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is widely accepted that diabetes mellitus (DM) impairs endothelial nitric oxide synthase activity as well as
enhances the production of reactive oxygen species, thus resulting in diminished nitric oxide bioavailability and the
consequent pro-atherogenetic alterations. Important biomarkers of the vasculature are related to endothelial
dysfunction, to inflammatory and coagulation processes, and to oxidative stress in DM. Several therapeutic
strategies might exert favorable effects on the vasculature of diabetic patients, such as insulin analogues,
antihypertensive agents, statins, and hypoglycemic agents, whereas in spite of the prominent role of oxidative stress
in diabetes, antioxidant therapy remains controversial. The use of specific biomarkers related to vascular function
could be a useful therapeutic approach in such patients. (J Am Coll Cardiol 2013;62:667–76) ª 2013 by the
American College of Cardiology Foundation
It is well known that diabetes mellitus (DM) is a meta-
bolic disorder characterized by increased mortality rates and
importantly implicated in the atherogenetic process (1).
Hyperglycemia, insulin resistance, hyperinsulinemia, hyper-
lipidemia, and hyperhomocysteinemia represent important
pathophysiological components of DM that result in en-
dothelial/vascular dysfunction through several underlying
processes (2).

It is widely accepted that DM impairs endothelial nitric
oxide synthase (eNOS) activity as well as enhances the
production of reactive oxygen species (ROS), thus resulting
in diminished nitric oxide (NO) bioavailability and the
consequent pro-atherogenetic alterations (3). Moreover, di-
abetic subjects exhibit pathologically enhanced biomarkers
of endothelial function, such as vascular cell adhesion
molecule (VCAM)-1 and von Willebrand factor (vWF),
and markers of systemic inflammation including C-reactive
protein (CRP) and tumor necrosis factor (TNF)-a (4).
Additionally, intrinsic properties of the injured endothelium
result in vasoconstriction, smooth cell proliferation, coagu-
lation disorders, leukocyte aggregation, thrombosis, and
vascular inflammation predisposing to atherosclerosis (3).

In the present article, we review the pathophysiological
role of DM in vascular dysfunction, focusing on the major
novel biomarkers and briefly reviewing the current effective
therapeutic approaches.
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Impaired Endothelial Function in DM

It is well established that endothelium is not just a single
layer but rather a regulator exerting significant autocrine,
paracrine, and endocrine actions and affecting several cell
types. In addition, endothelium regulates the vascular tone
via several vasoactive mediators and primarily NO. However,
these functions are altered in states of DM (Fig. 1, Table 1).
Hyperglycemia, insulin resistance, and elevated free fatty
acids (FFAs) trigger systemic inflammation and impair NO
bioavailability (5), leading to impaired endothelial function.

Insulin is a normal regulator of eNOS activation and NO
production through successive phosphorylation. More
specifically, insulin stimulates phosphatidylinositol 3–kinase/
Akt pathway, which enhances eNOS activation and subse-
quent NO production. Insulin resistance in DM attenuates
this pathophysiological process and suppresses the normal
NO secretion (6). Furthermore, within the pathophysio-
logical alterations of DM, FFAs are typically elevated.
Consequently, NO bioavailability is further impaired,
whereas oxidized low-density lipoprotein (oxLDL) forma-
tion is enhanced. Recent data support the implication of
tetrahydrobiopterin (BH4) and asymmetric dimethylargi-
nine (ADMA) in diabetic atherosclerosis (7).

Equally important, endothelial progenitor cells (EPCs)
are likely implicated in diabetic vasculopathy. Endothelial
progenitor cells are stem cells enrolled to repair any damage to
endothelium. Clinical and experimental studies conclude that
DM impairs quantity and quality of EPCs; thus there is
a blunted response to vascular injury, and in this sense they
propose cell-based therapy as a novel approach to patients
with DM.
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The aforementioned pathophy-
siological alterations ofDMdamage
endothelial integrity through
inflammatory and oxidative pro-
cesses (Fig. 2). Systemic inflam-
mation results in migration of
leukocytes into the vessel wall and
in increased secretion of cyto-
kines. Elevated levels of cir-
culating cytokines causedamong
other changesdenhanced oxLDL
effected by scavenger macrophages
and results in foam cell formation,
which is critical in the atheroscle-
rotic process, especially in DM.

