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We measure the topological charge and its fluctuation for the gauge configurations generated by the
RBC and UKQCD Collaborations using 2 + 1 flavors of domain-wall fermions on the 163 × 32 lattice (L �
2 fm) with length 16 in the fifth dimension at the inverse lattice spacing a−1 � 1.62 GeV. From the
spectral flow of the Hermitian operator H w (2 + γ5 H w )−1, we obtain the topological charge Q t of each
gauge configuration in the three ensembles with light sea quark masses mqa = 0.01, 0.02, and 0.03, and
with the strange quark mass fixed at msa = 0.04. From our result of Q t , we compute the topological
susceptibility χt = 〈Q 2

t 〉/Ω , where Ω is the volume of the lattice. In the small mq regime, our result of
χt agrees with the chiral effective theory. Using the formula χt = Σ/(m−1

u + m−1
d + m−1

s ) by Leutwyler–

Smilga, we obtain the chiral condensate ΣMS(2 GeV) = [259(6)(9) MeV]3.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In Quantum Chromodynamics (QCD), the topological suscepti-
bility (χt ) is the most crucial quantity to measure the topological
charge fluctuation of the QCD vacuum, which plays an important
role in breaking the U A(1) symmetry. Theoretically, χt is defined
as

χt =
∫

d4x
〈
ρ(x)ρ(0)

〉
, (1)

where

ρ(x) = 1

32π2
εμνλσ tr

[
Fμν(x)Fλσ (x)

]
, (2)

is the topological charge density expressed in term of the matrix-
valued field tensor Fμν . With mild assumptions, Witten [1] and
Veneziano [2] obtained a relationship between the topological sus-
ceptibility in the quenched approximation and the mass of η′
meson (flavor singlet) in unquenched QCD with N f degenerate fla-
vors, namely,

χt(quenched) =
f 2
πm2

η′

4N f
,

where fπ = 131 MeV, the decay constant of pion. This implies that
the mass of η′ is essentially due to the axial anomaly relating
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to non-trivial topological charge fluctuations, which can turn out
to be nonzero even in the chiral limit, unlike those of the (non-
singlet) approximate Goldstone bosons.

Using the Chiral Perturbation Theory (ChPT), Leutwyler and
Smilga [3] obtained the following relation in the chiral limit

χt = Σ

( 1
mu

+ 1
md

+ 1
ms

)
+ O

(
m2

u

)
(N f = 2 + 1), (3)

where mu , md , and ms are the quark masses, and Σ is the chi-
ral condensate. This implies that in the chiral limit (mu → 0) the
topological susceptibility is suppressed due to internal quark loops.
Most importantly, (3) provides a viable way to extract Σ from χt

in the chiral limit.
From (1), one obtains

χt = 〈Q 2
t 〉

Ω
, Q t ≡

∫
d4xρ(x), (4)

where Ω is the volume of the system, and Q t is the topological
charge (which is an integer for QCD). Thus, one can determine χt

by counting the number of gauge configurations for each topologi-
cal sector. Furthermore, we can also obtain the second normalized
cumulant

c4 = − 1

Ω

[〈
Q 4

t

〉 − 3
〈
Q 2

t

〉2]
, (5)

which is related to the leading anomalous contribution to the
η′–η′ scattering amplitude in QCD, as well as the dependence of
the vacuum energy on the vacuum angle θ . (For a recent review,
see for example, Ref. [4] and references therein.)
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However, for lattice QCD, it is difficult to extract ρ(x) and Q t

unambiguously from the gauge link variables, due to their rather
strong fluctuations.

To circumvent this difficulty, one may consider the Atiyah–
Singer index theorem [5]

Q t = n+ − n− = index(D), (6)

where n± is the number of zero modes of the massless Dirac op-
erator D ≡ γμ(∂μ + ig Aμ) with ± chirality.

