [4] as an extension of the magic valuation given by Rosa [6] in 1967, see also [5], which corresponds to the case $H = K_2$. Supermagic labellings were treated in [2]. For these and other related labelling notions see the survey of Gallian [3].

When $H = K_2$ we say that a K_2 -magic or supermagic graph is simply magic or supermagic. Many authors in this case use the terminology edge-magic or super edge-magic graph.

In this paper we study H-magic labellings when H is a cycle C_r . In this case we speak of cycle-magic labellings and cycle-magic graphs. A related notion of face-magic labellings of a planar graph G asks for a total labelling such that the sum over vertices and edges of each face of a planar embedding of G is constant; see, for instance, Baca [1]. When all faces have the same number r of edges, a C_r -magic labelling of G is also a face magic labelling of the graph.

The paper is organized as follows. In Section 3 we show that the wheel W_n with n odd is C_3 -magic and that the Cartesian product of a C_4 -free supermagic graph with K_2 is C_4 -magic. In particular, the odd prisms and books are C_4 -supermagic. In Section 4 we show that the windmill W(r, k) is C_r -magic, thus providing a family of C_r -magic graphs for each $r \ge 3$. It is also shown that subdivided wheels and uniform Θ -graphs are cycle-magic. All these results rely on a technique of partitioning sets of integers with special properties introduced in [4]. This is explained in Section 2.

2. Notation and preliminary results

We will use the following notations.

For any two integers n < m we denote by [n, m] the set of all consecutive integers from n to m. For a set $I \subset \mathbb{N}$ we write, $\sum I = \sum_{x \in I} x$. Note that, for any $k \in \mathbb{N}$,

$$\sum (I+k) = \sum I + k|I|.$$

Finally, given a total labelling f of a graph G = (V, E), we denote by

$$f(G) = \sum f(V) + \sum f(E).$$

However, we will use the same notation although G is not a graph but a set of vertices and edges.

Let $P = \{X_1, ..., X_k\}$ be a partition of a set X of integers. The set of subset sums of P is denoted by $\sum P = \{\sum X_1, ..., \sum X_k\}$. If all elements of P have the same cardinality, then P is said to be a k-equipartition of X.

We shall describe a partition $P = \{X_1, \dots, X_k\}$ of a set $X = \{x_1, x_2, \dots, x_n\}$ by giving a k-coloring on the elements of X in such a way that X_i contains all the elements with color $i, 1 \le i \le k$. For example, the coloring (1, 2, 1, 2, 2, 1) means that $X_1 = \{x_1, x_3, x_6\}$ and $X_2 = \{x_2, x_4, x_5\}$. When some pattern of colors (c_1, c_2, \dots, c_r) is repeated t times we write $(c_1, c_2, \dots, c_r)^t$. For instance, the coloring (1, 2, 1, 2, 2, 1) is denoted by $(1, 2)^2(2, 1)$.

We say that a k-equipartition $P = \{X_1, \dots, X_k\}$ of a set of integers $X = \{x_1 < x_2 < \dots < x_{hk}\}$ is well-distributed if for each $0 \le j < h$, the elements $x_l \in X$, with $l \in [jk+1, (j+1)k]$, belong to distinct parts of P. For instance, $P_1 = \{\{1, 4, 5\}, \{2, 3, 6\}\}$ and $P_2 = \{\{1, 3, 5\}, \{2, 4, 6\}\}$, are well-distributed 2-equipartitions of X = [1, 6] while $P_3 = \{\{1, 2, 3\}, \{4, 5, 6\}\}$ is not.

We will use the next two lemmas proved in [4] for *k*-equipartitions. It is easily checked that the proofs given in [4] provide in fact well-distributed partitions.

Lemma 1 (*Gutiérrez and Lladó* [4]). Let h and k be two positive integers. For each integer $0 \le t \le \lfloor h/2 \rfloor$, there exists a well-distributed k-equipartition P of [1, hk] such that $\sum P$ is an arithmetic progression of difference d = h - 2t.

Lemma 2 (Gutiérrez and Lladó [4]). Let h and k be two positive integers. If h or k are not both even, there exists a well-distributed k-equipartition P of [1, hk] such that $\sum P$ is a set of consecutive integers.

Next lemma provide well-distributed equipartitions where all the parts have the same sum.

