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SUMMARY

a/b-Knotted proteins are an extraordinary ex-
ample of biological self-assembly; they contain
a deep topological trefoil knot formed by the
backbone polypeptide chain. Evidence sug-
gests that all are dimeric and function as methyl-
transferases, and the deep knot forms part of
the active site. We investigated the significance
of the dimeric structure of the a/b-knot protein,
YibK, from Haemophilus influenzae by the de-
sign and engineering of monomeric versions
of the protein, followed by examination of their
structural, functional, stability, and kinetic fold-
ing properties. Monomeric forms of YibK dis-
play similar characteristics to an intermediate
species populated during the formation of the
wild-type dimer. However, a notable loss in
structure involving disruption to the active
site, rendering it incapable of cofactor binding,
is observed in monomeric YibK. Thus, dimeriza-
tion is vital for preservation of the native struc-
ture and, therefore, activity of the protein.

INTRODUCTION

Due to the apparent complexities involved, it was thought

highly improbable, if not completely impossible, that

a chain of amino acids could ‘‘knot’’ itself to form a func-

tional protein. It was somewhat surprising, therefore,

when proteins possessing this entirely unexpected struc-

tural property were recently identified (Taylor and Lin,

2003). Most contain a deep trefoil knot (Nureki et al.,

2004; Taylor and Lin, 2003; Wagner et al., 2005), but a pro-

tein with an intricate figure-of-eight knot has been ob-

served (Taylor, 2000), as has a knotted structure with

five projected crossings (Virnau et al., 2006). Over 30 knot-

ted proteins have been recognized in the Protein Data

Bank, and hundreds more are predicted. Determining

the structural and functional significance of the unusual

knotted topology, as well as how these proteins knot

and fold, represents an important new challenge.

Many of the knotted proteins discovered to date are

structurally related and belong to the a/b-knot superfamily

(Ahn et al., 2003; Bateman et al., 2004). Proteins in this

clan share some common characteristics: all possess
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a deep trefoil knot in their backbone topology, and there

is evidence to suggest that all are dimeric and function

as methyltransferases (MTases) (Ahn et al., 2003; Elkins

et al., 2003; Forouhar et al., 2003; Lim et al., 2003; Michel

et al., 2002; Mosbacher et al., 2005; Nureki et al., 2002,

2004; Pleshe et al., 2005; Zarembinski et al., 2003). Func-

tional studies on a/b-knot superfamily members have

shown that the knotted region of the protein forms the

S-adenosylmethionine (AdoMet)-binding crevice, the co-

factor involved in the methylation process, and those

enzymes fully characterized are all involved in the methyl-

ation of tRNA (Ahn et al., 2003; Elkins et al., 2003; Mos-

bacher et al., 2005; Nureki et al., 2004; Watanabe et al.,

2005). Although the cofactor binding site is not always sit-

uated directly at the dimer interface, dimerization of the

knotted domains is thought to be important for MTase

function (Elkins et al., 2003; Nureki et al., 2004; Watanabe

et al., 2005). This study aims to investigate in detail the

role of dimerization in maintaining the structure and func-

tion of the a/b-knotted protein, YibK, from Haemophilus

influenzae.

YibK is a 160 residue homodimer, described as an

SpoU-type MTase due to the presence of three character-

istic sequence motifs (Anantharaman et al., 2002). It is one

of the smallest knotted proteins to be identified to date

and has a deep trefoil knot in its structure formed by the

threading of the last 40 residues of the polypeptide chain

through a loop of approximately 39 residues (Lim et al.,

2003) (Figure 1A). Although its biological substrate is un-

known, YibK displays the catalytic fold common to all

knotted MTases. Furthermore, its crystal structure has

been solved with the bound cofactor, AdoHcy, the prod-

uct of AdoMet after methyl-group transfer to the substrate

has taken place (Lim et al., 2003), indicating that YibK

most likely functions as an MTase (Figure 1C). The behav-

ior of the YibK dimer as it folds under thermodynamic and

kinetic control has been studied extensively (Mallam and

Jackson, 2005, 2006a), and in both cases, a monomeric

intermediate species of considerable stability and struc-

ture is populated during the folding process. YibK is,

therefore, an ideal candidate for investigations into the

role of dimerization in a/b-knotted proteins by the engi-

neering of a stable monomeric variant.

A variety of approaches have been used in the past to

create stable monomeric species that are incapable of as-

sociating to their native oligomeric states. Many are based

on rational mutations made from the analysis of quater-

nary contacts from a known three-dimensional crystal
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Figure 1. Structure of YibK from H. influenzae

(A) Ribbon diagram of a monomer subunit (PDB code 1MXI) colored to highlight the deep trefoil knot at the C terminus, according to definitions given

by Nureki et al. (2002). The knotting loop is colored orange (residues 81–120), while the knotted chain appears red (residues 121–160).

(B) Structure of dimeric YibK. One subunit is colored as in (A), while the other is shown in shades of blue.

(C) The binding site of AdoHcy in wild-type dimeric YibK. The two monomeric subunits of YibK are shown in light yellow and light blue, while AdoHcy

molecules are shown as ball-and-stick models. The crystal structure contains one AdoHcy binding site per monomer, located in the knotted region of

the protein.

(D) Areas of the YibK dimer interface targeted by mutagenesis. The prime (0 ) specifies a residue from the other subunit. Residues of interest are shown

as ball-and-stick models, and thick, black dashed lines depict intermolecular-hydrogen bonds. Residues Arg20, Asn24, Ser87, and Tyr142, outlined

in dark blue and black, respectively, were mutated to disrupt intermolecular hydrogen-bonding interactions. Residue Val139 was mutated to a bulky,

charged residue to disrupt the hydrophobic core of the interface, and is outlined in light blue. Glu143, highlighted in red, was targeted by mutagenesis

to create unfavorable electrostatic interactions between subunits. Protein structures were generated with Ribbons (Carson, 1997).
structure. In many cases, single-point mutations are used

to disrupt the association of a protein interface (Beernink

and Tolan, 1996; Sano et al., 1997; Shao et al., 1997), or

a combination of deletions and mutations (Thoma et al.,
112 Structure 15, 111–122, January 2007 ª2007 Elsevier Ltd Al
2000). Alternative techniques involve the careful manipu-

lation of interfacial loop regions (Borchert et al., 1994;

