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Abstract

It is well known that representations of kernel-based approximants in terms of the standard basis of
translated kernels are notoriously unstable. To come up with a more useful basis, we adopt the strategy
known from Newton’s interpolation formula, using generalized divided differences and a recursively
computable set of basis functions vanishing at increasingly many data points. The resulting basis turns
out to be orthogonal in the Hilbert space in which the kernel is reproducing, and under certain assumptions
it is complete and allows convergent expansions of functions into series of interpolants. Some numerical
examples show that the Newton basis is much more stable than the standard basis of kernel translates.
c© 2008 Elsevier Inc. All rights reserved.
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1. Stability of evaluation of interpolants

We consider multivariate interpolation on a set X := {x0, . . . , xn} of scattered data locations
x0, . . . , xn in some bounded domain Ω ⊂ Rd . Given values f (x0), . . . , f (xn) of a real-valued
function f there, we want to reconstruct f by a linear combination

sX, f (x) :=
n∑

j=0

α jw j (x) (1)

of certain basis functions w0, . . . , wn on Ω . The coefficients α0, . . . , αn result from solving a
linear system
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n∑
j=0

α jw j (xk) = f (xk), 0 ≤ k ≤ n

with the coefficient matrix AX,w = (w j (xk))0≤ j,k≤n which we assume to be invertible.
We now look at the norm of the interpolation projector taking the data vector

fX := ( f (x0), . . . , f (xn))
T
∈ Rn+1

into the interpolant as an element of C(Ω) under the L∞ norm. We get

‖sX, f ‖∞ ≤

n∑
j=0

|α j |‖w j‖∞

≤ ‖α‖∞

n∑
j=0

‖w j‖∞

= L X,w‖α‖∞

≤ L X,w‖A−1
X,w‖∞,∞‖ fX‖∞

(2)

with the generalized Lebesgue constant

L X,w =

n∑
j=0

‖w j‖∞.

Note that this way of bounding the interpolation operator is basis-dependent. But since we
assume that actual calculations proceed via the coefficients α j , the above argument describes
the error behavior when evaluating the interpolant (1). In fact, the absolute error of evaluating
(1) on a machine with precision ε will have a worst-case bound

ε

n∑
j=0

|α j |‖w j‖∞ ≤ εL X,w‖A−1
X,w‖∞,∞‖ fX‖∞.

This means that the instability of evaluation using the basis functions w j and the formula (1) can
be measured by the quantity

SX,w := L X,w‖A−1
X,w‖∞,∞. (3)

Note that this is not the condition of the interpolation process as a whole, as considered in the
early papers of W. Gautschi [5]. We plan to treat the Gautschi condition in a forthcoming paper.

Let us look at two typical cases. If we use a symmetric positive definite kernel K : Ω×Ω →
R and the basis

w j := K (·, x j ), 0 ≤ j ≤ n,

it is well known [8,7] that the smallest eigenvalue of AX,w becomes very small if n becomes large,
even if the data points are placed nicely, and the effect becomes worse when the smoothness of
the kernel is increased. This instability has been observed by plenty of authors, and there were
many attempts to overcome it. For instance, local Lagrange bases have been successfully used
for certain preconditioning techniques [6,1,2].

But let us look at an opposite case guided by the cited papers. Theoretically, one can go over
to a full Lagrange basis u0, . . . , un of the space

UX,K ,n := Span {K (·, x0), . . . , K (·, xn)} (4)
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satisfying u j (xk) = δ jk, 0 ≤ j, k ≤ n. Then one has AX,u = I and the instability is governed
solely by the classical Lebesgue constant

L X,u :=

n∑
j=0

‖u j‖∞.

The paper [3] proves that this constant grows only like O(
√

n) for reasonably distributed
interpolation points and any fixed smoothness of the kernel.

These two examples show that the interpolants behave well in function space though the
coefficients in the standard basis tend to be intolerably large in absolute value. This was also
observed by many authors. On the other hand, the Lagrange basis is an example with much
better stability behavior, but it is hard to calculate.

