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Abstract

A simple graph G = (V , E) admits a cycle-covering if every edge in E belongs at least to one subgraph of G isomorphic to a
given cycle C. Then the graph G is C-magic if there exists a total labelling f : V ∪ E → {1, 2, . . . , |V | + |E|} such that, for every
subgraph H ′ = (V ′, E′) of G isomorphic to C,

∑
v∈V ′f (v) + ∑

e∈E′f (e) is constant. When f (V ) = {1, . . . , |V |}, then G is said
to be C-supermagic.

We study the cyclic-magic and cyclic-supermagic behavior of several classes of connected graphs. We give several families of
Cr -magic graphs for each r �3. The results rely on a technique of partitioning sets of integers with special properties.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Edge coverings; Magic labelings

1. Introduction

Let G = (V , E) be a finite simple graph. An edge-covering of G is a family of subgraphs H1, . . . , Hk such that
each edge of E belongs to at least one of the subgraphs Hi , 1� i�k. Then it is said that G admits an (H1, . . . , Hk)-
(edge)covering. If every Hi is isomorphic to a given graph H, then G admits an H-covering.

Suppose that G = (V , E) admits an H-covering. A bijective function

f : V ∪ E → {1, 2, . . . , |V | + |E|},
is an H-magic labelling of G whenever, for every subgraph H ′ = (V ′, E′) of G isomorphic to H,

f (H ′) =
∑
v∈V ′

f (v) +
∑
e∈E′

f (e)

is constant. In this case we say that the graph G is H-magic. If f (V )={1, . . . , |V |}, G is said to be H-supermagic. The
constant value that every copy of H takes under the labelling f is denoted by m(f ) in the magic case and by s(f ) in the
supermagic case. Fig. 1 shows an example of a C3-supermagic labelling.
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Fig. 1. C3-supermagic covering.

The notion of H-magic graphs was introduced in [4] as an extension of the magic valuation given by Rosa [6] in
1967, see also [5], which corresponds to the case H = K2. Supermagic labellings were treated in [2]. For these and
other related labelling notions see the survey of Gallian [3].

When H = K2 we say that a K2-magic or supermagic graph is simply magic or supermagic. Many authors in this
case use the terminology edge-magic or super edge-magic graph.

In this paper we study H-magic labellings when H is a cycle Cr . In this case we speak of cycle-magic labellings and
cycle-magic graphs. A related notion of face-magic labellings of a planar graph G asks for a total labelling such that
the sum over vertices and edges of each face of a planar embedding of G is constant; see, for instance, Baca [1]. When
all faces have the same number r of edges, a Cr -magic labelling of G is also a face magic labelling of the graph.

The paper is organized as follows. In Section 3 we show that the wheel Wn with n odd is C3-magic and that the
Cartesian product of a C4-free supermagic graph with K2 is C4-magic. In particular, the odd prisms and books are
C4-supermagic. In Section 4 we show that the windmill W(r, k) is Cr -magic, thus providing a family of Cr -magic
graphs for each r �3. It is also shown that subdivided wheels and uniform �-graphs are cycle-magic. All these results
rely on a technique of partitioning sets of integers with special properties introduced in [4]. This is explained in
Section 2.

2. Notation and preliminary results

We will use the following notations.
For any two integers n < m we denote by [n, m] the set of all consecutive integers from n to m. For a set I ⊂ N we

write,
∑

I = ∑
x∈I x. Note that, for any k ∈ N,∑

(I + k) =
∑

I + k|I |.
Finally, given a total labelling f of a graph G = (V , E), we denote by

f (G) =
∑

f (V ) +
∑

f (E).