Lemma 3. Let $h \ge 3$ be an odd integer. If either

- (1) k is odd and X = [1, hk], or
- (2) k is even and $X = [1, hk + 1] \setminus \{k/2 + 1\}$.

there is a well-distributed k-equipartition P of X such that $|\sum P| = 1$.

Proof. (1) By Lemma 2 there is a well-distributed k-equipartition $P' = \{Y_1, \dots, Y_k\}$ of the interval Y = [1, (h-1)k] such that

$$\sum P' = \left\{ \sum Y_1 + (i-1) : 1 \leqslant i \leqslant k \right\}.$$

Consider the partition $P = \{X_1, \dots, X_k\}$ of [1, hk], where

$$X_i = Y_i \cup \{(1-i) + hk : 1 \le i \le k\}.$$

It is clear that P is a k-equipartition of [1, hk].

As P' is a well-distributed k-equipartition of [1, (h-1)k] and there is one element of each part in [(h-1)k+1, hk], P is also well-distributed.

In addition, for any $1 \le i \le k$ we have,

$$\sum X_i = \sum Y_1 + (i-1) + (1-i) + hk = \sum Y_1 + hk,$$

which is independent of *i* and therefore $|\sum P| = 1$.

(2) Let k be an even number and $X = [1, hk + 1] \setminus \{k/2 + 1\}$.

Set $A = [1, k+1] \setminus \{k/2+1\}$ and B = [k+2, hk+1]. Clearly, |A| = k, |B| = (h-1)k and $X = A \cup B$.

Consider now the partition $P = \{X_1, \dots, X_k\}$ given by the following k-coloring of $A \cup B$.

Color the *k* elements of *A* by

$$(k/2, k/2 - 1, \dots, 1)(k, k - 1, \dots, k/2 + 1).$$

Now color the (h-1)k elements of B by

$$(k/2+1, 1, k/2+2, 2, ..., k, k/2)(k, k-1, ..., 1)^{((h-3)/2)+1}(1, 2, ..., k)^{((h-3)/2)}$$

It is clear by the coloring that P is well-distributed. Moreover, for $1 \le i \le k/2$, we have,

$$\sum X_i - \sum X_1 = (k/2 + 1 - i - k/2) + (k+1+2i-k-3) + \left(\frac{h-3}{2} + 1\right)(1-i) + \frac{h-3}{2}(i-1) = 0.$$

A similar computation shows that $\sum X_i - \sum X_1$ takes the same value when $k/2 < i \le k$, so that $|\sum P| = 1$.

Remark 4. Note that the statements of the three above lemmas can be extended to any integer translation of the set X.

3. C_3 and C_4 -magic graphs

Let $W_n = C_n + \{v\}$ denote the wheel with a rim of order n. Clearly W_n admits a covering by triangles. As an application of Lemma 2, we next show that any odd wheel is a C_3 -supermagic graph.

Theorem 5. The wheel W_n for $n \ge 5$ odd, is C_3 -supermagic.

Proof. Denote by v_1, v_2, \ldots, v_n the vertices in the *n*-cycle of the wheel W_n and by v its central vertex. For $1 \le i \le n$ let $N_i = \{v_i, v_i v\}$.

Define a total labelling f of W_n on [1, 3n + 1] as follows. Set f(v) = 1, $f(v_n v_1) = 2n + 2$ and for $1 \le i < n$, $f(v_i v_{i+1}) = 3n + 2 - i$. Therefore, $f(E(C_n)) = [2n + 2, 3n + 1]$.

We have to define f on $N = \bigcup_{i=1}^{n} N_i$ in such a way that f(N) = [2, 2n + 1].

Since n is odd, by Lemma 2 there is a well-distributed n-equipartition $P = \{X_1, \ldots, X_n\}$ of the set X = 1 + [1, 2n], such that $\sum X_i = \sum X_1 + (i-1)$. $X_i = \{x_{i,1} < x_{i,2}\}$. Since P is well-distributed, we have $1 < x_{i,1} \le n+1$ and $n+1 < x_{i,2} \le 1+2n$.

Let α be the permutation of [1, n] given by

$$\alpha(i) = \begin{cases} i/2, & i \text{ even,} \\ (n+i)/2, & i \text{ odd.} \end{cases}$$

Since *n* is odd, α is a permutation of [1, n]. Moreover, $\alpha(i) + \alpha(i+1) = i + (n+1)/2$ for $1 \le i \le n-1$ and $\alpha(n) + \alpha(1) = (3n+1)/2$.