Circulating Biomarkers
Associated With Vascular
Dysfunction in DM

Inflammatory biomarkers. Cha-
nges in the expression of adhesion
molecules, pro-inflammatorymol-
ecules, and alterations in their
regulation exist in states of DM
(Table 1). The activated endothe-
lium expresses adhesion molecules
and other factors that participate in
the inflammatory process and,
consequently, in the pathophysi-
ology of atherosclerosis in DM.
Vascular endothelium is not only
affectedbut also contributes through
these processes. Thus, endothelial
cells can be stimulated by pro-
inflammatory molecules such as
TNF-a and CRP to promote an
atherogenic phenotype (8). The
main inflammatory markers that
are used and have been proved to
provide prognostic information on
the outcomeandprogressionof the
disease indiabetic patients areCRP,TNF-a, interleukin (IL)-6
intercellular adhesion molecule (ICAM)-1, and VCAM-1.

CRP. C-reactive protein is the most commonly used inflam-
matory biomarker. In addition to its role as an important
inflammatory marker, it can exert modulatory effects through
its presence in atherosclerotic plaques (9). C-reactive protein
is an acute-phase protein, and its expression is mainly regu-
lated by IL-6 during the acute phase with both a causative role
of DM and a role associated with the risk of DM complica-
tions.More specifically, increased CRP levels are independent
predictors of type 2 diabetes mellitus (T2D) in apparently
healthy women, supporting the hypothesis that subclinical
inflammation is an underlying factor in the pathogenesis of
T2D (10). Beyond DM development, CRP predicts the
outcomes in diabetic patients with cardiovascular disease.
Decreased CRP levels might serve as a major predictor of
successful percutaneous transluminal angioplasty outcome in
diabetic patients (11), whereas high-sensitivity C-reactive
protein (hsCRP) has been proven to be useful in predicting
adverse cardiac outcomes (12). Given that inflammation plays
a crucial role in restenosis, Paiva et al. (13) demonstrated also
that diabetic patients exhibit higher pre-procedural levels of
CRP and revealed a further exacerbated inflammatory
response after intervention. According to data derived from
the Munich Myocardial Infarction Registry (14) in diabetic
patients, both a CRP level>7 mg/l and a glomerular filtration
rate <60 ml/min were independent risk factors for mortality
(14). Although several studies have debated the prognostic
role of CRP, the relation of CRP and DM might be more
complex, as previously described (15). Thus, the prognostic
role of CRP after MI in diabetic patients seems to be reduced,
suggesting that the burden of risk factors associated with DM
might blunt the prognostic role of CRP. Recently, novel
factors including genetics have made this association more
complex (16).

PRO-INFLAMMATORY CYTOKINES. Other inflammatory mole-
cules, such as pro-inflammatory and anti-inflammatory
cytokines, have been evaluated or are still under investiga-
tion. Important cytokines participating in atherogenesis are
IL-6 and TNF-a, with a role that is mainly associated with
the risk of DM complications. Activation of inflammatory
processes in DMdmainly on the basis of the increased levels
of CRP, fibrinogen, IL- 6, IL-1, and TNF-admight lead in
alterations of vaso-regulatory responses, leukocyte adhesion
to endothelium, and facilitation of pro-coagulant activity.

A case-control study, within the prospective population-
based EPIC (European Prospective Investigation into
Cancer and Nutrition)-Potsdam study (17), has demon-
strated that the pattern of circulating inflammatory cyto-
kines modifies the risk for T2D. A combined elevation of
IL-1beta and IL-6 was independently associated with
increased risk of T2D, suggesting that subclinical inflam-
matory process has a role in the pathogenesis of T2D. In
a cross-sectional study of youth with and without type 1
DM, inflammatory markers were evaluated as potential
contributors to accelerated atherosclerosis. Patients exhibi-
ted higher IL-6 and fibrinogen levels, independent of
adiposity and glycemic control, whereas hsCRP levels were
significantly higher in patients of the top 3 quartiles of
glycated hemoglobin and among normal-weight subjects
(18). Furthermore, after percutaneous coronary interven-
tion, IL-6 was significantly increased in diabetic persons
with peri-interventional hyperglycemic state and inversely
correlated with responsiveness to clopidogrel and aspirin
(19). Moreover, DM patients showed higher platelet
reactivity after a 600-mg clopidogrel loading dose
(compared with non-DM), and the observed increase in
platelet reactivity was mainly due to a higher platelet
aggregation in individuals with poor metabolic control.
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Figure 1 Diabetes-Related Factors Leading to Its Complications

