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Abstract

A simple graph G = (V, E) admits a cycle-covering if every edge in E belongs at least to one subgraph of G isomorphic to a
given cycle C. Then the graph G is C-magic if there exists a total labelling f : VU E — {1,2, ..., |V| 4+ |E|} such that, for every
subgraph H' = (V’, E’) of G isomorphic to C, ", cy/ f (v) + Y_,cp f () is constant. When f(V) = (1, ..., |V]}, then G is said
to be C-supermagic.

We study the cyclic-magic and cyclic-supermagic behavior of several classes of connected graphs. We give several families of
C-magic graphs for each r > 3. The results rely on a technique of partitioning sets of integers with special properties.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be a finite simple graph. An edge-covering of G is a family of subgraphs Hj, ..., Hi such that
each edge of E belongs to at least one of the subgraphs H;, 1<i <k. Then it is said that G admits an (Hy, ..., Hy)-
(edge)covering. If every H; is isomorphic to a given graph H, then G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. A bijective function

fiVUE = (1,2,....|V|+ |E|}

is an H-magic labelling of G whenever, for every subgraph H' = (V’, E’) of G isomorphic to H,

SHY=Y " f)+ ) fle)

veV’ ecE’

is constant. In this case we say that the graph G is H-magic. If f(V)={1,...,|V]}, G is said to be H-supermagic. The
constant value that every copy of H takes under the labelling fis denoted by m () in the magic case and by s(f) in the
supermagic case. Fig. 1 shows an example of a C3-supermagic labelling.
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Fig. 1. C3-supermagic covering.

The notion of H-magic graphs was introduced in [4] as an extension of the magic valuation given by Rosa [6] in
1967, see also [5], which corresponds to the case H = K». Supermagic labellings were treated in [2]. For these and
other related labelling notions see the survey of Gallian [3].

When H = K, we say that a K>-magic or supermagic graph is simply magic or supermagic. Many authors in this
case use the terminology edge-magic or super edge-magic graph.

In this paper we study H-magic labellings when H is a cycle C,. In this case we speak of cycle-magic labellings and
cycle-magic graphs. A related notion of face-magic labellings of a planar graph G asks for a total labelling such that
the sum over vertices and edges of each face of a planar embedding of G is constant; see, for instance, Baca [1]. When
all faces have the same number r of edges, a C,-magic labelling of G is also a face magic labelling of the graph.

The paper is organized as follows. In Section 3 we show that the wheel W,, with n odd is C3-magic and that the
Cartesian product of a C4-free supermagic graph with K> is C4-magic. In particular, the odd prisms and books are
Cy4-supermagic. In Section 4 we show that the windmill W (r, k) is C,-magic, thus providing a family of C,.-magic
graphs for each r > 3. It is also shown that subdivided wheels and uniform @-graphs are cycle-magic. All these results
rely on a technique of partitioning sets of integers with special properties introduced in [4]. This is explained in
Section 2.

2. Notation and preliminary results

We will use the following notations.
For any two integers n <m we denote by [n, m] the set of all consecutive integers from n to m. For aset I C N we
write, I =) .;x. Note that, for any k € N,

Y U+k=>"1+kl|

Finally, given a total labelling f of a graph G = (V, E), we denote by

fG)=)"FV)+) f(E).

However, we will use the same notation although G is not a graph but a set of vertices and edges.

Let P = {X1,..., X)} be a partition of a set X of integers. The set of subset sums of P is denoted by Y P =
{>"X1,..., ) Xi}. If all elements of P have the same cardinality, then P is said to be a k-equipartition of X.

We shall describe a partition P = {X1, ..., Xz} ofaset X ={xy, x2, ..., x,,} by giving a k-coloring on the elements
of X in such a way that X; contains all the elements with color 7, 1 <i <k. For example, the coloring (1,2, 1, 2,2, 1)
means that X1 = {x1, x3, x¢} and X»> = {x2, x4, x5}. When some pattern of colors (cy, ¢z, ..., ¢;) is repeated ¢ times
we write (c1, ¢2, ..., ¢,)". For instance, the coloring (1,2, 1, 2, 2, 1) is denoted by (1, 2)2(2, 1).

We say that a k-equipartition P = {X7, ..., X} of a set of integers X = {x] <xo <--- <xpi} is well-distributed
if for each 0< j < h, the elements x; € X, with [ € [jk + 1, (j + 1)k], belong to distinct parts of P. For instance,
P ={{1,4,5},{2,3,6}} and P, = {{1, 3, 5}, {2, 4, 6}}, are well-distributed 2-equipartitions of X =[1, 6] while P; =
{{1, 2, 3}, {4, 5, 6}} is not.