Define f on each N_i by the bijection from N_i to $X_{\alpha(i)}$ given by

$$f(v_i) = x_{\alpha(i),1}$$
 and $f(vv_i) = x_{\alpha(i),2}$.

Note that $1 < f(v_i) \le n+1$ and $n+1 < f(vv_i) \le 2n+1$, so that f(V(N)) = [2, n+1] and f(E(N)) = [n+2, 2n+1]. Hence, if f is C_3 -magic, then it is C_3 -supermagic.

Let us show that $\sum f(H)$ is constant in every triangle H of W_n . Now we prove that f take the same sum in every subgraph H of W_n isomorphic to C_3 . Since $n \ge 5$, each triangle H has vertex set either $\{v, v_i, v_{i+1}\}$ for some $1 \le i < n$, or $\{v, v_n, v_1\}$. Therefore,

$$\sum f(H) = \sum f(N_i) + \sum f(N_{i+1}) + f(v_i v_{i+1}) + f(v)$$

$$= 2 \sum X_1 + \alpha(i) + \alpha(i+1) - 2 + (3n+2-i) + 1$$

$$= 2 \sum X_1 + i + (n+1)/2 + (3n+1) - i$$

$$= 2 \sum X_1 + (7n+3)/2$$

$$= \sum f(N_n) + \sum f(N_1) + f(v_n v_1) + f(v).$$

which is independent of i as claimed. This completes the proof. \square

Fig. 2 shows an example of the C_3 -supermagic labelling defined in the above proof.

Remark 6. In Fig. 3 two quite different C_3 -magic labellings of the wheels W_4 and W_6 are displayed. We do not know if the wheel W_{2r} with r > 3 is a C_3 -magic graph.

Another application of Lemma 2 provides a large family of C_4 -supermagic graphs. Clearly, for any graph G, the Cartesian product $G \times K_2$ can be covered by 4-cycles.

Theorem 7. Let G be a C_4 -free supermagic graph of odd size. Then, the graph $G \times K_2$ is C_4 -supermagic.

Proof. Let *n* and *m* be, respectively, the order and size of G = (V, E). We have to show a C_4 -supermagic total labelling of $G \times K_2$ with the integers in [1, 3n + 2m].

Fig. 2. C_3 -supermagic labelling of W_7 .

Fig. 3. C_3 -magic labelings of W_4 and W_6 .

For each vertex $x \in V(G)$ denote by $x_0, x_1 \in V(G \times K_2)$ the corresponding vertices in the two copies of G and $x_0x_1 \in E(G \times K_2)$ the edge joining them. Denote by $A_x = \{x_0, x_1, x_0x_1\}$ and by $A = \bigcup_{x \in V} A_x \subset V(G \times K_2) \cup E(G \times K_2)$. We have |A| = 3n. Now, for each edge $xy \in E(G)$, denote by $B_{xy} = \{x_0y_0, x_1y_1\}$ the corresponding edges in the two copies of G and $B = \bigcup_{xy \in E(G)} B_{xy}$. We have |B| = 2m. Clearly, $\{A, B\}$ is a partition of the set $V(G \times K_2) \cup E(G \times K_2)$.

By Lemma 2 there is a well-distributed *n*-equipartition $P_1 = \{X_1, \dots, X_n\}$ of the set [1, 3n], such that $\sum X_i = a + i$ for some integer a.

Since m is odd, Lemma 2 also ensures a well-distributed m-equipartition $P_2 = \{Y_1, \dots, Y_m\}$ of 3n + [1, 2m] such that $\sum Y_i = b + i$ for some integer b.

Let f be a supermagic labelling of G with supermagic sum s(f). Define a total labelling f' of $G \times K_2$ as follows. For $x \in V(G)$ define f' on A_x by any bijection from A_x to $X_{f(x)}$ (the bijection depends on f.) Similarly, for $xy \in E(G)$ define f' on B_{xy} by any bijection from B_{xy} to $Y_{f(xy)-n}$ (again the bijection depends on f.) Then, the map f' is a bijection from $V(G \times K_2) \cup E(G \times K_2)$ to [1, 3n + 2m]. In addition, as P_1 is well distributed in [1, 3n], we can choose f' verifying $f'(V(G \times K_2)) = [1, 2n]$.