Insulin resistance, hyperglycemia, obesity, dyslipidemia, and hypertension are states that accompany diabetes mellitus. Through several complex pathophysiological pathways,

such factors are capable of impairing endothelial function, increase inflammatory process, and alter the pro-coagulant state. CRP ¼ C-reactive protein; ICAM ¼ intercellular

adhesion molecule; IL ¼ interleukin; PAI ¼ plasminogen activator inhibitor; TNF ¼ tumor necrosis factor; VCAM ¼ vascular cell adhesion molecule; vWF ¼ von Willebrand factor.
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Diabetes mellitus was also a strong predictor of post-
treatment platelet reactivity (multivariable analysis),
whereas after analysis of interindividual time dependency of
platelet reactivity, the platelet inhibition by antiplatelet
treatment was mitigated in DM patients compared with
non-DM. Of note, in the field of pro-inflammatory cyto-
kines, among end-stage renal disease patients due to DM,
elevated IL-6 levels have strong predictive value for poor
Table 1 Mechanisms and Markers of DM-Related En

Mechanisms Biomarkers

ICAM-1
VCAM-1

IL-1-IL-6

Insulin resistance TNF-a

Abnormal cluster of hyperglycemia MCP-1

Increased oxidative stress/
reduced nitric oxide production

Selectins (E-sele

Growth factors

Increased inflammatory status (VEGF)

Elevated free fatty acids ET-1

Glycosylated-end products PAI-1

Vascular smooth muscle cell dysfunction Fibrinogen

Endothelial dysfunction vWF

Glucose levels
Insulin resistanc
HbA1c

EPCs
ADMA
Homocysteine

ADMA¼ asymmetrical dimethylarginine; EPC¼ endothelial progenitor cell; ET¼ enth
molecule; IL ¼ interleukin; MCP ¼ monocyte chemoattractant protein; PAI ¼ plasm
adhesion molecule; VEGF ¼ vascular endothelial growth factors; vWF¼ von Willebr
outcome (20). With regard to the treatment of DM, it has
been demonstrated to alter inflammatory cytokines. This is
nicely exemplified by insulin treatment in T2D patients,
which has been shown to affect the expression of IL-6 and
subsequently to modify the thrombotic mechanisms in
patients with coronary atherosclerosis, independent of the
duration of diabetes and extent of coronary artery disease
(CAD) (21).
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Figure 2 Critical Role of Hyperglycemia in Atherogenesis

Hyperglycemia plays a central role in states of diabetes mellitus. Pathways triggered by advanced glycated end products and mediated by the nuclear factor (Nf)-kB lead to

increased oxidative status and thus to impaired nitric oxide (NO) production/bioavailability. As a result, numerous substances are increased, such as growth factors, cytokines,

pro-coagulant factors, and others strongly related to altered underlying processes that induce and promote atherogenesis. AGE ¼ advanced glycated end product; NAD(P)H ¼
nicotinamide adenine dinucleotide phosphate; ROS ¼ reactive oxygen species; EPC ¼ endothelial progenitor cell; BH4 ¼ tetrahydrobiopterin.
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Tumor necrosis factor-a has a primary role in the regu-
lation of immune cells; however, it represents a pleiotropic
inflammatory cytokine, because it has been widely studied for
its pathogenic role in disease. Increased levels of TNF-a have
been found in acute and chronic inflammatory conditions in
which a shift toward a pro-atherogenic lipid profile and
impaired glucose tolerance occurs. It has been demonstrated
that admission hyperglycemia is related to increased serum
concentrations of IL-6 reduced ex vivo production of TNF-
a and is associated with increased intensive care unit
mortality rate in a medical intensive care unit (22).
Furthermore, TNF-a levels were elevated in patients with
T2D, according to a cross-sectional study. Also, TNF-
a concentrations and brachial artery diameter were negatively
correlated with flow-mediated dilation (FMD) and remained
significantly associated with FMD after adjustment for
group, age, and body mass index (23).

ADHESION MOLECULES. In the presence of risk factors such
as DM, the endothelium can be activated and expresses
VCAM-1 and ICAM-1, important mediators for the
adhesion of leukocytes to the endothelial surface and
significantly related to the risk of DM complications. In
a large prospective, nested case-control study within the
Nurses’ Health Study (24), including women with DM,
baseline median levels of the biomarkers of endothelial
dysfunction were significantly higher among cases than
among control subjects. Moreover, elevated E-selectin and
ICAM-1 levels predicted incident of diabetes in logistic
regression models after adjustment for several risk factors.
However, in patients with and without diabetes presenting
with unstable angina and non–Q-wave myocardial infarction
there was no significant difference in levels of soluble
ICAM-1 and VCAM-1 between diabetic and non-diabetic
patients (25).