Dickason and Huston, 1996; Mossing and Sauer, 1990)

or modification of the peptide backbone using chemical
l rights reserved
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Table 1. Analysis of YibK Wild-Type and Mutant Fluorescence Denaturation Data

Mutant Wild-Type E143A E143K V139R
R20A/N24A/
S87A

R20A/N24A/
S87A/Y142F

R20A/N24A/

S87A/Y142F/
E143K

R20D/N24A/

S87A/V139R/
Y142F/E143Kd

YI 0.61 0.66 0.60 0.46 0.65 0.58 0.54 —

DGN242I
H2O (kcal mol�1) 18.9 10.5 7.1 4.7 13.2 11.6 5.5 —

mN242I (kcal mol�1 M�1) 1.80 1.50 1.45 1.20 1.51 1.50 1.20 —

DGI4D
H2O (kcal mol�1) 6.5 8.6 6.6 6.9 8.9 8.9 6.9 5.2 (3.9)

mI4D (kcal mol�1 M�1) 1.53 2.01 1.65 1.72 1.88 1.92 1.56 1.42 (1.1)

DGN242D
H2O (kcal mol�1)a 31.9 27.7 20.2 18.5 31.1 29.3 19.3 —

mN242D (kcal mol�1 M�1)b 4.9 5.5 4.8 4.6 5.3 5.3 4.3 —

KN2/2I
D (mM)c 1.4 3 10�8 0.02 6.3 360 2 3 10�4 3 3 10�3 93 —

% of monomers present

as dimer at 1 mM protein

100 90 20 1 99 96 2 0

Fitting errors are not quoted, as they are unrealistically small, a consequence of the global analysis, and do not reflect the true ex-

perimental error, which is estimated to be ± 5% for all parameters. Data for wild-type YibK were taken from Mallam and Jackson

(2006a). YI is the spectroscopic signal of the monomeric intermediate relative to a signal of 0 for a native monomeric subunit in a

dimer and 1 for a denatured monomer.
a DGN242D

H2O = DGN242I
H2O + 2DGI4D

H2O .
b mN242D = mN242I + 2mI4D.
c KN2/2I

D is the constant for dissociation of dimer to monomeric intermediate.
d Values in parenthesis were calculated using far-UV CD data measured at 225 nm.
synthesis (Rajarathnam et al., 1994) to produce stable

monomeric variants of dimeric proteins. The ability of a

number of these mutants to retain functionality has been

studied; however, their structural and stability properties

are often not examined in great detail, and few have been

characterized fully to determine their relationship to inter-

mediates observed during the folding of the wild-type

oligomeric species.

The present study uses protein-engineering techniques

to disrupt interactions at the dimeric interface of YibK and

represents the first, to our knowledge, attempt to create

a monomeric version of a dimeric, knotted protein. Struc-

tural and functional characterization of the resulting mono-

meric proteins allows important insights into the structure-

function relationship of dimerization in a/b-knot MTases to

be gained, and stability and folding experiments enable

comparisons between monomeric YibK and intermedi-

ates observed during the folding of the dimeric protein

to be made. Significantly, dimerization of the protein ap-

pears essential to maintain the integrity of the cofactor-

binding pocket.

RESULTS

Mutant Design

The crystal structure of dimeric YibK indicates that asso-

ciation of monomeric subunits involves a variety of inter-

actions. The two monomers are closely packed, and both

a1 and a5 helices participate in dimer formation (Fig-

ure 1B). Areas involving favorable intermolecular hydro-

gen-bonding, hydrophobic and electrostatic interactions
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were identified as targets for mutagenesis (Figure 1D).

Residues Arg20, Asn24, Ser87, and Tyr142 all form par-

ticularly short intermolecular hydrogen bonds (the dis-

tance between electronegative atoms is less than 2.9 Å)

with residues Ser1300, Arg1290 and Thr1250, Tyr1500, and

Pro1230, respectively (the prime [0] specifies a residue

from the other subunit), and were all targeted by muta-

genesis to remove their hydrogen-bonding capabilities

(Figure 1D). The hydrophobic component of the dimer

interface consists of residues Leu21, Ala138, Val139,

and Tyr142 (Lim et al., 2003); Val139 was targeted by

mutagenesis and altered to a bulky, charged residue

(Figure 1D).

Previous studies suggest that electrostatic interactions

play an important role in the dimerization of YibK, and as-

sociation between monomers weakens with decreasing

pH (Mallam and Jackson, 2006a). An intramolecular salt

bridge exists at the dimer interface, formed by residues

Glu143 and Arg146, that projects toward a counterpart

ion pair in the other subunit, Glu1430 and Arg1460 (Lim

et al., 2003) (Figure 1D). Glu143 was chosen as a mutagen-

esis target, and was altered to either an alanine (neutral)

or a lysine (positive) residue to remove the salt bridge

and disrupt electrostatic interactions between monomeric

subunits.

Seven mutants were constructed in total, and these are

listed in Table 1. Previous work has shown that the energy

involved in association of two YibK-equilibrium mono-

meric intermediates is considerable—approximately 19

kcal mol�1 (Mallam and Jackson, 2005). With this in

mind, additional quintuple and sextuple mutants were

made to disrupt more than one type of interaction.
1–122, January 2007 ª2007 Elsevier Ltd All rights reserved 113
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Figure 2. Determination of the Oligo-

meric State and Stability of YibK Mutants

(A) SEC elution profiles for 50, 20, 10, and 5 mM

protein, displayed from top to bottom, respec-

tively. Absorbance signal is normalized against

protein concentration. The arrows indicate the

expected elution volume for YibK monomer

and dimer. A calibration curve has previously

been shown (Mallam and Jackson, 2005). Con-

ditions: room temperature in 50 mM Tris-HCl

(pH 7.5), 200 mM KCl, 10 % (v/v) glycerol, 1

mM DTT.