However, we will use the same notation although G is not a graph but a set of vertices and edges.
Let P = {X1, . . . , Xk} be a partition of a set X of integers. The set of subset sums of P is denoted by

∑
P =

{∑ X1, . . . ,
∑

Xk}. If all elements of P have the same cardinality, then P is said to be a k-equipartition of X.
We shall describe a partition P = {X1, . . . , Xk} of a set X = {x1, x2, . . . , xn} by giving a k-coloring on the elements

of X in such a way that Xi contains all the elements with color i, 1� i�k. For example, the coloring (1, 2, 1, 2, 2, 1)

means that X1 = {x1, x3, x6} and X2 = {x2, x4, x5}. When some pattern of colors (c1, c2, . . . , cr ) is repeated t times
we write (c1, c2, . . . , cr )

t . For instance, the coloring (1, 2, 1, 2, 2, 1) is denoted by (1, 2)2(2, 1).
We say that a k-equipartition P = {X1, . . . , Xk} of a set of integers X = {x1 < x2 < · · · < xhk} is well-distributed

if for each 0�j < h, the elements xl ∈ X, with l ∈ [jk + 1, (j + 1)k], belong to distinct parts of P . For instance,
P1 = {{1, 4, 5}, {2, 3, 6}} and P2 = {{1, 3, 5}, {2, 4, 6}}, are well-distributed 2-equipartitions of X = [1, 6] while P3 =
{{1, 2, 3}, {4, 5, 6}} is not.

We will use the next two lemmas proved in [4] for k-equipartitions. It is easily checked that the proofs given in [4]
provide in fact well-distributed partitions.
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Lemma 1 (Gutiérrez and Lladó [4]). Let h and k be two positive integers. For each integer 0� t ��h/2	, there exists
a well-distributed k-equipartition P of [1, hk] such that

∑
P is an arithmetic progression of difference d = h − 2t .

Lemma 2 (Gutiérrez and Lladó [4]). Let h and k be two positive integers. If h or k are not both even, there exists a
well-distributed k-equipartition P of [1, hk] such that

∑
P is a set of consecutive integers.

Next lemma provide well-distributed equipartitions where all the parts have the same sum.

Lemma 3. Let h�3 be an odd integer. If either

(1) k is odd and X = [1, hk], or
(2) k is even and X = [1, hk + 1]\{k/2 + 1}.

there is a well-distributed k-equipartition P of X such that | ∑ P | = 1.

Proof. (1) By Lemma 2 there is a well-distributed k-equipartition P ′ = {Y1, . . . , Yk} of the interval Y = [1, (h − 1)k]
such that∑

P ′ =
{∑

Y1 + (i − 1) : 1� i�k
}

.

Consider the partition P = {X1, . . . , Xk} of [1, hk], where

Xi = Yi ∪ {(1 − i) + hk : 1� i�k}.
It is clear that P is a k-equipartition of [1, hk].

As P ′ is a well-distributed k-equipartition of [1, (h−1)k] and there is one element of each part in [(h−1)k +1, hk],
P is also well-distributed.

In addition, for any 1� i�k we have,∑
Xi =

∑
Y1 + (i − 1) + (1 − i) + hk =

∑
Y1 + hk,

which is independent of i and therefore | ∑ P | = 1.
(2) Let k be an even number and X = [1, hk + 1]\{k/2 + 1}.
Set A = [1, k + 1]\{k/2 + 1} and B = [k + 2, hk + 1]. Clearly, |A| = k, |B| = (h − 1)k and X = A ∪ B.
Consider now the partition P = {X1, . . . , Xk} given by the following k-coloring of A ∪ B.
Color the k elements of A by

(k/2, k/2 − 1, . . . , 1)(k, k − 1, . . . , k/2 + 1).

Now color the (h − 1)k elements of B by

(k/2 + 1, 1, k/2 + 2, 2, . . . , k, k/2)(k, k − 1, . . . , 1)((h−3)/2)+1(1, 2, . . . , k)((h−3)/2).

It is clear by the coloring that P is well-distributed. Moreover, for 1� i�k/2, we have,∑
Xi −

∑
X1 = (k/2 + 1 − i − k/2) + (k + 1 + 2i − k − 3)

+
(

h − 3

2
+ 1

)
(1 − i) + h − 3

2
(i − 1) = 0.