Coagulation-related biomarkers. Diabetes mellitus is
associated with alterations in the balance of pro-thrombotic
and anti-fibrinolytic state, and several molecules such as
plasminogen activator inhibitor (PAI)-1, tissue factor, and
vWF could reasonably serve as markers of endothelial
function. Both endothelial cells and macrophages contribute
to the generation of altered coagulation processes via
increased expression of PAI-1, tissue factor, platelet activa-
tion, and acute phase reactions that increase levels of coag-
ulation factors such as fibrinogen. It is worth mentioning
that pro-thrombotic molecules such as PAI-1, vWF, and
fibrinogen are produced under cytokine stimulation and
therefore can be considered as products of the acute phase
response, whereas current knowledge indicates that they are
associated with the risk of DM complications. It is very
important to highlight that acute phase reactions are
a generalized inflammatory response to stimuli and not
specific products. In the Insulin Resistance Atherosclerosis
Study (26) subjects with diabetes at follow-up had higher
baseline levels of fibrinogen as well as of CRP and PAI-1
than control subjects. Notably, PAI-1 levels have predicted
T2D, independent of insulin resistance. Additionally,
Yngen et al. (27) indicated that patients with type 1 DM
and microangiopathy had remarkably elevated CRP and
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E-selectin levels, whereas vWF levels did not vary between
the contrasting populations. In patients with micro-
angiopathy, thrombin-induced platelet P-selectin expression
was enhanced and soluble P-selectin and soluble CD40
ligand concentrations were increased compared with the
control subjects, whereas all 3 parameters were similar in
patients without microangiopathy and in the control
subjects. Notably, in a 9-year observational study of T2D, it
has been demonstrated that vWF, E-selectin, CRP, tissue
plasminogen activator, and fibrinogen are independent
predictors of progression of microalbuminuria and mortality
(28).
Oxidative stress biomarkers. Increased oxidative stress
(associatedwith the complications ofDM) in the vasculature is
a major contributor of endothelial dysfunction in DM via the
superoxide production and impairment of NO bioavailability
in the vascular wall. Hohenstein et al. (29) examined eNOS
expression in patients with diabetic nephropathy and noticed
a strong correlation between eNOS activity and degree of
proteinuria, which is indicative of glomerular endothelium
function, thereby supporting the importance of increased
oxidative stress as a mechanism of endothelial dysfunction in
DM. Also, it has been demonstrated that circulating markers
of oxidative stress, including F2 isoprostanes and antibodies
against oxLDL, are increased inhumanswith diabetes, obesity,
and insulin resistance. According to cross-sectional data
derived from the community-based Framingham Offspring
Study (30), across 8-epi-prostaglandin F2alpha/creatinine
tertiles, the prevalence of insulin resistance increased. Thus,
systemic oxidative stress seems to be related to insulin resis-
tance in subjects at average or increased risk of diabetes.
Other circulating biomarkers related to DM. Tetrahy-
drobiopterin is an essential co-factor in the regulation of
eNOS. Reduced synthesis or oxidative inactivation of the
BH4 could also lead to reduced NO availability; thus when
BH4 is limiting, NOS generates oxygen rather than NO
from oxygen and nicotinamide adenine dinucleotide phos-
phate and is potentially related to the risk of DM compli-
cations. Tetrahydrobiopterin plasma levels along with levels
in the vascular wall could reflect vascular endothelial health,
given that its levels are vulnerable to acute increases in
plasma glucose and might be affected early in T2D.

Moreover, clinical studies have examined the controver-
sial role of homocysteine in diabetic atherosclerosis and
complications. In a relevant study, hyperhomocysteinemia
was associated with reduced creatinine clearance, potentially
through endothelial dysfunction. Thus, plasma homo-
cysteine might be an intermediate factor in the relationship
between endothelial dysfunction and renal function (31).
The suspected relation between hyperhomocysteinemia and
ADMA should also have been noticed. Higher concentra-
tions of ADMA have been associated with endothelial
dysfunction in several cardiovascular diseases, such as
hypercholesterolemia and CAD (32). This is nicely exem-
plified by Fard et al. (33), who demonstrated that plasma
ADMA increased after a high-fat meal, and this was
associated with a decrease in brachial arterial vasodilation
after reactive hyperemia. Despite the promising studies
conducted, recent evidence arising from the use of folates
suggests that the role hyperhomocysteinemia as a risk factor
for cardiovascular disease and DM should be toned down,
although its measurement might be helpful for identifying
subjects at greater risk of disease, who might thus benefit
from a more aggressive treatment of other modifiable risk
factors (34). Additionally, hyperhomocysteinemia should
not be underestimated, because it might maintain interest as
a marker of systemic or endothelial oxidant stress (35).