(B) YibK mutant denaturation profiles for 100

(pink), 50 (dark purple), 20 (light purple), 10

(dark blue), 5 (light blue), 2.5 (green), 1 (yellow),

0.5 (red), and 0.25 mM (orange) protein, moni-

tored by fluorescence emission 319 nm. Data

are normalized relative to a folded monomer

subunit in a dimer signal of 0 and a denatured

monomer signal of 1. Continuous lines repre-

sent the global fit to a three-state dimer-dena-

turation model with a monomeric intermediate

(Equation 1), except for the sextuple mutant,

where data were globally fit to a two-state

monomer-denaturation model (Equation 2). In-

set for the sextuple mutant shows denaturation

curves measured by far-UV CD signal at

225 nm. Conditions: 25�C in 50 mM Tris-HCl

(pH 7.5), 200 mM KCl, 10% (v/v) glycerol,

1 mM DTT.
The Oligomeric State and Stability

of the YibK Mutants

The oligomeric state, stability, and degree of structure

retained relative to wild-type YibK of the mutants was ex-

amined using size-exclusion chromatography (SEC) and

fluorescence-equilibrium denaturation experiments. SEC

was undertaken over a range of protein concentrations

between 5 and 50 mM, and the results are shown in

Figure 2A. The mutants R20A/N24A/S87A, R20A/N24A/

S87A/Y142F, and E143A elute with protein concentra-

tion-independent peaks at an elution volume of 10.6 ml,

corresponding to a molecular mass of 36.7 kDa, very

similar to that expected for a YibK dimer of 36.8 kDa. In

contrast, E143K eluted with a protein concentration-

dependent peak; the elution volume for 20 mM protein was

12.0 ml, corresponding to a molecular mass of 22.2 kDa,

much closer to the mass of 18.4 kDa for a YibK monomer.

Similarly, two protein concentration-dependent elution

peaks, at approximately 10.7 and 12.3 ml, were seen for

the quintuple mutant, likely to correspond to dimeric and

monomeric protein, respectively. Finally, V139R and

R20D/N24A/S87A/V139R/Y142F/E143K elute with single

peaks that are relatively protein concentration indepen-

dent, and at a volume of 12.4 and 12.2 ml, corresponding

to molecular weights of 19.2 and 20.7 kDa, respectively;

these mutants appear predominantly monomeric at all

concentrations of protein studied.

Equilibrium denaturation studies using the chemical de-

naturant urea were performed on all mutants over at least

a 10-fold change in protein concentration, and results are
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shown in Figure 2B, along with data for wild-type protein

for comparison. All mutants displayed significantly differ-

ent denaturation profiles to wild-type YibK, and, with the

exception of the sextuple mutant, all profiles were bi-

phasic. The following analysis refers to all mutants except

the sextuple mutant. Equilibrium unfolding transitions ob-

served at lower urea concentrations were protein concen-

tration dependent, consistent with mutants unfolding via

a three-state dimer-denaturation model involving a mono-

meric intermediate (Mallam and Jackson, 2005). Data for

each mutant were globally fit to this model across all con-

centrations of protein, and the results are summarized in

Table 1. The parameter DGN242I
H2O , the free energy change

corresponding to the unfolding of a dimer molecule to

two monomeric intermediates, is an indication of dimer

stability for each of the mutants. Values range from 4.7

to 13.2 kcal mol�1, compared to a value of 18.9 kcal

mol�1 for the wild-type protein. The most significant de-

stabilization relative to wild-type YibK occurred in V139R

and the quintuple mutant, where it is predicted that only

1%–2% of monomer molecules exist as dimers at 1 mM

protein, compared to 100% for the wild-type protein

(Table 1). DGI4D
H2O and mI4D values relate to the stability

and structure loss upon unfolding of the monomeric

species observed during the equilibrium unfolding of the

mutants, respectively, and remain relatively unchanged

compared with those of the wild-type protein (Table 1);

this suggests that only dimeric structure and stability

was notably disrupted by the mutations, not the stability

of the equilibrium monomeric intermediate.
ll rights reserved
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Together, SEC and equilibrium denaturation data indi-

cate that the mutants R20A/N24A/S87A, R20A/N24A/

S87A/Y142F, and E143A are predominantly dimeric,

E143K exists as an equilibrium ensemble of dimeric and

monomeric species, and V139R and R20A/N24A/S87A/

Y142F/E143K are predominantly monomeric at 1 mM pro-

tein (Figure 2 and Table 1).

In contrast to other mutants, equilibrium-denaturation

profiles for the sextuple mutant are protein concentra-

tion-independent at all concentrations of protein studied.

Unfolding occurs with a single transition that can be de-

scribed by a two-state monomer-denaturation model (Fig-

ure 2B and Table 1). Equilibrium-denaturation profiles for

R20D/N24A/S87A/V139R/Y142F/E143K were additionally

measured using far-UV circular dichroism (CD) (Figure 2B,

inset). These data, which monitor loss of secondary

structure on unfolding, agree well with the fluorescence-

denaturation profiles, demonstrating that a global unfold-

ing event is being monitored. The protein-concentration

independence of SEC and equilibrium-denaturation data

indicates that the sextuple mutant remains completely

monomeric at all experimental concentrations of protein

examined.

The m values obtained from the analysis of thermody-

namic unfolding data are useful parameters that relate to

the amount of solvent-accessible surface area (SASA) ex-

posed during unfolding, which in turn can be used to as-

sess the degree of structure in a protein (Myers et al.,

1995). The values shown in Table 1 are an indication of

Figure 3. Native Spectra for Wild-Type and Mutant YibK

(A) Fluorescence and (B) far-UV CD scans for wild-type protein (solid

black line), E143A (open circles), E143K (crosses), V139R (long-

dashed line), R20A/N24A/S87A (open triangles), R20A/N24A/S87A/

Y142F (filled diamonds), R20A/N24A/S87A/Y142F/E143K (short-

dashed line), and R20D/N24A/S87A/V139R/Y142F/E143K (open

squares) at 5 mM are shown. Conditions: 25�C in 50 mM Tris-HCl

(pH 7.5), 200 mM KCl, 10 % (v/v) glycerol, 1 mM DTT.
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the amount of tertiary structure retained by the mutant

proteins relative to wild-type YibK. The m value corre-

sponding to complete unfolding of native dimer to two un-

folded monomers, mN242D, is similar for all dimeric and

partially dimeric mutants, indicating that all lose compara-

ble amounts of structure when unfolding from their native

dimeric state. The m value predicted for dissociation of

a YibK dimer into two fully folded, native-like monomers

is 0.4 kcal mol�1 M�1 (Mallam and Jackson, 2005). This

is substantially less than the experimental mN242I values

measured for wild-type protein and dimeric mutants,

which range from 1.2 to 1.8 kcal mol�1 M�1, suggest-

ing that each monomer has partially unfolded upon disso-

ciation to form the intermediate state. Likewise, the

m value for unfolding of a fully folded YibK monomeric

subunit in a dimer was predicted to be between 2.0 and

2.5 kcal mol M�1 (Mallam and Jackson, 2005). The m value

for unfolding of the sextuple monomeric mutant is consid-

erably smaller than this, again indicating some structure

has been lost relative to a fully folded YibK monomer in

the dimer (Table 1). Fluorescence and far-UV CD spectra

for YibK mutants provide further evidence for this: the de-

crease in native fluorescence signal and a red shift in the

emission maximum observed for those YibK mutants

most monomeric in nature is consistent with a decrease

in tertiary structure relative to wild-type protein, while a re-

duction in the far-UV CD signal at 225 nm suggests a loss

in secondary structure (Figure 3).