For lattice QCD with exact chiral symmetry, it is well known
that the overlap Dirac operator [6,7] in a topologically non-trivial
gauge background possesses exact zero modes (with definite chi-
rality) satisfying the Atiyah–Singer index theorem. Thus we can
obtain the topological charge from the index of the overlap Dirac
operator. Writing the overlap Dirac operator as

D = m0

(
1 + γ5

H w√
H2

w

)
, (7)

where H w is the standard Hermitian Wilson operator with nega-
tive mass −m0 (0 < m0 < 2), then its index is

index(D) = Tr

[
γ5

(
1 − D

2m0

)]

= −1

2
Tr

(
H w√
H2

w

)
= n+ − n− = Q t , (8)

where Tr denotes trace over Dirac, color and lattice spaces.
Obviously, from (8), we have

index(D) = n+ − n− = −1

2
Tr

(
H w√
H2

w

)
= 1

2
(h− − h+), (9)

where h+(h−) is the number of positive (negative) eigenvalues of
the hermitian Wilson–Dirac operator H w . However, one does not
need to obtain all eigenvalues of H w in order to know how many
of them are positive or negative. The idea is simple. Since H w

has equal number of positive and negative eigenvalues for m0 � 0,
then one can just focus on those low-lying (near zero) eigenmodes
of H w , and see whether any of them crosses zero from positive
to negative, or vice versa, when m0 is scanned from zero up to
the value used in the definition of D . From the net number of
crossings, one can obtain the index of D . This is the spectral flow
method used in Ref. [7] to obtain the index of the overlap Dirac
operator. We also applied the spectral flow method to obtain the
index of the overlap Dirac operator and to determine the topolog-
ical susceptibility in quenched QCD [8]. In this Letter, we extend
our previous studies to unquenched QCD.

For the conventional domain-wall fermion [9,10], its effective
4-dimensional Dirac operator is

D = m0(2 − m0)

2

(
1 + γ5

H√
H2

)
, (10)

where

H = H w(2 + γ5 H w)−1. (11)

Thus, we can obtain the topological charge of a gauge field config-
uration from the spectral-flow of H as a function of m0. Obviously,
it is much more computationally intensive to project the low-lying
eigenvalues of H than those of H w , due to the extra inverse oper-
ator (2 + γ5 H w)−1.

In this Letter, we use the spectral flow of H to determine
the topological charge of the gauge configurations (http://lattices.
qcdoc.bnl.gov/) generated by the RBC and UKQCD Collaborations
using 2 + 1 flavors of domain-wall fermions on the 163 × 32 lattice
Fig. 1. The spectral flow of 12 lowest-lying eigenvalues of H for the gauge con-
figuration number 1825 in the ensemble (mq = 0.01, ms = 0.04). There are 10 net
crossings from negative to positive, so the index is −10.

(L � 2 fm) with length 16 in the fifth dimension at the inverse lat-
tice spacing a−1 � 1.62(4) GeV [11]. There are three ensembles of
gauge configurations with light sea quark masses mqa = 0.01, 0.02
and 0.03, and with the strange quark mass fixed at msa = 0.04.
For the ensemble with mqa = 0.01, we pick one configuration ev-
ery 5 configurations, from configurations numbering from 0020
to 4015. Thus we have 800 configurations with mqa = 0.01. Sim-
ilarly, for mqa = 0.02, we pick 809 configurations from configura-
tions numbering from 0005 to 4045, and for mqa = 0.03, we pick
717 configurations from configurations numbering from 4020 to
7600.

In Fig. 1, we plot the spectral flow of 12 lowest-lying (near zero)
eigenvalues of H(m0) in the interval 0.8 � m0 � 1.8, for the gauge
configuration number 1825 in the ensemble with mq = 0.01 and
ms = 0.04. In this case, the net crossings from negative to positive
is 10, so the index is −10. In general, it may happen that there are
some intriguing eigenvalues lying very close to zero (e.g., the one
around m0 = 1.45 in Fig. 1). Thus, with a coarse scan in m0, it may
not be able to determine whether they actually cross zero or not.
These ambiguities can only be resolved by tracing them closely
at a finer resolution in m0. Obviously, it is a very tedious job to
determine the topological charges of 2326 gauge configurations via
the spectral flow of H = H w(2 + γ5 H w)−1.

2. Results

In Fig. 2, we plot the histogram of topological charge dis-
tribution for mqa = 0.01,0.02, and 0.03, respectively. Evidently,
the probability distribution of Q t becomes more sharply peaked
around Q t = 0 as the light sea quark mass mq gets smaller. Our
results of topological susceptibility χt , and the second normalized
cumulant c4, together with their ratios c4/χt , and c4/(2χ2

t Ω) are
listed in Table 1. The error is estimated using the jackknife method
with bin size of 20 configurations for mq = 0.01 and 0.02, and 13
configurations for mq = 0.03, with which the statistical error satu-
rates.