Endothelial progenitor cells are circulating cells mostly
known as mediators of endothelial repair. Several of the
abnormalities associated with insulin resistance, including
reduced NO bioavailability and production of ROS,
potentially interfere with EPC function while exhibiting
a potential role in the risk of DM complications. Thus, T2D
subjects seem to have reduced levels of circulating EPCs
correlated with disease severity, whereas hyperglycemia
might partially explain this association (36).
Recently highlighted biomarkers: micro-ribonucleic acids
and endothelial microparticles. Although several bio-
markers already established for their association with DM
have been used to describe endothelial dysfunction in states of
DM, during the last years, 2 new biomarkers have emerged as
potential challengers of the classical biomarkers (Table 3).

Micro-ribonucleic acids (miRs), a class of approximately
22 nucleotide noncoding ribonucleic acids, are nowadays
considered as significant modulators of several processes
(37,38), because they are able to regulate gene expression.
The contribution of miRs to atherogenesis is not fully
evaluated; however, recent research suggests that miRs
dysregulation can lead to endothelial dysfunction. The miRs
exhibit either favorable or suppressive effect on eNOS
activity. Actually, the overexpression of miR21 enhances
NO production but mitigates endothelial cell apoptosis
(39,40). By contrast, miR-221 and miR-222 overexpression
lead to impaired eNOS activity and consequently decreased
NO bioavailability (40). Down-regulation of numerous
miRs (miR-20b, miR-21, and others) has been found in
states of DM, whereas miR-28-3p was found to be
enhanced (41). A combination (according to the authors) of
5 miRs (miR-15a, miR-126, miR-320, miR-223, miR-28-
3p) can be adequate for a nonredundant classification.
Furthermore, dysregulation of these miRs enabled the iden-
tification of 52% of normoglycemic subjects in developing
DM in a 10-year period. Also, in patients with newly diag-
nosed DM, miR-9, miR-29a, miR-30d, miR-34a, miR-146,
miR-124, and miR-375 were significantly higher compared
with subjects with normal glucose tolerance (42). Although
promising, the studies onmiRs have shown a role only inDM
complications, whereas a causative role is still not confirmed.
Not only miRs but also several genetic polymorphisms have
been investigated in terms of DM. Thus, polymorphisms of
molecules such as osteoprotegerin (43) or that of the tran-
scription factor 7-like 2 locus (44) could be used in the
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assessment of DM complications and the risk of DM in
specific populations, respectively. Other studies have shown
that genetic polymorphisms of eNOS are associated with the
risk of diabetic neuropathy (45) and hypertension (46),
whereas other eNOS polymorphisms might have a protective
role against diabetic retinopathy (47). Recently, it was
shown that a single nucleotide polymorphism on CRP
gene (A3872G) might affect the duration of and partly the
risk for DM (16). In addition, this polymorphism had
a significant impact on CRP levels in patients with T2D
exhibiting CAD.