Folding Kinetics of Selected YibK Mutants

The relationship between E143A, V139R, quintuple, and

sextuple mutants and folding intermediates identified dur-

ing the formation of native dimer in previous studies on the

wild-type protein was examined using fluorescence ki-

netic-folding experiments. Several monomeric intermedi-

ates are observed during the folding of wild-type dimeric

YibK, and four reversible folding phases are seen at pH

7.5 (Mallam and Jackson, 2006a). The urea-concentration

dependence of the unfolding- and refolding-rate con-

stants observed for each mutant during single-jump ex-

periments was investigated at 1 mM protein, and V-shaped

plots of the natural logarithm of the rate constants versus

denaturant concentration are shown in Figure 4. Resulting

kinetic phases are colored according to their similarity to

those observed for wild-type protein, and appear red,

green, and light blue in order from fastest to slowest, re-

spectively. A protein concentration-dependent refolding

phase was observed for E143A and is colored dark blue

(Figure 4B). This phase is likely to correspond to a dimer-

ization reaction. Rate constants for all other phases were

protein concentration independent (data not shown).

Double-jump unfolding experiments, where YibK mutants

were allowed to refold for various amounts of time before

unfolding was initiated,wereused todetectadditional faster

unfolding phases from intermediates populated along the

refolding pathway. Values of mkf
and mku

were calculated

for each mutant for all phases at 1 mM YibK, along with

the corresponding unfolding- and refolding-rate constants
–122, January 2007 ª2007 Elsevier Ltd All rights reserved 115
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Figure 4. Kinetics of Selected YibK Mutants at 1 mM Protein

(A–E) V-shaped plots of the natural logarithm of rate constants observed during folding and unfolding at various concentrations of urea. Rate con-

stants from single-jump and double-jump experiments monitored using stopped-flow apparatus are represented by filled and open circles, respec-

tively. Single-jump rate constants measured at 319 nm on a fluorimeter using manual mixing techniques are shown as filled triangles. Phases are

colored red, green, and light blue in order from fastest to slowest, respectively, and the phases that correspond to dimerization are shown in dark

blue. Continuous lines represent the fit of each phase to a two-state model (Equation 7). All symbols represent rate constants calculated from a fit

to a first-order reaction, except those on the refolding arm of the dimerization phase for E143A, which represent apparent rate constants calculated

from a fit to a second-order reaction. A chevron plot for wild-type protein (Mallam and Jackson, 2006a) is included for comparison. Conditions were as

described for Figure 3.

(F) The protein-concentration dependence for the dimerization phase for E143A at 0.75 M urea (the solid line represents the fit of the apparent rate

constants to Equation 6).
in the absence of denaturant. These results are summa-

rized in Table 2.

The dimeric mutant E143A displays folding kinetics sim-

ilar to wild-type YibK, and four reversible folding phases

are observed. The mkin values, which relate to the SASA

change associated with an observed kinetic step, calcu-

lated for the dark-blue dimerization phase for both pro-

teins, are in excellent agreement, indicating that the

SASA buried is similar (Table 2). However, this phase is

significantly destabilized in E143A relative to wild-type

YibK, and the DGkin
H2O of 9.5 kcal mol�1 observed is consid-

erably lower than the value of 14.0 kcal mol�1 for the wild-

type protein. No equivalent dimerization phase is seen for

monomeric and predominantly monomeric mutants; they

display three reversible phases only (Figure 4).

In previous work, extensive interrupted-refolding stud-

ies were undertaken on dimeric wild-type YibK to learn

more about its folding mechanism (Mallam and Jackson,

2006a). Similar experiments were carried out on the quin-

tuple and sextuple mutants, which are monomeric at 1 mM

protein (Table 1). This allowed the time course for interme-

diates involved in the refolding reaction to be followed, as

the population of any species present after various dura-

tions of refolding is proportional to the amplitude of the

corresponding unfolding reaction (Schmid, 1983; Wallace

and Matthews, 2002). The resulting unfolding amplitudes

for the three phases observed after various refolding pe-

riods are shown in Figures 5A and 5B. The time course

of refolding species was similar for both mutants; the pop-

ulations of the species corresponding to the two fastest

phases (red and green) increased in parallel with no ob-
116 Structure 15, 111–122, January 2007 ª2007 Elsevier Ltd A
servable lag, while a lag was seen in the formation of the

species corresponding to the light-blue phase before its

population escalated to dominate the refolding ensemble,

indicating that its formation is preceded by an obligatory

intermediate (Heidary et al., 2000). The folding mechanism

shown in Figure 5C involving three on-pathway species, I1,

I2, and I3, best describes the interrupted-refolding data,

and simulations of the population of species present dur-

ing refolding via this mechanism are shown in Figures 5A

and 5B. Mechanisms involving either of the species corre-

sponding to the fastest two phases, I1 and I2, asoff-pathway

intermediates do not describe the interrupted-refolding

data well (data not shown). The mechanism shown in

Figure 5C involves I1 and I2 folding to a third species I3.

This is very similar to the proposed folding pathway of

wild-type protein (Figure 5D). During the folding of wild-

type protein, the species corresponding to the light-blue

phase, I3, folds to native dimer, N2. This can be compared

to the monomeric mutants, where the population of I3 does

not decay and no detectable dimer is formed.

In summary, kinetic experiments indicate that dimeric

mutants of YibK fold in a manner similar to that of wild-

type protein, but with a significantly destabilized dimeriza-

tion phase, while monomeric mutants display a strong

resemblance to the monomeric intermediate I3 observed

on the wild-type folding pathway.

