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Abstract Phosphorylation of BCL-2 family member BAD at
different residues triggers different physiological effects, either
inhibiting or promoting apoptosis. The recently identified phos-
phorylation site at Ser-128 enhances the apoptotic activity of
BAD. We here show that BAD becomes phosphorylated at
Ser-128 in the mitotic phase of the cell cycle in NIH3T3 cells.
We also show that BAD-S128 is phosphorylated in taxol-treated
mouse fibroblasts and MDA-MB-231 human breast cancer cells.
However, expression of a phosphorylation-defective dominant
negative BAD mutant did not block taxol-induced apoptosis.
These data support the view that the phosphorylation of BAD
Serine 128 exerts cell-specific effects on apoptosis. Whereas
the BAD Serine 128 phosphorylation induces apoptosis in neuro-
nal cells, it does not appear to promote apoptosis in proliferating
non-neural cells during mitosis or upon exposure to the antineo-
plastic agent taxol.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The proapoptotic BCL-2 family member BAD was the first

cell death component to be identified as a regulatory target of

survival signaling [1]. Active BAD induces apoptosis by inhib-

iting antiapoptotic BCL-2 family members, such as BCL-XL,

thereby allowing two other proapoptotic members, BAK and

BAX, to form complexes, leading to the release of cytochrome

c, caspase activation, and apoptosis [2,3]. Survival signaling in-

duces phosphorylation of BAD on Ser-112, Ser-136, and Ser-

155, resulting in the binding of BAD to 14-3-3 proteins as an

inactive complex [4].

It was recently reported that Cdc2 and JNK catalyze the

phosphorylation of BAD at serine 128 in post-mitotic neuro-

nal cells [5–8]. This led to BAD-mediated apoptosis by inhib-

iting BAD�s sequestration by members of the 14-3-3 family

of proteins. These findings provided a mechanistic explanation

to apoptosis in neurons upon the suppression of neuronal
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activity or upon activation of the p75 neurotrophin receptor

[5,7,9]. These findings also raised the major question of the role

of the BAD Serine 128 phosphorylation in cells outside the

nervous system. In particular, the finding that the mitotic ki-

nase Cdc2 mediates the phosphorylation of BAD at Serine

128 in neurons [5] raises the question of whether the BAD Ser-

ine 128 phosphorylation occurs during mitosis in proliferating

non-neural cells, a time in the cell cycle during which Cdc2

activity is high [10].

Agents such as vinca alkaloids and taxanes represent an

important class of antineoplastic agents which are known to

induce tumor cell apoptosis [11]. Although the mechanisms

of apoptosis induction by these agents remain to be elucidated,

Cdc2 and JNK have both been suggested to contribute to tax-

ol-induced apoptosis in proliferating cells [12–14]. Here, we

examined BAD-128 phosphorylation in dividing cells, and

whether this type of phosphorylation is important for apopto-

sis induction by taxol.
2. Materials and methods

2.1. Materials
Paclitaxel and purvalanol were obtained from Sigma, SP600125

from Biomol Research Laboratories and cisplatin from Bristol-Myers
Squibb.

2.2. Cells
MDA-MB-231 breast carcinoma, NIH-3T3 cells and MEF cell lines

were maintained at +37 �C in 5% CO2 in Dulbecco�s modified Eagle�s
medium supplemented with fetal calf serum (10%), LL-glutamate, peni-
cillin and streptomycin.

2.3. Transfection procedure
Cells grown in 6 well plates were transfected for 4 h with a CK18

cDNA expression vector (kindly provided by Dr. Bisr Omary, Stan-
ford University) and BADS128/BADS128A vectors using Lipofect-
amine2000 (Invitrogen). BAD vectors were fusions with GFP. After
transfection, zVAD-fmk was added to inhibit apoptosis caused by
the transfection procedure. After 24 h, cells were washed and paclitaxel
was added and incubation was continued for another 24 h.
2.4. Assessment of apoptosis
Cytokeratin-18 cleavage was measured using reagents from