Closely related to the miRs are the microparticles
(MPs). The latter are shed membrane particles of <1 mm
in diameter thought to be budded into the circulation
from endothelial cells (EMPs) and various blood cells,
including platelets, leukocytes, and erythrocytes (1,2,48,49).
Circulating MPs constitute a heterogeneous population
of different cellular origins, numbers, size, and antigenic
composition. Proposed mechanisms of MP generation
include apoptosis, mechanical injury, and cellular activation
by cytokines (48,49). Microparticles are found in blood
circulation of healthy subjects, and their number is increased
in cardiovascular disease and conditions predisposing to
cardiovascular disease (48,49). The number of MPs, long
considered as functionally inert cell debris, is suggested as
a marker of endothelial damage and platelet activation
(48,49). More recently, it was appreciated that MPs harbor
a number of membrane and cytoplasmic proteins and
therefore could play a role as a disseminated storage pool of
bioactive effectors in intercellular communication mediating
effects in cardiovascular physiology and pathophysiology
(48–51). Moreover, EMPs are also implicated in the traf-
ficking of messenger ribonucleic acid and proteins between
cells. Interestingly, EMPs contain nuclear acid material such
as deoxyribonucleic acid, ribonucleic acid, and miR, which
might be transferred to target cells (52). In the era of DM,
the available studies provide promising results for the role of
MPs, but currently limited to the risk of DM complications.
Thus, Tsimerman et al. (53) investigated the role of MPs in
DM vascular complications. The authors characterized the
cell origin and pro-coagulant profiles of MPs obtained from
healthy and DM subjects with CAD and DM-related
complications. They demonstrated that MP characteristics
are associated with the type of vascular complication and
might serve as a biomarker for the pro-coagulant state and
vascular pathology in patients with DM. In addition to these
finding it was shown (54) that EMP (CD31þ/CD42b-,
CD31þ/AVþ) levels were higher in patients with macro-
angiopathy than in patients with microangiopathy and no
complications. Endothelial MP level was also related to
macroangiopathy in DM patients. Moreover, plasma EMPs
have been associated with presence of hypertension and
arterial stiffness in patients with DM (55), whereas another
study has suggested that EMPs could be used as a surrogate
marker of unstable plaques and might help to improve
cardiovascular prediction in DM patients at intermediate
risk (on the basis of the association between plasma EMP-
CD144þ and coronary noncalcified plaques) (56).

Current Effective Therapeutic Approaches
Targeting the “Diabetic” Vascular Function

Several therapeutic strategies might exert favorable effects
(Table 2) on the vasculature of diabetic patients, such as
insulin analogues, antihypertensive agents, statins, and
hypoglycemic agents, whereas in spite of the prominent role
of oxidative stress in diabetes, antioxidant therapy had no
benefit in large randomized trials.
Hypoglycemic agents. Ersoy et al. (57) examined, among
others, PAI-1 and vascular endothelial growth factor levels
in obese diabetic patients who received metformin. After
a 12-week treatment the aforementioned biomarkers were
significantly decreased. Additionally, in patients with T2D
who received metformin for 16 weeks, VCAM-1, ICAM-1,
PAI-1, soluble E-selectin, and vWF were significantly
downregulated, whereas markers of inflammation remained
unaffected (58). After 6 months in long-acting insulin
analogues either insulin glargine or detemir significantly
improved biomarkers of endothelial function (ICAM-1,
VCAM-1, E-selectin) as well as levels of EPCs (59),
whereas high doses of insulin for 12 months significantly
reduced fibrinogen, vWF, PAI-1, and thrombomodulin
(60). At this point, it is very important to discuss the
association of insulin and inflammation, because it is much-
debated, giving attention to the recent hypothesis for the
potential anti-inflammatory role of insulin. Thus, Dandona
et al. (61) investigated whether insulin reduces the magni-
tude of oxidative, nitrosative, and inflammatory stress and
tissue damage responses induced by endotoxin (lipopoly-
saccharide [LPS]). For this purpose, the authors recruited
healthy subjects who received intravenous injection with
LPS, along with others who received infusion with insulin in
addition to the LPS injection. The concomitant infusion of
insulin resulted in a significant reduction, considering the
already known effects of LPS injection, in ROS generation
and the total prevention of the increase in thiobarbituric
acid–reacting substances, NO metabolites, and FFAs
concentrations. These effects were related to a significant
reduction in the magnitude of increase in macrophage
migration inhibition factor, myoglobin, and visfatin levels
(independent of glucose levels). By contrast, insulin was
unable to prevent or reduce the magnitude of increase of
specific pro-inflammatory cytokines, raising further ques-
tions about the effect of more prolonged infusions and
higher doses of insulin.
Statins. A prospective double-blind trial investigating the
effect of atorvastatin in endothelial function of diabetic
persons has suggested that markers of endothelial function as
well as markers of inflammation were significantly improved
after a 12-week treatment of atorvastatin (62). Additionally,
90 days of simvastatin resulted in amelioration of TNF-a,
CRP, and several types of ILs (IL-6, IL-2, IL-1b), which



Table 2 Agents Interfering With Endothelial Dysfunction in Diabetes Mellitus

First Author
(Ref. #) Population Treatment

Effect on Endothelial Function and/or
Inflammation p Value

De Jager
et al. (58)

390 patients with T2D
(30–80 yrs)