Affinity of S-Adenosyl Homocysteine for Dimeric

and Monomeric Forms of YibK

Since the physiological substrate of YibK is not yet known,

the ability of mutants of YibK to retain their MTase function
ll rights reserved
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Table 2. Kinetic Parameters for the Unfolding and Refolding of Selected YibK Mutants at pH 7.5 and 1 mM Final
Protein Concentration

Phase Color Mutanta kH2O
f (s�1)b

kH2O
u

(s�1)

mkf

(kcal mol�1

M�1)

mku

(kcal mol�1

M�1)

mkin

(kcal mol�1

M�1)c
DGkin

H2O

(kcal mol�1)d

1 Red Wild-type 133 ± 22 0.30 ± 0.06 0.87 ± 0.06 0.30 ± 0.02 1.2 ± 0.1 3.6 ± 0.2

E143A 84 ± 16 0.22 ± 0.09 0.66 ± 0.07 0.22 ± 0.04 0.9 ± 0.1 3.5 ± 0.5

V139R 118 ± 30 0.26 ± 0.06 0.94 ± 0.09 0.29 ± 0.02 1.2 ± 0.1 3.6 ± 0.3

Quintuple 84 ± 10 0.17 ± 0.09 0.48 ± 0.04 0.34 ± 0.05 0.8 ± 0.1 3.7 ± 0.5

Sextuple 64 ± 16 0.30 ± 0.09 0.80 ± 0.1 0.29 ± 0.03 1.1 ± 0.1 3.2 ± 0.4

2 Green Wild-type 15.1 ± 2.3 1.5 (± 0.7) 3 10�2 0.73 ± 0.05 0.27 ± 0.04 1.0 ± 0.1 4.1 ± 0.3

E143A 11 ± 3 1.5 (± 1) 3 10�2 0.67± 0.09 0.30 ± 0.07 1.0 ± 0.1 3.9 ± 0.7

V139R 15 ± 2 0.11 ± 0.02 0.80 ± 0.05 0.14 ± 0.02 0.9 ± 0.05 2.9 ± 0.2

Quintuple 28 ± 5 6.4 (± 4) 3 10�3 0.68 ± 0.05 0.40 ± 0.06 1.1 ± 0.1 5.0 ± 0.7

Sextuple 14 ± 2 2.9 (± 1) 3 10�2 0.71 ± 0.04 0.28 ± 0.04 1.0 ± 0.1 3.7 ± 0.4

3 Light blue Wild-type 7.7 (± 1.1) 3 10�2 9.0 (± 7) 3 10�5 0.48 ± 0.05 0.42 ± 0.08 0.9 ± 0.1 4.0 ± 0.1

E143A 1.6 (± 0.2) 3 10�2 3.1 (± 3) 3 10�5 0.13 ± 0.03 0.55 ± 0.08 0.7 ± 0.1 3.7 ± 1

V139R 1.7 (± 0.2) 3 10�2 6.8 (± 6) 3 10�5 0.15 ± 0.03 0.45 ± 0.07 0.6 ± 0.1 3.3 ± 0.9

Quintuple 2.6 (± 0.3) 3 10�2 3.0 (± 1) 3 10�4 0.26 ± 0.05 0.39 ± 0.04 0.7 ± 0.1 2.6 ± 0.4

Sextuple 2.6 (± 0.4) 3 10�2 2.0 (± 0.6) 3 10�3 0.24 ± 0.07 0.33 ± 0.03 0.6 ± 0.1 1.5 ± 0.3

4 Dark blue Wild-type 1.9 (± 0.3) 3 10�2 4.9 (± 2.0) 3 10�7 0.57 ± 0.03 0.67 ± 0.03 1.2 ± 0.1 14.0 ± 0.3

E143A 3.3 (± 0.3) 3 10�2 1.7 (± 0.1) 3 10�3 0.53 ± 0.07 0.7 ± 0.01 1.2 ± 0.1 9.5 ± 0.1

Errors quoted are the standard errors calculated by the fitting program. kH2O
f and kH2O

u are the rate constants for refolding and

unfolding, respectively, in the absence of denaturant; mkf
and mku

are the kinetic refolding and unfolding m values, respectively.
a Quintuple and sextuple mutants are R20A/N24A/S87A/Y142F/E143K and R20D/N24A/S87A/V139R/Y142F/E143K, respectively.
b All refolding rates are first order, except for phase 4 where kH2O

app is quoted. kH2O
app = Ptk

H2O
2nd , where Pt is the concentration of protein.

c mkin = mkf
+ mku

.
d DGkin

H2O = � RT lnðkH2O
u =kH2O

f Þ except for phase 4 where DGkin
H2O = � RT lnð2kH2O

u =kH2O
2nd Þ.
was determined by AdoHcy affinity studies. The binding of

AdoHcy is more straightforward to examine than that of

AdoMet, as the latter is unstable in vitro (Hoffman, 1986).

The AdoHcy cofactor binding site, shown in Figure 1C,

consists of a pocket formed by two loops of the knot, res-

idues 80–85 and 102–105, and the loop connecting b6 and

a5 (Lim et al., 2003). Binding of AdoHcy was measured by

isothermal titration calorimetry (ITC); results are shown in

Figure 6 and summarized in Table 3. Mutants that are pre-

dominantly dimeric, as determined by SEC and equilib-

rium-denaturation experiments, display a similar affinity

for AdoHcy as wild-type YibK, and only a small increase

in their dissociation constant (KD), relative to that of wild-

type protein, is observed. In contrast, much weaker bind-

ing to AdoHcy was seen for the quintuple mutant and

V139R, both largely monomeric, and no observable bind-

ing was seen for the completely monomeric sextuple mu-

tant. ITC experiments, therefore, indicate that AdoHcy is

only able to bind to dimeric forms of YibK. The stoichiom-

etry of the observed AdoHcy binding event was approxi-

mately 0.5 for wild-type protein and all mutants, indicating

that only one AdoHcy molecule binds to each YibK dimer.
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DISCUSSION

The a/b-knot superfamily of homodimeric MTases is an

extraordinary group of proteins that contain a deep trefoil

knot in their backbone topology. Before their discovery, it

was thought that knot formation in proteins would be im-

possible, due to the apparent complications involved; it

is still not obvious how, during the process of protein fold-

ing, a substantial length of polypeptide chain manages to

spontaneously thread itself through a loop. Based on se-

quence classification, a/b-knot proteins can be divided

into four distinct families, known as SpoU, TrmD, YbeA,

and AF2226 (Anantharaman et al., 2002). Several muta-

tional studies on SpoU- and TrmD-like proteins have

shed light on the functional role of the knotted region in

their structure, and have shown that it forms the cofac-

tor-binding pocket and the active site (Elkins et al., 2003;