A similar computation shows that
∑

Xi − ∑
X1 takes the same value when k/2 < i�k, so that | ∑ P | = 1. �

Remark 4. Note that the statements of the three above lemmas can be extended to any integer translation of the set X.
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3. C3 and C4-magic graphs

Let Wn=Cn+{v} denote the wheel with a rim of order n. Clearly Wn admits a covering by triangles.As an application
of Lemma 2, we next show that any odd wheel is a C3-supermagic graph.

Theorem 5. The wheel Wn for n�5 odd, is C3-supermagic.

Proof. Denote by v1, v2, . . . , vn the vertices in the n-cycle of the wheel Wn and by v its central vertex. For 1� i�n

let Ni = {vi, viv}.
Define a total labelling f of Wn on [1, 3n + 1] as follows. Set f (v) = 1, f (vnv1) = 2n + 2 and for 1� i < n,

f (vivi+1) = 3n + 2 − i. Therefore, f (E(Cn)) = [2n + 2, 3n + 1].
We have to define f on N = ∪n

i=1Ni in such a way that f (N) = [2, 2n + 1].
Since n is odd, by Lemma 2 there is a well-distributed n-equipartition P = {X1, . . . , Xn} of the set X = 1 + [1, 2n],

such that
∑

Xi = ∑
X1 + (i − 1). Xi = {xi,1 < xi,2}. Since P is well-distributed, we have 1 < xi,1 �n + 1 and

n + 1 < xi,2 �1 + 2n.
Let � be the permutation of [1, n] given by

�(i) =
{

i/2, i even,

(n + i)/2, i odd.

Since n is odd, � is a permutation of [1, n]. Moreover, �(i) + �(i + 1) = i + (n + 1)/2 for 1� i�n − 1 and �(n) +
�(1) = (3n + 1)/2.

Define f on each Ni by the bijection from Ni to X�(i) given by

f (vi) = x�(i),1 and f (vvi) = x�(i),2.

Note that 1 < f (vi)�n+1 and n+1 < f (vvi)�2n+1, so that f (V (N))=[2, n+1] and f (E(N))=[n+2, 2n+1].
Hence, if f is C3-magic, then it is C3-supermagic.

Let us show that
∑

f (H) is constant in every triangle H of Wn. Now we prove that f take the same sum in every
subgraph H of Wn isomorphic to C3. Since n�5, each triangle H has vertex set either {v, vi, vi+1} for some 1� i < n,
or {v, vn, v1}. Therefore,∑

f (H) =
∑

f (Ni) +
∑

f (Ni+1) + f (vivi+1) + f (v)

= 2
∑

X1 + �(i) + �(i + 1) − 2 + (3n + 2 − i) + 1

= 2
∑

X1 + i + (n + 1)/2 + (3n + 1) − i

= 2
∑

X1 + (7n + 3)/2

=
∑

f (Nn) +
∑

f (N1) + f (vnv1) + f (v).

which is independent of i as claimed. This completes the proof. �

Fig. 2 shows an example of the C3-supermagic labelling defined in the above proof.

Remark 6. In Fig. 3 two quite different C3-magic labellings of the wheels W4 and W6 are displayed. We do not know
if the wheel W2r with r > 3 is a C3-magic graph.

Another application of Lemma 2 provides a large family of C4-supermagic graphs. Clearly, for any graph G, the
Cartesian product G × K2 can be covered by 4-cycles.

Theorem 7. Let G be a C4-free supermagic graph of odd size. Then, the graph G × K2 is C4-supermagic.

Proof. Let n and m be, respectively, the order and size of G= (V , E). We have to show a C4-supermagic total labelling
of G × K2 with the integers in [1, 3n + 2m].
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Fig. 2. C3-supermagic labelling of W7.
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Fig. 3. C3-magic labelings of W4 and W6.

For each vertex x ∈ V (G) denote by x0, x1 ∈ V (G × K2) the corresponding vertices in the two copies of G and
x0x1 ∈ E(G×K2) the edge joining them. Denote by Ax={x0, x1, x0x1} and by A=∪x∈V Ax ⊂ V (G×K2)∪E(G×K2).
We have |A| = 3n. Now, for each edge xy ∈ E(G), denote by Bxy = {x0y0, x1y1} the corresponding edges in the two
copies of G and B =∪xy∈E(G)Bxy . We have |B|=2m. Clearly, {A, B} is a partition of the set V (G×K2)∪E(G×K2).