PEVIVA AB (Bromma, Sweden). At the end of the incubation period
with paclitaxel, NP40 was added to the tissue culture medium to a
final concentration of 0.1% and an aliquot (500 ll) of the entire con-
tent of each well (from attached cells, floating cells and cell frag-
ments, as well as activity released to the medium) was assayed for
the CK18-Asp396 epitope by incubation with beads coated with an
blished by Elsevier B.V. All rights reserved.
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anti-CK18 antibody. The beads were washed and incubated with
antibody M30 [15] which had been conjugated with HRP (obtained
from PEVIVA AB).
2.5. Western blot analysis
Cell extract proteins were resolved by sodium dodecyl sulfate-poly-

acrylamide gel electrophoresis and transferred onto a polyvinylidene
difluoride membrane for Western blotting.
2.6. Flow cytometric analysis
Cells were harvested, washed and fixed with 0.25% paraformalde-

hyde for 5 min. The cells were then washed and incubated with anti-
body in 100 lg/ml digitonin in PBS for 30 min. The antibody against
BADSer128-P has been described [5], the antibody to GFP was ob-
tained from Santa Cruz Biotechnologies (Santa Cruz, CA) and the
antibody to BAD from Cell Signaling (Beverly, MA). After incuba-
tion, the cells were washed and incubated with FITC-conjugated sec-
ondary antibodies for 30 min, washed with PBS and analyzed by
flow cytometry. CK18 cleavage was assessed using the monoclonal
antibody M30 [15].
Fig. 1. Phosphorylation of endogenous BAD at Serine 128 in NIH-
3T3 cells (A) 3T3 cells were starved of serum for 12 h, then 10% FBS
was added to the media for the indicated time. Lysates of cells were
subjected to immunoblotting with the phosphoSerine 128 BAD
antibody (top panel) or an antibody that recognizes BAD regardless
of its phosphorylation status (bottom panel). Serum stimulation
induces the phosphorylation of BAD at Serine 128 with delayed
kinetics. (B) NIH-3T3 cells growing in 10% FBS were fixed in 4%
paraformaldehyde and subjected to immunocytochemical analysis with
the phosphoSerine 128 BAD antibody and stained with the DNA dye
bisbenzimide (Hoechst 33258). The phosphoSerine 128 BAD signal is
shown in the left panels and Hoechst staining in the right panels. The
phosphoSerine 128 antibody was incubated at 4 �C prior to immuno-
cytochemistry with the phosphorylated Serine 128 BAD peptide
(middle panels) or with the unphosphorylated Serine 128 BAD peptide
(lower panels) as described [5]. Robust Serine 128 phosphorylated
BAD immunoreactivity was detected in cells undergoing mitosis.
3. Results

3.1. Phosphorylation of Bad at Ser128 during mitosis

To characterize the phosphorylation of BAD Serine 128 in

proliferating non-neural cells, we first determined if this phos-

phorylation event occurs in NIH-3T3 fibroblasts upon growth

factor stimulation. NIH-3T3 cells were starved of serum and

then stimulated with serum (10% FBS) for the indicated times

in Fig. 1A. Serum stimulation of NIH-3T3 cells induced the

phosphorylation of endogenous BAD at Serine 128, as deter-

mined by immunoblotting using an antibody that recognizes

the Serine 128-phosphorylated form of BAD specifically [5]

(Fig. 1A). The serum-induced phosphorylation of BAD oc-

curred with delayed kinetics taking several hours to reach

robust levels.

We next examined the phosphorylation of BAD in NIH-

3T3 cells at the single cell level by immunocytochemical

analysis. NIH-3T3 cells growing in 10% FBS were fixed

and subjected to immunocytochemistry using the phospho-

Serine 128 BAD antibody [5]. We found strong phosphoSer-

ine 128 BAD immunoreactivity in cells undergoing mitosis

but not in interphase cells (Fig. 1B). The specificity of the

signal was demonstrated as the ability of the antibody to

recognize endogenous phosphoSerine 128 BAD immunoreac-

tivity was effectively competed with prior incubation with

the phosphoSerine 128 BAD peptide but not with the

unphosphorylated BAD Serine 128 peptide (Fig. 1B). To-

gether, these results indicate that endogenous BAD under-

goes phosphorylation at Serine 128 in proliferating

fibroblasts. The tight association of the BAD Serine 128

phosphorylation with mitosis is consistent with the idea that

BAD Serine 128 is a substrate of Cdc2 in proliferating cells.