Consequently, this paper constructs a new type of basis halfway between the Lagrange case
and the standard kernel basis. We shall do this by mimicking the Newton interpolation formula.
In terms of classical polynomial interpolation, this means that we prefer the Newton form of
the interpolant over solving the linear system with a Vandermonde matrix or using the Lagrange
basis. As a byproduct, we get an orthogonal basis in the “native” Hilbert space in which the kernel
is reproducing, and we can show that the basis is complete, if infinitely many data locations are
reasonably chosen. The stability properties of the new basis are shown to lie right between those
of the standard and the Lagrange bases, and some numerical examples support our theory.

2. Newton bases

As is well-known, polynomial interpolation to a real-valued function f on R using values on
n + 1 data locations

x0 < x1 < · · · < xn

on the real line can be done by Newton’s formula

pn(x) =
n∑

j=0

[x0, . . . , x j ] f︸ ︷︷ ︸
:=λ j ( f )

j−1∏
i=0

(x − xi )︸ ︷︷ ︸
:=v j (x)

where [x0, . . . , x j ] f stands for the divided difference of order j applied to f at the data locations
x0, . . . , x j . Note that this takes the form

pn(x) =
n∑

j=0

λ j ( f )v j (x) (5)

splitting the formula into a sum of products of an f -independent basis function v j and an
f -dependent data functional λ j ( f ), quite like any other quasi-interpolation formula. This
representation has the characteristic properties

v j (xi ) = 0, 0 ≤ i < j
v j (x j ) 6= 0, 0 ≤ j
λ j (vi ) = 0, 0 ≤ i < j

(6)

and the simple error representation
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f (x)− pn(x) = vn+1(x)[x, x0, . . . , xn] f for all x ∈ R.

We now turn to general multivariate interpolation on a set X := {x0, . . . , xn} of scattered data
locations x0, . . . , xn in some bounded domain Ω ⊂ Rd , and we assume a continuous symmetric
positive definite kernel K to be given on Ω .

It is a basic fact of kernel-based methods [8,7] that functions of the form

p(x) :=
n∑

j=0

α j K (x, x j ) (7)

have a norm given by

‖p‖2K :=
n∑

j,k=0

α jαk K (x j , xk)

which arises from the inner product(
n∑

j=1

α j K (·, x j ),

m∑
k=1

βk K (·, yk)

)
K

:=

n∑
j=1

m∑
k=1

α jβk K (x j , yk).

Under this inner product, the span of functions (7) can be completed to form a “native” Hilbert
space N for the given kernel, and the kernel is “reproducing” in N in the sense

g(x) =
(
g, K (x, ·)

)
K for all x ∈ Rd , g ∈ N . (8)

For later use, we remark that boundedness of Ω and continuity of K imply that the native space
N is continuously embedded in the space of continuous functions via

|g(x)| ≤ C‖g‖K for all g ∈ N , x ∈ Ω (9)

with a positive constant C . This follows from the reproduction equation (8) via

|g(x)| ≤ ‖g‖K
√

K (x, x) for all x ∈ Ω , g ∈ N

and (8) also implies continuity of all g ∈ N since

|g(x)− g(y)|2 ≤ ‖g‖2K (K (x, x)− 2K (x, y)+ K (y, y)) for all x, y ∈ Ω .

In view of (6), we now define a basis for the space (4) via “triangular” Lagrange conditions.