By Lemma 2 there is a well-distributed n-equipartition P1 ={X1, . . . , Xn} of the set [1, 3n], such that
∑

Xi = a + i

for some integer a.
Since m is odd, Lemma 2 also ensures a well-distributed m-equipartition P2 = {Y1, . . . , Ym} of 3n + [1, 2m] such

that
∑

Yi = b + i for some integer b.
Let f be a supermagic labelling of G with supermagic sum s(f ). Define a total labelling f ′ of G×K2 as follows. For

x ∈ V (G) define f ′ on Ax by any bijection from Ax to Xf (x) (the bijection depends on f.) Similarly, for xy ∈ E(G)

define f ′ on Bxy by any bijection from Bxy to Yf (xy)−n (again the bijection depends on f.) Then, the map f ′ is a
bijection from V (G×K2)∪E(G×K2) to [1, 3n+2m]. In addition, as P1 is well distributed in [1, 3n], we can choose
f ′ verifying f ′(V (G × K2)) = [1, 2n].

Now let H be a subgraph of G × K2 isomorphic to a 4-cycle. Since G is C4-free, every 4-cycle H of G × K2 has the
form,

V (H) ∪ E(H) = Ax ∪ Ay ∪ Bxy ,

where x, y ∈ V (G) and xy ∈ E(G). Then, the sum of the elements in any 4-cycle H of G × K2 is

f ′(H) = f ′(Ax) + f ′(Ay) + f ′(Bxy)

= 2a + f (x) + f (y) + b + f (xy) − n

= 2a + b + s(f ) − n.

independent of H. �

As an application of Theorem 7 we have next Corollary.



2930 A. Lladó, J. Moragas / Discrete Mathematics 307 (2007) 2925–2933

Corollary 8. The following two families of graphs are C4-supermagic for n odd.

(1) The prims, Cn × K2.
(2) The books, K1,n × K2.

4. Cr -magic graphs

In this section we give a family of Cr -supermagic graphs for any integer r �3. Let Cr be a cycle of length r �3.
Consider the graph W(r, k) obtained by identifying one vertex in each of k�2 disjoint copies of the cycle Cr . The
resulting graphs are called windmills, and W(3, k) is also known as the friendship graph. Note that windmills clearly
admit a Cr -covering. We next show that they are Cr -supermagic graphs.

Theorem 9. For any two integers k�2 and r �3, the windmill W(r, k) is Cr -supermagic.

Proof. Let G1, . . . , Gk be the r-cycles of W(r, k) and let v their only common vertex. Denote by G∗ = W(r, k)\{v}
and its set of vertices and edges by V ∗ and E∗, respectively. Therefore we have, |V ∗| = (r − 1)k and |E∗| = rk.

We want to define a Cr -supermagic total labelling f of W(k, r) with the integers of [1, (2r − 1)k + 1] such that
f (V (W(r, k))) = f (V ∗ ∪ {v}) = [1, (r − 1)k] + 1.

Suppose first that k is odd. Let f (v) = 1.
By Lemma 3(i) there is a k-equipartition P1 = {X1, . . . , Xk} of the set 1 + [1, (2r − 1)k] such that | ∑ P1| = 1.

Furthermore, as it is well distributed, in each set Xi there are r − 1 elements less or equal than 1 + (r − 1)k.
Define f on each G∗

i = Gi\{v}, 1� i�k, by any bijection from G∗
i to Xi such that f (V ∗

i ) ⊂ [1, (r − 1)k] + 1.
Suppose now that k is even. Now, let f (v) = k/2 + 1.
By Lemma 3(ii) there is a k-equipartition P = {X1, . . . , Xk} of the set [1, (2r − 1)k + 1]\{k/2 + 1} such that

| ∑ P | = 1. Furthermore, there are r − 1 elements less or equal than 1 + k(r − 1) in each set Xi .
In this case, define also f (G∗

i ) by any bijection from V ∗
i to Xi such that f (V ∗

i ) ⊂ [1, (r − 1)k + 1]\{k/2 + 1}.
In both cases, for each 1� i�k,

f (Gi) =
∑

Xi + f (v).