We will use the next two lemmas proved in [4] for k-equipartitions. It is easily checked that the proofs given in [4]
provide in fact well-distributed partitions.
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Lemma 1 (Gutiérrez and Llado [4]). Let h and k be two positive integers. For each integer 0<t < |h/2], there exists
a well-distributed k-equipartition P of [1, hk] such that Y, P is an arithmetic progression of difference d = h — 2t.

Lemma 2 (Gutiérrez and Llado [4]). Let h and k be two positive integers. If h or k are not both even, there exists a
well-distributed k-equipartition P of [1, hk] such that )" P is a set of consecutive integers.

Next lemma provide well-distributed equipartitions where all the parts have the same sum.
Lemma 3. Let h >3 be an odd integer. If either

(1) kis odd and X = [1, hk], or
(2) kisevenand X =1, hk + 1]\{k/2 + 1}.

there is a well-distributed k-equipartition P of X such that |y P| = 1.

Proof. (1) By Lemma 2 there is a well-distributed k-equipartition P’ = {Y1, ..., Y;} of the interval Y =[1, (h — 1)k]
such that

Sp= [ZYI Y1) 1<i<k}.
Consider the partition P = {Xy, ..., X;} of [1, hk], where
Xi=Y; U{(l —i)+hk: 1<i<k}.

It is clear that P is a k-equipartition of [1, Ak].

As P’ is a well-distributed k-equipartition of [1, (& — 1)k] and there is one element of each part in [(h — 1)k + 1, k],
P is also well-distributed.

In addition, for any 1<i <k we have,

ZX,-:ZYl+(i—1)+(1—i)+hk=ZY1+hk,

which is independent of i and therefore | Y P| = L.
(2) Let k be an even number and X = [1, hk + 1]\{k/2 + 1}.
Set A=[1,k+ 11\{k/2 + 1} and B = [k + 2, hk + 1]. Clearly, |[A| =k, |B|=(h — 1)kand X = AU B.
Consider now the partition P = {X1, ..., Xi} given by the following k-coloring of A U B.
Color the k elements of A by
k/2,k/2—=1,..., Dk, k—1,...,k/24+1).
Now color the (A — 1)k elements of B by
k/2+1,1,k/24+2,2, ...k k/2)k k—1,..., )E=D2DF o0 f)(h=3/2)

It is clear by the coloring that P is well-distributed. Moreover, for 1 <i <k/2, we have,

XY Xi=k/241—i—k/2)+ (k+ 142 —k—3)

h—3 - h—3 . D=0
+(T+)( —1)+ > (i—-1=0.

A similar computation shows that > X; — >~ X takes the same value when k/2 <i<k,sothat|Y P|=1. O

Remark 4. Note that the statements of the three above lemmas can be extended to any integer translation of the set X.
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3. C3 and C4-magic graphs

Let W,,=C,, +{v} denote the wheel with a rim of order n. Clearly W,, admits a covering by triangles. As an application
of Lemma 2, we next show that any odd wheel is a C3-supermagic graph.

Theorem 5. The wheel W), for n > 5 odd, is C3-supermagic.

Proof. Denote by vy, v2, ..., v, the vertices in the n-cycle of the wheel W,, and by v its central vertex. For 1 <i<n
let N; = {v;, v;v}.

Define a total labelling f of W, on [1,3n + 1] as follows. Set f(v) =1, f(v,v1) = 2n + 2 and for 1<i <n,
fiviy1) =3n + 2 —i. Therefore, f(E(C,)) =[2n+2,3n + 1].

We have to define fon N = U!_ N; in such a way that f(N) = [2, 2n + 1].

Since n is odd, by Lemma 2 there is a well-distributed n-equipartition P = {Xq, ..., X, } of the set X =1 +[1, 2n],
such that > X; =) X1 + (i — 1). X; = {x;1 <x;2}. Since P is well-distributed, we have 1 <x; 1 <n + 1 and
n+1<xi2<142n.

Let o be the permutation of [1, n] given by

N )i/2, i even,
OC(’)_{(n+i)/2, i odd.