Metformin vs.
placebo

vWF, VCAMI-1, E-selectin, andPAI-1
reduced but CRP, ICAM-1 remain
unchanged

Within reference values

Jankovec
et al. (60)

13 obese patients with
T2D

Long-term insulin
pump

Thrombomodulin, PAI-1, vWF
reduced

<0.01

Economides
et al. (62)

Patients with T2D vs.
subjects at risk for T2D

Atorvastatin FMD improved in both groups, CRP
and TNF-a decreased at the at-
risk group

<0.05

Tehrani et al.
(65)

20 patients with T1D and
dyslipidemia

Placebo vs.
atorvastatin

p-selectin, tissue factor decreased,
PAI-1, hsCRP, fibrinogen
unchanged in atorvastatin group

Within reference values

Neri et al.
(66)

46 patients with T2D, 46
patients with IGT, and
46 healthy individuals

Antioxidant
supplementation
(Vit C, Vit E, N-
acetylcysteine)

VCAM-1, vWF, ET-1, and oxidants
reduced, NO increased

<0.05

Schrametal.
(70)

70 hypertensive with T2D Hydrochlorothiazide
vs. candesartan vs.
lisinopril

VCAM-1 and ICAM-1 reduced, CRP
and vWF unchanged in all
groups

Within reference values

Beisswenger
et al. (72)

45 patients with T2D Prandial þ basal
insulin vs. basal
insulin

TNF-a, IL-6, hsCRP more
attenuated in prandial þ basal
insulin group

<0.01,
<0.01, and <0.001,
respectively

Tousoulis
et al. (73)

35 patients with newly
diagnosed T2D

MET vs. MET þ
atorvastatin

TNF-a reduced in MET þ
atorvastatin group

<0.05

Bellia et al.
(74)

29 patients with T2D with
mild untreated
dyslipidemia

Rosuvastatin vs.
simvastatin

FMD improved in the simvastatin
group, no changes in CRP

<0.01

Aversa et al.
(75)

20 patients with T2D
without erectile
dysfunction

Sildenafil FMD increased, ET-1, CRP, IL-6,
VCAM-1, ICAM-1 reduced

0.01

Bank et al.
(76)

34 patients with T2D and
hypertension

Carvedilol vs.
metoprolol

FMD improved more in carvedilol
group

<0.001

Martinaetal.
(77)

24 male patients with
T2D and hypertension

L-arginine þ N-
acetylcysteine vs.
placebo

CRP, ICAM-1, VCAM-1, PAI-1
reduced

<0.05, <0.05, <0.01,
and <0.05,
respectively

Chakraborty
et al. (78)

208 patients with T2D Metformin vs.
placebo

CRP decreased <0.05

Karagiannis
et al. (79)

1,170 subjects with T2D PIO monotherapy vs.
PIO combined with
other oral anti-
diabetic drugs

hsCRP reduced <0.01

Pop-Busui
et al. (80)

27 subjects with T2D Rosiglitazone vs.
glyburide

hsCRP and vWFag reduced and
adiponectin increased in
rosiglitazone group

<0.03 and <0.05,
respectively

Haffner et al.
(81)

Patients with T2D Rosiglitazone vs.
placebo

CRP reduced <0.01

ACE ¼ angiotensin converting enzyme; CRP ¼ C-reactive protein; FMD ¼ flow-mediated dilation; hsCRP ¼ high-sensitivity C-reactive protein; IGT ¼ impaired glucose tolerance; MET ¼ metformin; NO ¼ nitric
oxide; PIO ¼ pioglitazone; T1D ¼ type 1 diabetes mellitus; T2D ¼ type 2 diabetes mellitus; Vit ¼ vitamin; other abbreviations as in Table 1.
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supports the aforementioned scenario, with regard to the
effect of statins on endothelial function (63). By contrast,
several conflicting studies have found no important im-
provement of either endothelial function or systemic inflam-
mation in diabetic persons treated with statins (64,65).
Antioxidants. A single-blind study recently enrolled
patients with T2D and examined the variance of certain
circulating markers after 15 days of antioxidants. Actually,
plasma levels of oxidants as well as biomarkers of endothelial
dysfunction (vWF, VCAM-1, enthothiline-1, NO) were
significantly decreased (66). In addition, Haidara et al. (67),
in a diabetic rat model using alpha-tocopherol and vitamin
C, have shown that administration of antioxidants
significantly decreased vWF, plasma soluble thrombomo-
dulin, and fibrinogen. However, the protective effect of
antioxidants on vascular endothelium is still unidentified.
Renin-angiotensin system-related agents. Wago et al.
(68) examined the endothelial function and systemic
inflammation of subjects under the influence of telmisartan.
The FMD significantly increased after a 12-month treat-
ment with telmisartan, whereas adiponectin and hsCRP
levels decreased; Flammer et al. (69) confirmed these find-
ings. After 4-week treatment with losartan, FMD signifi-
cantly increased and isoprostane as a marker of oxidative
stress reduced, whereas CRP levels remained unaffected.
In addition, a double-blind study (70) observed that