Hence f is a Cr -supermagic labelling of the windmill W(k, r). �

Fig. 4 shows examples of cycle-supermagic labellings of windmills for different parities of the cycles.
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Fig. 4. Ck supermagic labelling of W(k, k) for k = 3, 4.
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Fig. 5. The subdivided wheel W6(3, 2).

Next, we consider a family of graphs obtained by subdivisions of a wheel. The subdivided wheel Wn(r, k) is the graph
obtained from a wheel Wn by replacing each radial edge vvi , 1� i�n by a vvi-path of size r �1, and every external
edge vivi+1 by a vivi+1-path of size k�1. It is clear that, |V (Wn(r, k))| = n(r + k) + 1 and |E(Wn(r, k))| = n(r + k).

Fig. 5 shows a subdivided wheel of W6.

Theorem 10. Let r and k be two positive integers. The subdivided wheel Wn(r, k) is C2r+k-magic for any odd n 
=
2r/k + 1. Furthermore, Wn(r, 1) is C2r+1-supermagic.

Proof. Let n�3 be an odd integer.
Denote by v the central vertex of the subdivided wheel Wn(r, k) and by v1, v2, . . . , vn the remaining vertices of

degree > 2. For 1� i�n let Pi be the vvi-path of length r �1.
Let P ∗

i = Pi\{v}, 1� i�n and P ∗ = ∪n
i=1P

∗
i .

Suppose first k = 1.
In this case, we want a C2r+1-magic labelling f on Wn(r, 1) with the integers in [1, 1 + 2nr + n] such that f (V ) =

[1, nr + 1]. Let f (v) = 1 and f (vnv1) = 2nr + 2 and label the remaining edges of the external cycle of Wn(r, 1) by
f (vivi+1) = 2nr + 2 + n − i, 1� i < n.

The only elements left to label are the ones in P ∗, with |P ∗|=2nr . Since n�3 is odd, Lemma 2 ensures the existence
of a well-distributed n-equipartition P = {X1, . . . , Xn} of the set 1 + [1, 2nr] such that

∑
Xi = a + i, 1� i�n for

some constant a. Moreover, as P is well distributed, each Xi has r elements in 1+[1, nr +1]. Now define f on each P ∗
i

by a bijection with X�(i) which assigns the first r values of [1, nr] to the vertices, where � is the following permutation
of [1, n].

�(i) =
{

i/2, i even,

(n + i)/2, i odd.

Note that, as n is odd, �(n) + �(1) = n + (n + 1)/2 and, for 1� i < n, we have �(i) + �(i + 1) = i + (n + 1)/2.
Therefore, f is clearly a bijection from Wn(r, 1) to [1, n(2r + 1) + 1], and f (V ) = [1, nr + 1].
Now, since n 
= 2r + 1, for every subgraph H of Wn(r, 1) isomorphic to C2r+1, we have either V (H) ∪ E(H) =

{v} ∪ P ∗
n ∪ {vnv1} ∪ P ∗

1 or

V (H) ∪ E(H) = {v} ∪ P ∗
i ∪ {vivi+1} ∪ P ∗

i+1

for some 1� i < n.
Therefore, for each 1� i < n, we have∑

f (H) =
∑

f (P ∗
i ) +

∑
f (P ∗

i+1) + f (vivi+1) + f (v)

= 2a + �(i) + �(i + 1) + (n(2r + 1) + 2 − i) + 1

= 2a + 2nr + 3n + 7

2
,
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which is independent of i. A similar computation shows that
∑

f (P ∗
n ) + ∑

f (P ∗
1 ) + f (vnv1) + f (v) has the same

value. Hence f is a C2r+1-supermagic labelling of Wn(r, 1).
Suppose now k > 1.
In this case, for each 1� i�n, let Qi be the vivi+1-path of length k�1. Denote by Q∗

i =Qi\{vi, vi+1} and Q∗=∪iQ
∗
i .