Since n is odd, « is a permutation of [1, n]. Moreover, (i) + a(i + 1) =i + (n + 1)/2 for 1<i<n — 1 and a(n) +
oa(l)=0CBn+1)/2.
Define f on each N; by the bijection from N; to X, ;) given by

f) =xu6)1 and [ (V) = Xg(),2-

Notethat I < f(vi)<n+1landn+1 < f(vv;)<2n+1,sothat f(V(N))=[2,n+1]and f(E(N))=[n+2,2n+1].
Hence, if fis C3-magic, then it is C3-supermagic.

Let us show that Y f(H) is constant in every triangle H of W,,. Now we prove that f take the same sum in every
subgraph H of W,, isomorphic to C3. Since n > 5, each triangle H has vertex set either {v, v;, v;4+} for some 1<i <n,
or {v, vy, v }. Therefore,

DUFH)Y =Y FND + D F(NiwD) + fivie) + [ ()
=23 Xy o)+ ol +1) —2+@n+2-i)+]1
=2) Xi+i+@+1)/2+Cn+1)—i
=2Zx1 + (Tn+3)/2
=Y FND)+ Y FIND + fwavn) + £ ().

which is independent of i as claimed. This completes the proof. [
Fig. 2 shows an example of the C3-supermagic labelling defined in the above proof.

Remark 6. In Fig. 3 two quite different C3-magic labellings of the wheels W4 and Ws are displayed. We do not know
if the wheel Wy, with r > 3 is a C3-magic graph.

Another application of Lemma 2 provides a large family of C4-supermagic graphs. Clearly, for any graph G, the
Cartesian product G x K> can be covered by 4-cycles.

Theorem 7. Let G be a Cy-free supermagic graph of odd size. Then, the graph G x K is C4-supermagic.

Proof. Letn and m be, respectively, the order and size of G = (V, E). We have to show a C4-supermagic total labelling
of G x K5 with the integers in [1, 3n + 2m].
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Fig. 2. C3-supermagic labelling of W5.

2 13 4 2 19 3
17 8 \I6
12 1 4 18
11
15 12
1 10 3 5 13 1

Fig. 3. C3-magic labelings of W4 and Wg.

For each vertex x € V(G) denote by xo, x; € V(G x K3) the corresponding vertices in the two copies of G and
xox1 € E(Gx K7) the edge joining them. Denote by A, ={xo, x1, xox1}andby A=U,cy A, C V(GXxK2)UE(GxK>).
We have |A| = 3n. Now, for each edge xy € E(G), denote by By, = {x0y0, x1y1} the corresponding edges in the two
copies of G and B =Uyycg(G)Bxy. We have | B| =2m. Clearly, {A, B} is a partition of the set V(G x K2) U E(G x K3).

By Lemma 2 there is a well-distributed n-equipartition P; = {X1, ..., X, } of the set [1, 3n], such that Y X; =a +i
for some integer a.

Since m is odd, Lemma 2 also ensures a well-distributed m-equipartition P, = {Y1, ..., Y,,} of 3n + [1, 2m] such
that ) ¥; = b + i for some integer b.

Let fbe a supermagic labelling of G with supermagic sum s( f). Define a total labelling f’ of G x K as follows. For
x € V(G) define f" on A, by any bijection from A, to X (,) (the bijection depends on f.) Similarly, for xy € E(G)
define f’ on By, by any bijection from By, to Yy(xy)—n (again the bijection depends on f.) Then, the map f’ is a
bijection from V(G x K3) U E(G x K3) to [1, 3n +2m]. In addition, as P; is well distributed in [1, 3n], we can choose
S verifying f/(V(G x K»)) =1, 2n].

Now let H be a subgraph of G x K; isomorphic to a 4-cycle. Since G is C4-free, every 4-cycle H of G x K> has the
form,

V(HYUE(H)=A,UA, U By,
where x, y € V(G) and xy € E(G). Then, the sum of the elements in any 4-cycle H of G x K3 is

f/(H) = f/(Ax) + f/(Ay) +f/(Bxy)
=2a+ f)+ f)+b+ flxy) —n
=2a+b+s(f)—n.

independent of H. [

As an application of Theorem 7 we have next Corollary.
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Corollary 8. The following two families of graphs are C4-supermagic for n odd.

(1) The prims, C, x K.
(2) The books, K1 x K.

4. C,-magic graphs

In this section we give a family of C,-supermagic graphs for any integer r >>3. Let C, be a cycle of length r >3.
Consider the graph W (r, k) obtained by identifying one vertex in each of k >2 disjoint copies of the cycle C,. The
resulting graphs are called windmills, and W (3, k) is also known as the friendship graph. Note that windmills clearly
admit a C,-covering. We next show that they are C,-supermagic graphs.