Definition 2.1. We define the Newton basis {v j }
n
j=0 on the sequence Xn :=

(
x j
)n

j=0 for the
kernel K by

v j (xi ) = 0, 0 ≤ i < j ≤ n
v j (x j ) = 1, 0 ≤ j ≤ n

(10)

and the requirement

v j ∈ UX,K , j := Span {K (·, x0), . . . , K (·, x j )}, 0 ≤ j ≤ n. (11)

Remark 1. The functions v j are well defined because of the positive definiteness of the kernel
K [8,7]. From the definition one can also see easily the linear independence of v j . Unlike the
Lagrange basis, adding new data locations does not require a recalculation of the basis functions.
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Definition 2.2. For f ∈ N we define the coefficient functionals λ j ( f ), 0 ≤ j ≤ n similar to
(5) recursively by the equation

f (x j ) =

j∑
k=0

λk( f )vk(x j ), 0 ≤ j ≤ n. (12)

For convenience we use the notation

f j (x) :=
j∑

k=0

λk( f )vk(x), 0 ≤ j ≤ n. (13)

Remark 2. A permutation of the points in X will change the functionals λ j ( f ), 0 ≤ j ≤ n. But
for a given sequence of points these functionals are unique due to the recursive structure of (12).

Remark 3. If we use the uniqueness of the representation in the special case f = vi we get the
third equation of (6) in the strengthened form

λ j (vi ) = δi j , 0 ≤ i ≤ j.

Lemma 4. The functions f j have the interpolation property

f j (xk) = f (xk), 0 ≤ k ≤ j.

Proof. This follows directly for j = 0 and then by induction from

f j (x) = λ j ( f )v j (x)+ f j−1(x) and

v j (xk) = 0, 0 ≤ k < j. �

Lemma 5. The coefficient functionals λ j ( f ) can be computed by the equations

λ0( f ) = f0(x0),

λ j ( f ) = f (x j )− f j−1(x j ), 1 ≤ j ≤ n.

Proof.

f (x j ) = f j (x j )

= λ j ( f )v j (x j )+

j−1∑
k=0

λk( f )vk(x j )

= λ j ( f )+ f j−1(x j ). �

Now we are looking for a way to calculate the v j . Later, we shall see that the basis has some
hidden orthogonality property, but we can also do the calculation in a direct and straightforward
way using a representation

β j jv j (x) = K (x, x j )−

j−1∑
k=0

β jkvk(x), β jk ∈ R, 0 ≤ k ≤ j ≤ n, (14)

and applying v j (xi ) = δi j , 0 ≤ i ≤ j from (10). The result is
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β j i = K (xi , x j )−

i−1∑
k=0

β jkvk(xi ), 0 ≤ i ≤ j ≤ n,

β j i = 0, for i > j.

One can store the β jk and the v j (xk) together in a matrix or compute them directly via LR-
decomposition.

(
K (xi , x j )

)
i j =

β11 0
...

. . .

β j1 · · · β j j


v1(x1) · · · v1(x j )

. . .
...

0 v j (x j )

 . (15)

But we do not claim that the above calculation is the best possible.

3. Orthogonality

The reproduction formula (8) proves

Theorem 6. For p ∈ N , p(x) :=
∑n

j=0 α j K (x, x j ), the following orthogonality relation holds:

(p, g)K = 0 for all g ∈ N with g(x j ) = 0, 0 ≤ j ≤ n.

Proof.

(p, g)K =

n∑
j=0

α j
(
K (·, x j ), g

)
K =

n∑
j=0

α j g(x j )︸ ︷︷ ︸
=0

= 0. �

Consequently, (10) and (11) imply orthogonality between the functions of the Newton basis.

Corollary 7. Using Definition 2.1 we have

(v j , vk)K = 0, 0 ≤ k < j ≤ n.

Proof. The proof follows directly from Theorem 6 together with

vk ∈ Span {K (·, x0), . . . , K (·, xk)}

and v j (xi ) = 0, for 0 ≤ i < j . �

Remark 8. The functions v j , 0 ≤ j ≤ n, are not orthonormal. However from (14) one can read
off that

‖v j‖
2
K =

(
K (·, x j )−

j−1∑
k=0

β jkvk, v j

)
/β j j

=
(
K (·, x j ), v j

)
/β j j

= v j (x j )/β j j

= 1/β j j

holds, using Corollary 7 and the reproduction formula.