By Lemma 2 there is a well-distributed n-equipartition P2 = {Y1, . . . , Yn}, of the set 2nr + [1, n(2k − 1)], such that
for 1� i�n,

∑
Yi = b + i, for some constant b.

Define a total labelling f of Wn(r, k) on [1, n(2k − 1)] as follows. Set f (v) = 2n(r + k) − n + 1. Define f on P ∗
i

by any bijection from P ∗
i to X�(i), where P = {X1, . . . , Xk} and � are as in the above case. Define f on Q∗

i by any
bijection to Yn+1−i .

Since n 
= 2r/k + 1, every subgraph H of Wn(r, k) isomorphic to C2r+k verifies either V (H) ∪ E(H) = {v} ∪ P ∗
n ∪

Q∗
n ∪ P ∗

1 or

V (H) ∪ E(H) = {v} ∪ P ∗
i ∪ Q∗

i ∪ P ∗
i+1,

for some 1� i < n.
Then, for each 1� i < n we have,∑

f (H) =
∑

f (P ∗
i ) +

∑
f (P ∗

i+1) + f (Q∗
i ) + f (v)

= 2a + �(i) + �(i + 1) + b + (n + 1 − i) + 2n(r + k) − n + 1

= 2a + b + 2n(r + k) + n + 5

2
.

It is also immediate to check that the labels of the remaining (2r + k)-cycle have also the same sum. �

Fig. 6 shows examples of cycle-supermagic labellings as defined in the above proof.
We finish by giving another family of cycle-supermagic graphs. Recall that, for a sequence k1, . . . , kn of positive

integers, the graph �(k1, . . . , kn) consists of n internally disjoint paths of orders k1 + 2, . . . , kn + 2 joined by two end
vertices u and v. When all the paths have the same size p, this graph, denoted by �n(p), admits a C2p-covering. We
next show that such a graph is C2p-supermagic.

Theorem 11. The graph �n(p) is C2p-supermagic for n, p�2.

Proof. Let u and v be the common end vertices of the paths P1, . . . , Pn in �n(p)= (V , E). Denote by P̃i =Pi\{u, v},
1� i�n.

We want to define a total labelling f of �n(p) with integers from the interval [1, (2 + (p − 1)n) + np] such that
f (V ) = [1, 2 + (p − 1)n].
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Fig. 6. (a) C5-supermagic labelling of W7(2, 1). (b) C8-magic labelling of W3(3, 2).
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Fig. 7. C6-supermagic labelling of �4(3) and C8-supermagic labelling of �3(4).

If n is odd, Lemma 3(i) provides a n-equipartition P = {X1, . . . , Xn} of the set 2 + [1, (2p − 1)n] such that∑
X1 = · · · = ∑

Xn = a, for some constant a, and, as it is well distributed, in each Xi there are p − 1 integers less or
equal than 2 + (p − 1)n.

Define a total labelling f on �n(p) as follows. Set f (u) = 1, f (v) = 2 and f on P̃i by a bijection from P̃i to Xi such
that the p − 1 numbers in each Xi that are less or equal than 2 + (p − 1)n are used for the p − 1 vertices in each P̃i .

Every subgraph H of �n(p) isomorphic to C2p is of the form

V (H) ∪ E(H) = {u} ∪ P̃i ∪ {v} ∪ P̃j

for 1� i < j �n.
It is easy to check that

∑
f (H) = 2a + 3.

Assume now that n is even. By Lemma 3(ii) there exists a n-equipartition P = {X1, . . . , Xn} of the set [1, (2p −
1)n + 2]\{1, n/2 + 2} such that

∑
X1 = · · · = ∑

Xn = a, for some constant a. Moreover, since P is well-distributed,
in each Xi there are p − 1 numbers less or equal than 2 + (p − 1)n.

Now, we proceed as before but setting f (v)=n/2+2. It is immediate to check that we indeed get a C2p-supermagic
labelling of �n(p). �

In Fig. 7 two supermagic labellings of �n(p) for different parities of n and p are displayed.
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