Table 3 Important Biomarkers in Diabetes Mellitus

Biomarker Diabetes-Related Characteristics Most Reliable Methods

CRP (hsCRP) Increases rapidly, long rising periods, stability in plasma
Attenuates NO production
Decreases endothelial NO synthase
Triggers oxidation of low-density lipoprotein cholesterol
Induces PAI-1expression
Stimulates the release of matrix metalloproteinase-1
Activates macrophages to secrete tissue factor
Upregulates the expression of adhesion molecules in endothelial cells

Ultrasensitive solid-phase ELISAs
Immunoturbidimetric CRP assays
Immunonephelometry (laser nephelometry)

TNF-a Growth stimulating properties and growth inhibitory processes
self regulatory properties
Cytokines triggering
Inflammation and apoptosis
Expressed in cells such as: B-cells, T-cells, macrophages, monocytes, mast cells,
neutrophils and adipocytes

Enzyme-linked immunosorbent
Assays (ELISA)

IL-6 Affects extracellular matrix dynamics at mesangial and podocyte levels
Stimulates mesangial cell proliferation
Increases fibronectin expression
Enhances endothelial permeability
Induces the production of adrenocorticotropin
Affects insulin sensitivity probably mediated by adenosine monophosphate-
activated protein kinase

Affects glucose homeostasis and metabolism directly and indirectly by action
on skeletal muscle cells, adipocytes, hepatocytes, pancreatic cells, and
neuroendocrine cells.

ELISAs

ICAM-1 Promotes the recruitment of mononuclear cells in diabetic glomeruli
Role in glomerular hyper-filtration
Interactions of lymphocyte function-associated antigen-1
Binds with the site 117–133 of the fibrinogen gamma chain
Leads to changes through the protein kinase C pathway, cAMP, phospholipase A2,
Caþ2 and proteosomes (extracellular signal transportation)

ELISAs
Flow cytometry

VCAM-1 Interacts with secreted protein acidic and rich in cysteine
Interacts with VLA-4

ELISAs
Flow cytometry

Fibrinogen Lower platelet inhibition
Interacts with ICAM-1

Automated clotting rate assays
Immunoassays (ELISA or nephelometric)
Automated immunoassays of total fibrinogen
The Clauss fibrinogen assay (on the basis of the
thrombin

clotting time)

Endothelial microparticles Thrombosis, cell inflammation, angiogenesis and cell-to-cell communication
Apoptosis
Factor XI-dependent pro-coagulant properties
Impaired no release

Flow cytometry

miRs Affect pancreatic b cells and insulin-target tissues
Interaction with TGF-beta
Affect insulin secretion

Real-time qPCR
Microarrays
RNA sequencing
Northern blot
In situ hybridization

Characteristics and measuring methods.
CAþ2 ¼ calcium doubly charged positive ion; cAMP ¼ cyclic adenosine monophosphate; ELISA ¼ enzyme-linked immunosorbent assay; miR¼micro-ribonucleic acid; PAI ¼ plasminogen activator inhibitor;

qPCR ¼ quantitative polymerase chain reaction; RNA ¼ ribonucleic acid; TGF ¼ transforming growth factor; VLA ¼ very late antigen; other abbreviations as in Tables 1 and 2.
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aggressive antihypertensive therapy with either candesartan
or lisinopril reduced VCAM-1 and ICAM-1, yet CRP and
vWF remain unchanged. We recently found that perindopril
significantly improved endothelial function in diabetic
patients (71).
Conclusions

The association between DM and vascular dysfunction is
under continuous investigation, and several circulating
biomarkers have been proposed as indicators of endothelial
dysfunction. Important biomarkers of the vasculature are
related to endothelial function, inflammatory and coagulation
processes, and oxidative stress. These biomarkers could
explain the different pathophysiological aspects in patients
with DM and, along with the newly investigated biomarkers,
could provide useful guidelines for the treatment of these
patients.
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