Mosbacher et al., 2005; Nureki et al., 2004; Watanabe

et al., 2005). In this study, the purpose of dimerization in

the SpoU a/b-knotted protein, YibK, of H. influenzae has

been examined by the generation of a monomeric version

of the protein.
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Six disruptive mutations were necessary to render YibK

entirely monomeric at all experimental protein concentra-

tions examined. That such extensive disruptions were re-

Figure 5. Determining the Folding Mechanism of Monomeric

YibK

(A and B) Relative amplitudes of the three unfolding reactions seen dur-

ing interrupted-refolding experiments on (A) the quintuple and (B) the

sextuple YibK mutants after refolding at 1 M urea, and subsequent un-

folding at 7.7 M urea and a final concentration of protein of 1 mM. Insets

show an expanded view for delay times up to 5 s. Amplitudes are col-

ored according to their corresponding phase shown in Figure 4.

(C) The folding mechanism of YibK monomeric mutants most consis-

tent with all experimental data. Rate constants are shown for the sex-

tuple mutant in buffer at 25�C, and arrows are colored according to

their corresponding phase in Figure 4. The continuous lines in (A)

and (B) represent simulations of the time course of intermediates

folding via the mechanism shown in (C).

(D) The folding mechanism proposed for wild-type YibK dimer (Mallam

and Jackson, 2006a). Conditions were as described for Figure 3.
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quired is perhaps not surprising, as thermodynamic fold-

ing studies on the wild-type protein showed that the

interaction between two monomeric intermediates was

strong, some 18.9 kcal mol�1 (Mallam and Jackson,

2005). Furthermore, other a/b-knotted proteins have only

ever been observed as dimers, indicating that subunits

of proteins in this superfamily are not easily dissociated

(Ahn et al., 2003; Elkins et al., 2003; Mallam and Jackson,

2005, 2006b; Mosbacher et al., 2005; Nureki et al., 2004).

Dimer stability was significantly reduced in all of the YibK

mutants engineered. The sequence conservation of resi-

dues targeted for mutagenesis within the SpoU subfamily

of a/b-knotted proteins is shown in Figure 7. The mutated

residues Arg20, Tyr142, and Glu143 are all highly con-

served, and the residue corresponding to position 139 in

the YibK sequence is always hydrophobic, suggesting

that amino acids at these positions have been preserved

for dimer stability in SpoU-like knotted proteins.

A notable loss in secondary and tertiary protein struc-

ture in monomeric forms of YibK demonstrates that dimer-

ization of the protein is essential for maintaining native-like

structure. Furthermore, upon monomerization, YibK is un-

able to bind the MTase cofactor, AdoHcy. Residues

Leu78, Gly100, Ile122, Met131, and Ser136 have been

identified as those that form hydrogen bonds with AdoHcy

in its bound state (Figure 7) (Lim et al., 2003) and are inde-

pendent of the residues mutated in this study, which are

not located in the AdoHcy-binding pocket. Consequently,

it is reasonable to assume that the loss of affinity observed

for monomeric YibK is caused by the disruption of the

structure of the binding pocket upon monomerization of

the protein, and not by the removal of direct AdoHcy-

binding interactions. Dimerization is, therefore, crucial to

maintain the integrity of the cofactor binding site. Since

YibK would not be able to act as an MTase in the absence

of a bound cofactor molecule, it follows that dimerization

is necessary for the preservation of the function of the pro-

tein. This demonstrates the biological significance of the

strong dimerization observed in a/b-knotted proteins.

Studies on other a/b-knotted proteins have postulated

that dimerization is important for MTase function (Ahn

et al., 2003; Elkins et al., 2003; Nureki et al., 2004; Wata-

nabe et al., 2005). Residues potentially crucial to the

MTase activity of the SpoU knotted homodimer, TrmH,

from Thermus thermophilus, a protein closely related to

YibK, have been identified (Nureki et al., 2004; Watanabe

et al., 2005). Nureki and coworkers proposed a novel

RNA-dependent methylation mechanism for TrmH, and

suggested that dimerization was critical for tRNA binding

and methylation catalysis, as one monomer subunit binds

AdoMet, while the other serves as a tRNA-binding site

(Nureki et al., 2004; Watanabe et al., 2005). Extensive mu-

tational analysis performed on the knotted protein, TrmD,

from Escherichia coli led to the suggestion that formation

of a homodimer was required for activity. This conclusion

was based on the observation that mutations made out-

side the catalytic region but at the dimer interface led to in-

activation of the protein (Elkins et al., 2003). The results

presented here demonstrate the structural importance of
All rights reserved
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Figure 6. Affinity of AdoHcy for YibK

Wild-Type and Mutant Proteins

The continuous line represents the fit of ITC

data to a single-site binding model using the

Origin software package (MicroCal Inc.). Con-

ditions were 50 mM Tris-HCl (pH 7.5), 200

mM KCl, 10% glycerol (v/v), 1 mM b-mercap-

toethanol. Data have been corrected for the

heat of dilution.
the dimerization observed in YibK. However, there is evi-

dence to suggest that these findings may be applied to

other a/b-knot proteins. Folding studies recently under-

taken on the knotted homodimer, YbeA, from E. coli

established that, like YibK, YbeA unfolds via a thermody-

namic and kinetic monomeric intermediate that has lost

significant structure relative to the native monomeric sub-

unit in the dimer, implying that dimerization is also essen-

tial to maintain native structure and, perhaps, function in

this a/b-knot protein (Mallam and Jackson, 2006b).

The stoichiometry of the observed cofactor-binding

event suggests that only one AdoHcy molecule binds to

each YibK dimer. We note that this is in contrast to the

crystal structure that shows one AdoHcy moiety bound

to each monomer subunit. A possible explanation for

this discrepancy is that binding of one AdoHcy molecule

causes a conformational change that prevents observable

binding of a second AdoHcy unit; Lim and coworkers re-

ported a small conformational change involving five loop

residues upon AdoHcy binding (Lim et al., 2003). Cocrys-

tallization of AdoHcy was achieved by soaking a YibK pro-

tein crystal in a high-concentration solution of cofactor

over a long period of time, conditions potentially sufficient

to cause the equilibrium to favor a higher binding stoichi-

ometry.