Theorem 9. For any two integers k >2 and r >3, the windmill W (r, k) is C,-supermagic.

Proof. Let Gy, ..., Gy be the r-cycles of W (r, k) and let v their only common vertex. Denote by G* = W (r, k)\{v}
and its set of vertices and edges by V* and E*, respectively. Therefore we have, |V*| = (r — 1)k and |E*| = rk.

We want to define a C,--supermagic total labelling f of W (k, r) with the integers of [1, (2r — 1)k 4+ 1] such that
FVW @ k)= f(VFU{uh) =[1, (r — Dk] + 1.

Suppose first that k is odd. Let f(v) = 1.

By Lemma 3(i) there is a k-equipartition P; = {X, ..., Xy} of the set 1 + [1, (2r — 1)k] such that | Y_ P;| = 1.
Furthermore, as it is well distributed, in each set X; there are r — 1 elements less or equal than 1 4 (r — 1)k.

Define fon each G} = G;\{v}, 1 <i <k, by any bijection from G to X; such that f(V;*) C [1, (r — Dk] + 1.

Suppose now that k is even. Now, let f(v) =k/2 + 1.

By Lemma 3(ii) there is a k-equipartition P = {X1, ..., Xy} of the set [1, 2r — 1)k + 1]\{k/2 + 1} such that
| > P| = 1. Furthermore, there are r — 1 elements less or equal than 1 + k(r — 1) in each set X;.

In this case, define also f(G}) by any bijection from V;* to X; such that f(V*) C [1, (r — Dk + 1]\{k/2 + 1}.

In both cases, for each 1 <i <k,

FG) =) Xi+ f().
Hence fis a C,-supermagic labelling of the windmill W (k, r). [

Fig. 4 shows examples of cycle-supermagic labellings of windmills for different parities of the cycles.

11

Fig. 4. Cj supermagic labelling of W (k, k) for k =3, 4.
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Vy V3

Fig. 5. The subdivided wheel Wg (3, 2).

Next, we consider a family of graphs obtained by subdivisions of a wheel. The subdivided wheel W), (r, k) is the graph
obtained from a wheel W,, by replacing each radial edge vv;, 1 <i <n by a vv;-path of size r > 1, and every external
edge v;v;+1 by a v;v;1-path of size k > 1. It is clear that, |V (W, (r, k))| =n(r + k) + 1 and |E(W,,(r, k))| =n(r + k).

Fig. 5 shows a subdivided wheel of Wg.

Theorem 10. Let r and k be two positive integers. The subdivided wheel W, (r, k) is Cori-magic for any odd n #
2r/k 4 1. Furthermore, Wy (r, 1) is Cor41-supermagic.

Proof. Let n >3 be an odd integer.

Denote by v the central vertex of the subdivided wheel W, (r, k) and by vy, v2, ..., v, the remaining vertices of
degree > 2. For 1 <i <n let P; be the vv;-path of length r > 1.

Let P* = Pi\{v}, 1<i<nand P*=U!_, P*.

Suppose first k = 1.

In this case, we want a Co,41-magic labelling fon W, (r, 1) with the integers in [1, 1 + 2nr + n] such that f(V) =
[1,nr + 1]. Let f(v) =1 and f(v,v;) = 2nr + 2 and label the remaining edges of the external cycle of W, (r, 1) by
fiviy) =2nr+2+n—1i,1<i <n.

The only elements left to label are the ones in P*, with | P*|=2nr. Since n >3 is odd, Lemma 2 ensures the existence
of a well-distributed n-equipartition P = {X1, ..., X,,} of the set 1 + [1, 2nr] such that Y X; = a + i, 1 <i <n for
some constant a. Moreover, as P is well distributed, each X; has r elements in 1 + [1, nr 4 1]. Now define f on each Pl.*
by a bijection with X, ;) which assigns the first r values of [1, nr] to the vertices, where o is the following permutation
of [1, n].

o) — {i/2, i even,
(n+1i)/2, i odd.
Note that, as n is odd, «(n) + (1) =n + (n + 1)/2 and, for 1 <i <n, we have (i) +a(i + 1) =i + (n + 1)/2.
Therefore, f'is clearly a bijection from W,,(r, 1) to [1,n(2r + 1) + 1], and f(V) =[1, nr + 1].
Now, since n # 2r + 1, for every subgraph H of W, (r, 1) isomorphic to C»,41, we have either V(H) U E(H) =
{v}U P U {vv1} U P or

V(H)U E(H) ={v} U Pl»* U {viviy1} U Pi*+1

for some 1<i <n.
Therefore, for each 1 <i <n, we have

DUSHY =Y FB+ Y PR + fivi) + [ ()
=2a+oa(i)+oai+D)+0Qr+1)+2-i)+1

3 7
=2a +2nr + n2+ R
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which is independent of i. A similar computation shows that Y f(PF) + f(Pl*) + f(vyv1) + f(v) has the same
value. Hence f'is a Co,41-supermagic labelling of W,,(r, 1).