Now let H be a subgraph of $G \times K_2$ isomorphic to a 4-cycle. Since G is C_4 -free, every 4-cycle H of $G \times K_2$ has the form,

$$V(H) \cup E(H) = A_x \cup A_y \cup B_{xy}$$

where $x, y \in V(G)$ and $xy \in E(G)$. Then, the sum of the elements in any 4-cycle H of $G \times K_2$ is

$$f'(H) = f'(A_x) + f'(A_y) + f'(B_{xy})$$

= $2a + f(x) + f(y) + b + f(xy) - n$
= $2a + b + s(f) - n$.

independent of H.

As an application of Theorem 7 we have next Corollary.

Corollary 8. The following two families of graphs are C_4 -supermagic for n odd.

- (1) The prims, $C_n \times K_2$.
- (2) The books, $K_{1,n} \times K_2$.

4. C_r -magic graphs

In this section we give a family of C_r -supermagic graphs for any integer $r \ge 3$. Let C_r be a cycle of length $r \ge 3$. Consider the graph W(r, k) obtained by identifying one vertex in each of $k \ge 2$ disjoint copies of the cycle C_r . The resulting graphs are called *windmills*, and W(3, k) is also known as the friendship graph. Note that windmills clearly admit a C_r -covering. We next show that they are C_r -supermagic graphs.

Theorem 9. For any two integers $k \ge 2$ and $r \ge 3$, the windmill W(r, k) is C_r -supermagic.

Proof. Let G_1, \ldots, G_k be the r-cycles of W(r, k) and let v their only common vertex. Denote by $G^* = W(r, k) \setminus \{v\}$ and its set of vertices and edges by V^* and E^* , respectively. Therefore we have, $|V^*| = (r-1)k$ and $|E^*| = rk$.

We want to define a C_r -supermagic total labelling f of W(k,r) with the integers of [1,(2r-1)k+1] such that $f(V(W(r,k))) = f(V^* \cup \{v\}) = [1,(r-1)k]+1$.

Suppose first that k is odd. Let f(v) = 1.

By Lemma 3(i) there is a k-equipartition $P_1 = \{X_1, \dots, X_k\}$ of the set 1 + [1, (2r - 1)k] such that $|\sum P_1| = 1$. Furthermore, as it is well distributed, in each set X_i there are r - 1 elements less or equal than 1 + (r - 1)k.

Define f on each $G_i^* = G_i \setminus \{v\}$, $1 \le i \le k$, by any bijection from G_i^* to X_i such that $f(V_i^*) \subset [1, (r-1)k] + 1$. Suppose now that k is even. Now, let f(v) = k/2 + 1.

By Lemma 3(ii) there is a k-equipartition $P = \{X_1, \dots, X_k\}$ of the set $[1, (2r-1)k+1] \setminus \{k/2+1\}$ such that $|\sum P| = 1$. Furthermore, there are r-1 elements less or equal than 1 + k(r-1) in each set X_i .

In this case, define also $f(G_i^*)$ by any bijection from V_i^* to X_i such that $f(V_i^*) \subset [1, (r-1)k+1] \setminus \{k/2+1\}$. In both cases, for each $1 \le i \le k$,

$$f(G_i) = \sum X_i + f(v).$$

Hence f is a C_r -supermagic labelling of the windmill W(k, r). \square

Fig. 4 shows examples of cycle-supermagic labellings of windmills for different parities of the cycles.

Fig. 4. C_k supermagic labelling of W(k, k) for k = 3, 4.

Fig. 5. The subdivided wheel $W_6(3, 2)$.

Next, we consider a family of graphs obtained by subdivisions of a wheel. The *subdivided wheel* $W_n(r, k)$ is the graph obtained from a wheel W_n by replacing each radial edge vv_i , $1 \le i \le n$ by a vv_i -path of size $r \ge 1$, and every external edge v_iv_{i+1} by a v_iv_{i+1} -path of size $k \ge 1$. It is clear that, $|V(W_n(r, k))| = n(r + k) + 1$ and $|E(W_n(r, k))| = n(r + k)$. Fig. 5 shows a subdivided wheel of W_6 .

Theorem 10. Let r and k be two positive integers. The subdivided wheel $W_n(r, k)$ is C_{2r+k} -magic for any odd $n \neq 2r/k + 1$. Furthermore, $W_n(r, 1)$ is C_{2r+1} -supermagic.