Upon monomerization of YibK, a species is formed that

has similar secondary and tertiary structure (as judged by
Structure 15, 11
agreement of the mI4D values for monomeric YibK and

wild-type protein) to the equilibrium monomeric intermedi-

ate observed during wild-type unfolding. Kinetic charac-

terization of the YibK mutants allowed their folding

pathway to be compared to that of the wild-type dimer,

which forms by a complex kinetic mechanism involving

two different intermediates (I1 and I2) from parallel path-

ways folding via a third sequential monomeric intermedi-

ate (I3) to form native dimer (N2) in a slow, rate-limiting

dimerization reaction (Mallam and Jackson, 2006a). The

folding mechanisms for monomeric mutants of YibK and

wild-type dimer appear very similar, except that, during

folding of the wild-type protein, I3 is an intermediate that

precedes formation of the native dimer, N2. This agree-

ment validates the proposed wild-type dimer folding path-

way, and suggests that monomeric YibK is an excellent

model for the folding intermediate, I3, observed during

wild-type folding. The comparable stability and m values

for the kinetic folding of the monomeric mutants to the

values for wild-type I3 adds further weight to this argument

(Table 2). Furthermore, monomeric mutants similar to I3
display little or no binding to AdoHcy, implying that the co-

factor binding site is formed during the final folding step

(2I34N2). Importantly, while the kinetic phase corre-

sponding to dimerization in the dimeric mutant, E143A,

is considerably destabilized relative to that for wild-

type protein, the other three phases remain the same,
Table 3. Thermodynamic Parameters for the Binding of AdoHcy to YibK Wild-Type and Mutant Proteins

Mutant

Binding Stoichiometry

([AdoMet]/[YibK]) KD (mM) DGb (kcal mol�1)a

Wild-type 0.44 ± 0.002 26 ± 0.5 �6.3 ± 0.01

E143A 0.41 ± 0.03 55 ± 3.4 �5.8 ± 0.04

E143K 0.46 ± 0.02 61 ± 3.0 �5.8 ± 0.03

V139R 0.5b 8130 ± 3600 �2.9 ± 0.26

R20A/N24A/S87A 0.51 ± 0.05 86 ± 5.4 �5.6 ± 0.04

R20A/N24A/S87A/Y142F 0.49 ± 0.02 65 ± 2 �5.7 ± 0.02

R20A/N24A/S87A/Y142F/E143K 0.5b 581 ± 19 �4.4 ± 0.02

R20A/N24A/S87A/V139R/Y142F/E143K No binding No binding No binding

ITC data were analyzed using Origin version 7, and the errors quoted are the standard errors calculated by the fitting program. ‘‘No

binding’’ indicates that no binding was observed. Concentration of protein in the ITC cell varied between 110 and 330 mM.
a The free energy of binding was calculated using DGb = �RTln(1/KD).
b The binding stoichiometry was fixed to 0.5 as suggested by Turnbull and Daranas (2003) to allow a more accurate determination of

KD and, hence, DGb, in low-affinity systems.
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Figure 7. Multiple Sequence Alignment

of SpoU Family Proteins

All proteins are known to contain a deep trefoil

knot in their backbone structure. The alignment

was performed using ClustalW (Chenna et al.,

2003), and the figure was generated using

Jalview (Clamp et al., 2004). Proteins are listed

according to the species name followed by the

gene: Hi, Haemophilus influenzae; Ec, Escher-

ichia coli; Tt, Thermus thermophilus; Sv, Strep-

tomyces viridochromogenes. YibK residues

marked ‘‘^’’ have been targeted by mutagene-

sis in this study, and ‘*’ indicates residues

buried by AdoHcy binding (Lim et al., 2003).
demonstrating that dimeric interactions have been selec-

tively disrupted. An intermediate that could correspond to

a fully folded YibK monomer is never observed during the

folding of wild-type or any of the YibK mutants; native-like

monomer subunits can only exist when accompanied by

the formation of quaternary interactions in the dimeric

structure. It is interesting to note that the folding kinetics

of monomeric mutants of YibK are slow in comparison

with the kinetics of other stable monomeric species that

have been engineered from dimeric proteins. Examples

are the folding of tryptophan repressor monomer and

a monomeric form of phage l repressor, both of which oc-

cur on a submillisecond timescale (Huang and Oas, 1995;

Shao et al., 1997). It is possible that the development of

the knot in YibK is responsible for its slow folding; how-

ever, it is necessary to establish the kinetic step corre-

sponding to knot formation in order to confirm this.

Conclusions

The intriguing deep trefoil knots found in the backbone to-

pology of a/b-knotted MTases demonstrate that nature

has evolved mechanisms not only to successfully fold pro-

tein chains, but to knot them as well. Discovering how and

why such knots occur represents a fundamental and ex-

citing challenge in structural biology. A characteristic of

all a/b-knotted proteins is their existence as homodimers.

In this study, the construction of mutants that disrupt the

dimer interface of YibK has allowed the effects of dimer-

ization on structure and function of this knotted protein

to be examined directly. Thermodynamic and kinetic char-

acterization of mutant proteins provided a convenient way

of confirming their oligomeric state and assessing their rel-

ative structures, stability and folding pathways. Results

clearly show that activation of this enzyme occurs upon di-

merization, and monomerization of the protein leads to a

loss of both structure and function. Consequently, the

knotted topology alone is insufficient to maintain the ac-

tive conformation of the cofactor binding site in YibK,

and additional stability is required from dimerization of

the protein. This demonstrates that, while the knot assem-

bly may be advantageous in terms of constricting move-

ment in the active-site region, dimerization is also essen-
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tial to preserve the correct active-site structure. The

conservation of many residues targeted by mutagenesis

in this study, as well as the observation of partially folded

monomeric species in other a/b-knot proteins, suggest

that these findings may be applicable to other knotted

homodimers.