Suppose now k > 1.

In this case, foreach 1 <i <n,let Q; be the v;v; +-pathof length k > 1. Denote by Q7= Q;\{v;, vi4+1}and Q*=U; Q7.

By Lemma 2 there is a well-distributed n-equipartition P, = {Y1, ..., ¥,,}, of the set 2nr + [1, n(2k — 1)], such that
for 1<i<n, > Y; =b+i, for some constant b.

Define a total labelling f of W, (r, k) on [1, n(2k — 1)] as follows. Set f(v) = 2n(r 4+ k) — n + 1. Define f on Pl.*
by any bijection from P* to X, where P = {X{, ..., Xx} and « are as in the above case. Define fon Q7 by any
bijection to Y, 41—;.

Since n # 2r/k + 1, every subgraph H of W,,(r, k) isomorphic to Cy, ¢ verifies either V(H) U E(H) = {v}U P U
Oy U P or

V(HYUE(H)={v}UPU QU l-*fH,
for some 1<i <n.

Then, for each 1 <i <n we have,

YOFH) =YL+ FPRD + FQ) + f(v)
=2a+a()+ai+1D)+b+n+1—i)+2n(r+k) —n+1

5
=2a+b+2n(r+k)+%.

It is also immediate to check that the labels of the remaining (2r + k)-cycle have also the same sum. [

Fig. 6 shows examples of cycle-supermagic labellings as defined in the above proof.

We finish by giving another family of cycle-supermagic graphs. Recall that, for a sequence ki, ..., k, of positive
integers, the graph @ (ky, ..., k) consists of n internally disjoint paths of orders k1 4 2, ..., k, + 2 joined by two end
vertices u and v. When all the paths have the same size p, this graph, denoted by @, (p), admits a C;,-covering. We
next show that such a graph is C;,-supermagic.

Theorem 11. The graph ©,(p) is Cp-supermagic for n, p >2.

Proof. Letu and v be the common end vertices of the paths Py, ..., P, in @,(p) = (V, E). Denote by Ig, = P;\{u, v},
1<i<n.

We want to define a total labelling f of @, (p) with integers from the interval [1, (2 4+ (p — 1)n) + np] such that
fV)y=1[1,2+(p— Dnl.

23

Fig. 6. (a) Cs-supermagic labelling of W7 (2, 1). (b) Cg-magic labelling of W3(3, 2).
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Fig. 7. C¢-supermagic labelling of ©4(3) and Cg-supermagic labelling of ©@3(4).

If n is odd, Lemma 3(i) provides a n-equipartition P = {Xy, ..., X,} of the set 2 + [1, (2p — 1)n] such that
> Xy =---=) X, =a, for some constant a, and, as it is well distributed, in each X; there are p — 1 integers less or
equal than 2 4 (p — D)n. - ~

Define a total labelling fon @, (p) as follows. Set f(u) =1, f(v) =2 and fon P; by a bijection from P; to X; such
that the p — 1 numbers in each X; that are less or equal than 2 4+ (p — 1)n are used for the p — 1 vertices in each P;.

Every subgraph H of @, (p) isomorphic to C3), is of the form

V(H)UE(H)={u}U P, U{v} U P;

for 1<i <j<n.

It is easy to check that Y f(H) = 2a + 3.

Assume now that n is even. By Lemma 3(ii) there exists a n-equipartition P = {X1, ..., X,;} of the set [1, 2p —
Dn+21\{1,n/2+ 2} suchthat Y X; =---=)_ X, = a, for some constant a. Moreover, since P is well-distributed,
in each X; there are p — 1 numbers less or equal than 2 4 (p — 1)n.

Now, we proceed as before but setting f'(v) =n/2+ 2. Itis immediate to check that we indeed get a C>,-supermagic
labelling of ©,(p). U

In Fig. 7 two supermagic labellings of &, (p) for different parities of n and p are displayed.
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