Proof. Let $n \ge 3$ be an odd integer.

Denote by v the central vertex of the subdivided wheel $W_n(r, k)$ and by v_1, v_2, \ldots, v_n the remaining vertices of degree > 2. For $1 \le i \le n$ let P_i be the vv_i -path of length $r \ge 1$.

Let
$$P_i^* = P_i \setminus \{v\}$$
, $1 \le i \le n$ and $P^* = \bigcup_{i=1}^n P_i^*$.

Suppose first k = 1.

In this case, we want a C_{2r+1} -magic labelling f on $W_n(r, 1)$ with the integers in [1, 1+2nr+n] such that f(V) = [1, nr+1]. Let f(v) = 1 and $f(v_n v_1) = 2nr+2$ and label the remaining edges of the external cycle of $W_n(r, 1)$ by $f(v_i v_{i+1}) = 2nr+2+n-i, 1 \le i < n$.

The only elements left to label are the ones in P^* , with $|P^*| = 2nr$. Since $n \ge 3$ is odd, Lemma 2 ensures the existence of a well-distributed n-equipartition $P = \{X_1, \ldots, X_n\}$ of the set 1 + [1, 2nr] such that $\sum X_i = a + i$, $1 \le i \le n$ for some constant a. Moreover, as P is well distributed, each X_i has r elements in 1 + [1, nr + 1]. Now define f on each P_i^* by a bijection with $X_{\alpha(i)}$ which assigns the first r values of [1, nr] to the vertices, where α is the following permutation of [1, n].

$$\alpha(i) = \begin{cases} i/2, & i \text{ even,} \\ (n+i)/2, & i \text{ odd.} \end{cases}$$

Note that, as n is odd, $\alpha(n) + \alpha(1) = n + (n+1)/2$ and, for $1 \le i < n$, we have $\alpha(i) + \alpha(i+1) = i + (n+1)/2$.

Therefore, f is clearly a bijection from $W_n(r, 1)$ to [1, n(2r + 1) + 1], and f(V) = [1, nr + 1].

Now, since $n \neq 2r + 1$, for every subgraph H of $W_n(r, 1)$ isomorphic to C_{2r+1} , we have either $V(H) \cup E(H) = \{v\} \cup P_n^* \cup \{v_n v_1\} \cup P_1^*$ or

$$V(H) \cup E(H) = \{v\} \cup P_i^* \cup \{v_i v_{i+1}\} \cup P_{i+1}^*$$

for some $1 \le i < n$.

Therefore, for each $1 \le i < n$, we have

$$\sum f(H) = \sum f(P_i^*) + \sum f(P_{i+1}^*) + f(v_i v_{i+1}) + f(v)$$

$$= 2a + \alpha(i) + \alpha(i+1) + (n(2r+1) + 2 - i) + 1$$

$$= 2a + 2nr + \frac{3n+7}{2},$$

which is independent of i. A similar computation shows that $\sum f(P_n^*) + \sum f(P_1^*) + f(v_n v_1) + f(v)$ has the same value. Hence f is a C_{2r+1} -supermagic labelling of $W_n(r, 1)$.

Suppose now k > 1.

In this case, for each $1 \le i \le n$, let Q_i be the $v_i v_{i+1}$ -path of length $k \ge 1$. Denote by $Q_i^* = Q_i \setminus \{v_i, v_{i+1}\}$ and $Q^* = \bigcup_i Q_i^*$. By Lemma 2 there is a well-distributed n-equipartition $P_2 = \{Y_1, \ldots, Y_n\}$, of the set 2nr + [1, n(2k-1)], such that for $1 \le i \le n$, $\sum Y_i = b + i$, for some constant b.

Define a total labelling f of $W_n(r, k)$ on [1, n(2k-1)] as follows. Set f(v) = 2n(r+k) - n + 1. Define f on P_i^* by any bijection from P_i^* to $X_{\alpha(i)}$, where $P = \{X_1, \ldots, X_k\}$ and α are as in the above case. Define f on Q_i^* by any bijection to Y_{n+1-i} .

Since $n \neq 2r/k + 1$, every subgraph H of $W_n(r, k)$ isomorphic to C_{2r+k} verifies either $V(H) \cup E(H) = \{v\} \cup P_n^* \cup Q_n^* \cup P_1^*$ or

$$V(H) \cup E(H) = \{v\} \cup P_i^* \cup Q_i^* \cup P_{i+1}^*,$$

for some $1 \le i < n$.