EXPERIMENTAL PROCEDURES

Materials

Molecular biology-grade urea was purchased from BDH Laboratory

Supplies. Point mutations were introduced into the gene encoding

for YibK wild-type protein using the QuikChange Site-Directed Muta-

genesis Kit (Strategene). A series of site-directed mutagenesis reac-

tions were performed to obtain triple, quadruple, quintuple, and sex-

tuple mutants. Mutant proteins were expressed and purified as

described for wild-type YibK (Mallam and Jackson, 2005), with the fol-

lowing modifications: protein was incubated postinduction for 16 hr at

25�C, apart from the sextuple mutant, which was incubated for 16 hr at

15�C. Additionally, the step involving an SP-sepharose cation-

exchange column was performed using a buffer of 50 mM phosphate

(pH 6.7), 125 mM KCl, 5 % glycerol (v/v), 1 mM DTT. The identity of mu-

tants was confirmed by DNA sequencing and mass spectrometry. All

experiments were performed in a buffer of 50 mM Tris-HCl (pH 7.5),

200 mM KCl, 10 % glycerol (v/v), 1 mM DTT, except for the ITC exper-

iments where b-mercaptoethanol replaced DTT as the reducing agent.

All protein concentrations are in monomer units.

Mutant Characterization

SEC was performed on an ÄKTA FPLC system using a Superdex 75

10/300 GL analytical gel filtration column, as described previously

(Mallam and Jackson, 2005). All spectroscopic measurements were

taken using a thermostatically controlled cuvette or cell at 25�C. For

fluorescence studies, data were collected with an SLM-Amico Bow-

man series 2 luminescence spectrometer with an excitation wave-

length of 280 nm (4 nm band pass) with a 1 cm path-length cuvette.

Fluorescence was monitored at 319 nm (4 nm band pass) for

manual-mixing kinetic experiments on E143A, while scans between

310 and 350 nm were recorded for equilibrium-denaturation experi-

ments. Far-UV CD spectra were acquired with an Applied Photophy-

sics Chirascan, and scans were taken between 200 and 260 nm at

a scan rate of 1 nm s�1 using a 0.1 cm path-length cuvette and a band-

width of 1 nm. For equilibrium denaturation, the change in far-UV CD

signal was monitored at 225 nm. Rapid-mixing fluorescence data

were collected using an Applied Photophysics SX.18MV stopped-

flow fluorimeter with no cut-off filter.
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Equilibrium-denaturation experiments on YibK mutants were per-

formed using the same methods as for wild-type protein, and these

are described in detail elsewhere (Mallam and Jackson, 2005). Sam-

ples were left for at least 1 hr to equilibrate, after which no change in

spectroscopic signal was seen. The reversibility of unfolding in urea

for all mutants was confirmed using fluorescence and far-UV CD. Ki-

netic unfolding and refolding experiments using fluorescence were un-

dertaken on selected mutants of YibK by the same methods described

for wild-type protein (Mallam and Jackson, 2006a) and were per-

formed at a final concentration of protein of 1 mM unless otherwise

stated. There was no observable burst phase for any mutant, as all am-

plitude change was accounted for by the kinetic traces. The dimeriza-

tion phase for E143A was measured by refolding protein unfolded in

3 M urea.

Data Analysis

All data analysis was performed using the nonlinear, least squares-

fitting program, Prism version 4 (GraphPad Software). Mutant equilib-

rium-denaturation data measured at 319 nm, with the exception of that

for the sextuple mutant, were globally fit over all concentrations of pro-

tein to a three-state dimer denaturation model involving a monomeric

intermediate:

Yrel = YN

�
2PtF

2
I

K1

�
+ YIðFIÞ+ YDðK2FIÞ; (1)

where: Yrel is the normalized spectral signal, YN, YI, and YD are the

spectroscopic signals of the native, intermediate, and denatured state,

respectively; Pt is the total protein concentration in terms of monomer,

FI represents the fraction of monomeric subunits involved in the inter-

mediate state, and K1 and K2 are the equilibrium constants for the first

and second transitions, respectively.

Equilibrium-unfolding data measured for the sextuple mutant were

globally fit to a two-state monomer-denaturation model:

½D�=
ð½D�+ ½N�Þexp

��
mN4D½urea� � DGH2O

N4D

�
RT

�

1 + exp

��
mN4D½urea� � DGH2O

N4D

�
=RT

� ; (2)

where N is a folded monomeric species and D is a denatured

monomer.

These models have been described in detail elsewhere (Mallam and

Jackson, 2005, 2006a).

All kinetic traces, except those for the protein concentration-

dependent phase observed for E143A, were fit individually to a first-

order reaction with the required number of exponentials:

YðtÞ= YNative +
XN

i = 1

Yiexpð� k1sttÞ; (3)

where Y(t) is the signal at time t, YNative is the signal expected for fully

folded native protein, Yi is the amplitude change corresponding to a

given kinetic phase, and K1st is the first-order rate constant. The pro-

tein concentration-dependent traces observed during the refolding

kinetics of E143A were fit to a second-order reaction described by

the following model:

2I4
k2nd

N2 d½N2�=dt = k2nd½I�2; (4)

where K2nd is the bimolecular folding rate constant. The differential

equation can be solved to give:

Y ðtÞ= Yt = 0 + YiðkapptÞ=ð1 + kapptÞ; (5)

where Yt = 0 is the signal at time t = 0 and kapp is the apparent rate con-

stant. The apparent rate constant is related to k2nd as follows:

kapp = Ptk2nd; (6)

where Pt is the concentration of protein in terms of monomer.
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The dependence of the natural logarithm of the unfolding- and

refolding-rate constants on urea concentration is assumed to be linear

(Tanford, 1968, 1970), and each phase on the chevron plots was fit to:

ln kobs = ln

�
kH2O

f expð�mkf
½urea�Þ+ kH2O

u expðmku
½urea�Þ

�
; (7)

where kobs is the observed rate constant, kH2O
f and kH2O

u are the refold-

ing- and unfolding-rate constants for each phase in water, and mkf
and

mku
are constants of proportionality.

Traces from interrupted refolding and unfolding experiments for dif-

ferent delay times were globally fit to Equation 3, with values for the

first-order unfolding-rate constants shared throughout all datasets.

Kinetic simulations to model the time course of species present dur-

ing refolding of YibK monomeric mutants via various possible folding

mechanisms were performed with the numerical simulation program

KINSIM (Dang and Frieden, 1997) and the rate constants from the

chevron plots.

ITC

ITC was performed with a MicroCal VP-ITC instrument (MicroCal Inc.

Northampton, MA). AdoHcy at an appropriate concentration was

injected into a 2.5 ml cell containing protein. Parallel experiments

were carried out injecting AdoHcy into buffer alone to correct data

for the heat of dilution in subsequent data analysis using Origin

(MicroCal Inc.). Protein and AdoHcy concentrations were determined

spectrophotometrically.
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