From Corollary 7 and Definition (13) we see that λ j ( f )‖v j‖K is the j th expansion coefficient
of f j in the orthogonal basis {vk}

n
k=0. Therefore we can conclude:
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Theorem 9. The coefficients λ j ( f ), 0 ≤ j ≤ n have the representations

λ j ( f ) =

(
f j ,

v j

‖v j‖
2
K

)
K

=

(
f,

v j

‖v j‖
2
K

)
K

=

(
fn,

v j

‖v j‖
2
K

)
K

, 0 ≤ j ≤ n

for all functions f ∈ N .

Proof. Since the v j are orthogonal we get from f j (x) =
∑ j

k=0 λk( f )vk(x) the equation

λ j ( f )‖v j‖K =

(
f j ,

v j

‖v j‖K

)
K
.

The second and third equations of the theorem follow from

0 = ( f j − f )(xk) = ( f j − fn)(xk), 0 ≤ k ≤ j ≤ n

and Theorem 6. �

Furthermore, we get from Parseval’s identity together with(
fn,

v j
‖v j‖K

)
K = 0 for j > n the equation

‖ fn‖
2
K =

n∑
j=0

(
fn,

v j

‖v j‖K

)2

K

=

n∑
j=0

(
f,

v j

‖v j‖K

)2

K

=

n∑
j=0

λ2
j ( f )‖v j‖

2
K .

Since the interpolants to functions f from the native space always are norm-minimal [8,7], we get

‖ fn‖
2
K =

n∑
j=0

λ2
j ( f )‖v j‖

2
K

≤ ‖ f ‖2K

proving that one can take the limit n → ∞ without problems, if there are infinitely many
points.

4. Stability

But before we consider completeness questions and n → ∞ in detail, we want to show a
bound like (2) for the Newton basis.
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Theorem 10. For representation (5) there is the bound

n∑
j=0

|λ j ( f )||v j (x)| ≤ C
√

n + 1‖ f ‖K for all f ∈ N (16)

using the constant from (9).

Proof.
n∑

j=0

|λ j ( f )||v j (x)| ≤ C
n∑

j=0

|λ j ( f )|‖v j‖K

≤ C
√

n + 1

√√√√ n∑
j=0

λ2
j ( f )‖v j‖

2
K

≤ C
√

n + 1‖ f ‖K . �

The above result shows that both the coefficients and the functions in the representation of
the interpolant by the Newton basis cannot grow exceedingly fast for n → ∞. However, this
does not mean that the actual values λ j ( f ) and v j (x) are calculated stably. As in the standard
Newton representation of polynomial interpolants, the calculation of divided differences from
purely pointwise data is necessarily unstable.

For sufficiently dense and well-distributed data in bounded domains, and for kernels with
finite smoothness, we have uniform boundedness of ‖v j‖∞ because each such function is part of
a Lagrange basis [3]. Under such conditions, the Lagrange basis also satisfies a bound like (16)
due to [3]. Applying Theorem 9, the divided difference functionals λ j ( f ) then have bounds

|λ j ( f )| =
( fn, v j )K

‖v j‖
2
K

≤
‖ fn‖K

‖v j‖K
≤
‖ f ‖K

‖v j‖K
,

but these bounds are weaker than the summability implied by (16).

5. Convergence and completeness

As we saw before, it is no problem to let n tend to infinity, but one cannot expect to have a
good reproduction quality of interpolants without making further assumptions on the placement
of the data locations.

Theorem 11. Let x0, x1, . . . be an infinite sequence of data locations in Ω which is
asymptotically dense, i.e. which has each point of Ω as an accumulation point. If for all n ≥ 0 the
function fn is the kernel-based interpolant on the points x0, . . . , xn to some fixed given function
f ∈ N , there is norm convergence

‖ f − fn‖K → 0, n→∞. (17)

Furthermore, the orthogonal system consisting of the Newton basis functions v j is complete in
the native Hilbert space N of the kernel, and each function f ∈ N can be represented as

f =
∞∑
j=0

( f, v j )K

‖v j‖
2
K

v j

in the sense of convergence in N and uniform convergence in Ω .
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This result will surely have applications elsewhere, because it is a first case of an orthogonal
expansion of functions from reproducing kernel Hilbert spaces into a convergent series of
interpolants.