Then, for each $1 \le i < n$ we have,

$$\begin{split} \sum f(H) &= \sum f(P_i^*) + \sum f(P_{i+1}^*) + f(Q_i^*) + f(v) \\ &= 2a + \alpha(i) + \alpha(i+1) + b + (n+1-i) + 2n(r+k) - n + 1 \\ &= 2a + b + 2n(r+k) + \frac{n+5}{2}. \end{split}$$

It is also immediate to check that the labels of the remaining (2r+k)-cycle have also the same sum. \Box

Fig. 6 shows examples of cycle-supermagic labellings as defined in the above proof.

We finish by giving another family of cycle-supermagic graphs. Recall that, for a sequence k_1, \ldots, k_n of positive integers, the graph $\Theta(k_1, \ldots, k_n)$ consists of n internally disjoint paths of orders $k_1 + 2, \ldots, k_n + 2$ joined by two end vertices u and v. When all the paths have the same size p, this graph, denoted by $\Theta_n(p)$, admits a C_{2p} -covering. We next show that such a graph is C_{2p} -supermagic.

Theorem 11. The graph $\Theta_n(p)$ is C_{2p} -supermagic for $n, p \ge 2$.

Proof. Let u and v be the common end vertices of the paths P_1, \ldots, P_n in $\Theta_n(p) = (V, E)$. Denote by $\widetilde{P}_i = P_i \setminus \{u, v\}$, $1 \le i \le n$.

We want to define a total labelling f of $\Theta_n(p)$ with integers from the interval [1, (2 + (p-1)n) + np] such that f(V) = [1, 2 + (p-1)n].

Fig. 6. (a) C_5 -supermagic labelling of $W_7(2, 1)$. (b) C_8 -magic labelling of $W_3(3, 2)$.

Fig. 7. C_6 -supermagic labelling of $\Theta_4(3)$ and C_8 -supermagic labelling of $\Theta_3(4)$.

If *n* is odd, Lemma 3(i) provides a *n*-equipartition $P = \{X_1, \ldots, X_n\}$ of the set 2 + [1, (2p - 1)n] such that $\sum X_1 = \cdots = \sum X_n = a$, for some constant *a*, and, as it is well distributed, in each X_i there are p - 1 integers less or equal than 2 + (p - 1)n.

Define a total labelling f on $\Theta_n(p)$ as follows. Set f(u) = 1, f(v) = 2 and f on \widetilde{P}_i by a bijection from \widetilde{P}_i to X_i such that the p-1 numbers in each X_i that are less or equal than 2 + (p-1)n are used for the p-1 vertices in each \widetilde{P}_i . Every subgraph H of $\Theta_n(p)$ isomorphic to C_{2p} is of the form

$$V(H) \cup E(H) = \{u\} \cup \widetilde{P}_i \cup \{v\} \cup \widetilde{P}_j$$

for $1 \le i < j \le n$.

It is easy to check that $\sum f(H) = 2a + 3$.

Assume now that n is even. By Lemma 3(ii) there exists a n-equipartition $P = \{X_1, \ldots, X_n\}$ of the set $[1, (2p-1)n+2]\setminus\{1, n/2+2\}$ such that $\sum X_1 = \cdots = \sum X_n = a$, for some constant a. Moreover, since P is well-distributed, in each X_i there are p-1 numbers less or equal than 2+(p-1)n.

Now, we proceed as before but setting f(v) = n/2 + 2. It is immediate to check that we indeed get a C_{2p} -supermagic labelling of $\Theta_n(p)$. \square

In Fig. 7 two supermagic labellings of $\Theta_n(p)$ for different parities of n and p are displayed.

References

- [1] M. Baca, On magic labelings of convex polytopes, Ann. Discrete Math. 51 (1992) 13–16.
- [2] H. Enomoto, A. Llado, T. Nakimigawa, G. Ringel, Super edge magic graphs, SUT J. Math. 34 (2) (1998) 105-109.
- [3] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics 5, DS6 (2007).
- [4] A. Gutiérrez, A. Lladó, Magic coverings, J. Combin. Math. and Combin. Comput. 55 (2005) 43-56.
- [5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (4) (1970) 451-461.
- [6] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, International Symposium, Rome, July 1966, New York and Dunod Paris (1967) pp. 349–355.