Evidently, the statistical error of the topological susceptibility
is about 10%, while that of c4 is very large due to low statis-
tics. Therefore, one cannot draw any conclusions from our result
of c4, as well as from the ratio c4/χt . Interestingly, our result of
c4/(2χ2

t Ω) is consistent with that in Ref. [14], which is obtained
from the plateaus (at large time separation) of the 2-point and 4-
point time-correlation functions of the flavor-singlet pseudoscalar
meson η′ in a fixed global topology with Q t = 0.
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Fig. 2. Histogram of topological charge distribution for mqa = 0.01,0.02, and 0.03, respectively.
Fig. 3. The topological susceptibility χt versus m2
π for 2 + 1 flavors lattice QCD with

domain-wall fermions.

Table 1
The topological susceptibility χt , the second normalized cumulant c4, and their ra-
tios c4/χt , and c4/(2χ2

t Ω), versus the sea quark masses, for N f = 2 + 1 lattice QCD
with domain-wall fermions.

mqa χt c4 c4/χt c4/(2χ2
t Ω)

0.01 5.51(62) × 10−5 −1.88(8.33) × 10−5 −0.34(1.55) −0.0239(1110)

0.02 7.74(75) × 10−5 −4.99(16.18) × 10−5 −0.64(2.15) −0.0317(1088)

0.03 1.23(11) × 10−4 4.69(3.46) × 10−4 3.80(2.57) 0.1172(834)

In Fig 3, we plot our data of χt versus m2
π , where the pion

mass mπa and the inverse lattice spacing a−1 are determined by
the RBC and UKQCD Collaborations [11].

For three flavors with mu = md , we may use the partial conser-
vation of the axial current (PCAC) relation m2

PS = Cmq to transcribe
the Leutwyler–Smilga relation (3) to

χt = Σ ′m2
π

2[1 + m2
π

2m2
PS(ms)

]
, (12)

where mPS(ms) is the mass of the pseudoscalar meson with strange
quarks, and Σ ′ = ΣC−1. The data points of χt are well fitted by
the ChPT formula (12) with Σ ′ = 0.0039(2)[GeV2]. The fitted curve
is plotted as the solid line in Fig. 3. Using C = 7.4034(1986)[GeV]
determined by the RBC and UKQCD Collaborations [11], we obtain
Σ = 0.0288(16)[GeV3].

In order to convert Σ to that in the MS scheme, we use the
renormalization factor Z MS

s (2 GeV) = 0.604(18)(55) which is deter-
mined by the RBC and UKQCD Collaborations [12], employing the
non-perturbative renormalization technique through the RI/MOM
scheme [13]. Then the value of Σ is transcribed to

ΣMS(2 GeV) = [
259(6)(9) MeV

]3
,

which is in good agreement with the results extracted from χt in
2 + 1 flavors QCD [14] and 2 flavors QCD [15], as well as that ob-
tained from the low-lying eigenvalues in the ε-regime [16]. The
errors represent a combined statistical error (a−1 and Z MS

s ) and
the systematic error respectively. Since the calculation is done at
a single lattice spacing, the discretization error cannot be quanti-
fied reliably, but we do not expect much larger error because the
domain-wall fermion action is free from O (a) discretization effects.

3. Concluding remark

In this Letter, we have obtained the topological susceptibil-
ity χt and the second normalized cumulant c4, in 2 + 1 flavors
lattice QCD with domain-wall fermions. The expected sea quark
mass (pion mass square) dependence of χt from ChPT is clearly
observed. However, our statistics of ∼ 800 configurations are in-
sufficient to determine c4 with a reasonably small error.

Finally, it is interesting to compare the topological susceptibil-
ity obtained from the global topological charge (this work) with
that extracting from the plateaus (at large time separation) of the
2-point and 4-point time-correlation functions of the flavor-singlet
pseudoscalar meson η′ with fixed topology [14]. We find that both
methods give χt in agreement with the chiral effective theory. Fur-
thermore, the chiral condensates extracted from both sets of χt are
also in good agreement. Next, we turn to the second normalized
cumulant c4. If we try to measure it with the global topological
charge, it would require more than 10 000 configurations in or-
der to pin down the statistical error less than 10%. On the other
hand, if we measure c4 with the correlation function of topologi-
cal charges in sub-volumes (with fixed global topology), we would
expect that it only requires about 1000 configurations in order to
achieve a level of 10% statistical error. To conclude, it is interesting
to see that there are more than one viable options to obtain the
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topological susceptibility and the higher normalized cumulants, in
lattice QCD with exact chiral symmetry.
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