The proof of (17) follows from standard Hilbert space arguments using

‖ f − fn‖
2
K = ‖ f − fn+m‖

2
K + ‖ fm+n − fn‖

2
K for all f ∈ N , n,m ∈ N

due to Theorem 6, and proving that the fn form a Cauchy sequence with some limit g ∈ N with
f − g being orthogonal to all K (x j , ·). Then the reproduction equation (8) implies that f = g
on all data points, and on Ω by continuity. We thus get

f = lim
n→∞

fn =

∞∑
j=0

λ j ( f )v j =

∞∑
j=0

( f, v j )K

‖v j‖
2
K

v j (18)

which is convergent in ‖ · ‖K , and then also in ‖.‖∞ by (9). �
The convergence rate in (18) in the uniform norm is the one obtained for the sequence of

interpolants, and thus all standard results on uniform error bounds (see e.g. [8], chapter 11)
apply to the convergence rate of the series in (18).

To illustrate this, we assume that Ω ⊂ Rd satisfies an interior cone condition and that
the infinite sequence x0, x1, . . . is filling the domain quasi-uniformly. This means that the
consecutive fill distances

h j := sup
y∈Ω

min
0≤k≤ j

‖y − xk‖2

tend to zero for j →∞, and at the same time the separation distances

q j := min
0≤i<k≤ j

‖xi − xk‖2

are bounded below by

q j ≥ c · h j , j ≥ 0

by some positive constant c. There are various ways to get such sequences, for example by a
special greedy method [4].

Now for each j the volume of the domain can roughly be covered by j balls of radius h j ,
such that

h j ≈ c · j−1/d

holds. Then there is uniform convergence guided by∥∥∥∥∥ f −
n∑

j=0

( f, v j )K

‖v j‖
2
K

v j

∥∥∥∥∥
∞

= ‖ f − fn‖∞ ≤ Chτ−d/2
n ‖ f ‖K ≤ Cn1/2−τ/d

‖ f ‖K

provided that the kernel is such that its native Hilbert space N is a subspace of W τ
2 (R

d). This
is true for all sufficiently smooth kernels, in particular those which are translation-invariant and
have a d-variate Fourier transform K̂ decaying like

K̂ (ω) ≤ C(1+ ‖ω‖22)
−τ

for ‖ω‖2 tending to infinity. See chapters 10 and 11 of [8] for details.
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Fig. 1. Stability bound SX,w of (3).

Fig. 2. Condition of interpolation matrix.

6. Examples

In this section we provide numerical examples to support our theoretical results. The data
points were quasi-uniformly space-filling in [−3, 3]2 by the greedy method of [4]. We used the
Gaussian kernel

K (x, y) = exp(−‖x − y‖2/25)

throughout.
The graphs show that there are big differences between the three bases (kernel, Lagrange, and

Newton) as far as evaluation stability is concerned. Fig. 1 displays the stability constant SX,w of
(3) for the three bases as a function of the number of data points used.
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Fig. 3. Bound (2) for stability of evaluation.

To compare the conditions of interpolation matrices, see Fig. 2. The Lagrange basis always
has condition 1, and thus it is not displayed. A theoretical investigation of the conditions of the
matrices arising from the Newton basis is still missing.

If the MATLAB peaks function is interpolated, one can calculate the bound of (2) based on
the available coefficients. It cannot exceed the stability constant SX,w up to the factor ‖ fX‖∞,
and Fig. 3 shows that the stability bound SX,w is not unrealistic.

A MATLAB c© program package is available via http://www.num.math.uni-goettingen.de/
schaback/research/group.html.
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