We found little evidence of cell death in NIH-3T3 cells in

which the BAD Serine 128 phosphorylation was detected as

indicated by normal appearing nuclei that were stained with

the DNA dye bisbenzimide (Hoechst 33258). These observa-

tions suggested that in contrast to neuronal cells in which

the BAD Serine 128 phosphorylation triggers apoptosis

[5,7–9], the phosphorylation of BAD Serine 128 in prolifer-

ating fibroblasts does not appear to correlate with

apoptosis.
3.2. Phosphorylation of Bad at Ser128 following paclitaxel

treatment

Having found that BAD undergoes phosphorylation at Ser-

ine 128 in growing fibroblasts during mitosis, we next deter-

mined if the BAD Serine 128 phosphorylation is induced in

proliferating cells upon exposure to the antineoplastic agent

taxol. Taxol is reported to induce apoptosis in part via the

aberrant activation of the kinases Cdc2 and JNK [12–14], both

of which have been implicated in the phosphorylation of BAD

Serine 128 in neuronal cells [5,6]. Bad phosphorylation was

examined in paclitaxel-treated cells after staining with the

phospho-BAD-Ser128 antibody. Analysis by flow cytometry

showed increased Ser-128 phosphorylation in paclitaxel-

treated human breast cancer MDA-MB-231 cells (Fig. 2A

and B) and mouse embryo fibroblasts (MEF) (Fig. 2C). In-

creased phosphorylation was also observed in taxol-treated

MDA-MB-231 cells by Western blotting (Fig. 2D). The anti-

cancer agent cisplatin, which induces apoptosis but not mitotic

arrest, did not induce BAD Serine 128 phosphorylation. The

JNK inhibitor SP600125 was found to partially inhibit BAD

Ser 128 phosphorylation in MEF cells (Fig. 2C). The Cdc2



Fig. 3. Inhibition of paclitaxel-induced apoptosis by Bcl-2 but not by a
dominant negative mutant of BAD. MEF cells were transfected with
2 lg of a CK18 cDNA expression vector and 2 lg of BAD cDNA
expression vectors or 2 lg of a Bcl-2 cDNA expression vector.
Paclitaxel was added 24 h after transfection and the levels of
caspase-cleaved CK18 were assayed after an additional 24 h using
the M30 antibody [16]. (A) Inhibition of CK18 caspase cleavage by
SP600125 (10 lM). (B) CK18 cleavage in cells transfected with a BAD
expression vector or an expression vector encoding a phosphorylation
deficient dominant negative form of BAD (BADS128A). (C) Inhibition
of CK18 caspase cleavage by a Bcl-2 expression vector. (D) Expression
of BADS128A protein in transfected MEF cells. Cells were stained
both for GFP (green fluorescent protein; expressed by the BADS128A
construct) and BAD; the BADS128A vector is a GFP-fusion protein.
Left: untransfected cells; right: cells transfected with BADS128A
vector.

Fig. 2. Phosphorylation of Bad at Serine 128 in paclitaxel-treated cells.
Human MDA-MB-231 cells (A,B) and mouse embryo fibroblasts
(MEF) (C) were treated for 24 h with 500 nM paclitaxel, labeled with
the phosphoSerine 128 antibody and analyzed by flow cytometry.
SP = 10 lM SP600125. (D) Human MDA-MB-231 cells were treated
with 500 nM paclitaxel or 20 lM cisplatin for 16 h and analyzed by
Western-blotting using the phosphoSerine 128 antibody or an
antibody to BAD. 80 lg protein was loaded on each lane.
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inhibitor purvalanol also inhibited BAD Ser-128 phosphoryla-

tion (data not shown). These data are consistent with the con-

clusion that both JNK and Cdc2 contribute to the

phosphorylation of BAD at Serine 128 in taxol-treated prolif-

erating cells. However, whether the negative effect of purvala-

nol on the phosphorylation of BAD at Serine 128 reflects a

direct inhibitory effect of Cdc2 or due to secondary conse-

quences of cell cycle inhibition is not clear.

3.3. Expression of a dominant BAD-S128A mutant does not

block taxol-induced apoptosis

The finding that BAD is phosphorylated in mitotic and taxol

treated cells raises the question of whether this phosphoryla-

tion is mechanistically important for taxol-induced apoptosis.

We tested this possibility using a dominant negative mutant of

BAD, BADS128A. Initial experiments using this mutant were

not conclusive, however, due to difficulties to quantify apopto-

sis in the population of transfected cells. This was due to the

presence of both post-mitotic micronucleated cells and apopto-

tic cells showing nuclear fragmentation. To solve these prob-

lems, we developed a cotransfection method based on an
exogenous caspase-substrate (human CK18) that was intro-

duced into MEF cells together with BAD expression vectors

(see Section 2). CK18 caspase-cleavage was then assessed by

a simple immunoassay [16]. Robust increases in the levels of

caspase-cleaved CK18 were observed in paclitaxel-treated cells

(Fig. 3A). Lower levels of caspase-cleaved CK18 were ob-

served in cultures treated with paclitaxel in the presence of

the JNK inhibitor SP600125 (Fig. 3A). MEF cells were

cotransfected with CK18 cDNA and BADSer128A or with a

Bad control cDNA expression vector. BADSer128A did not

block caspase-cleavage of CK18 (Fig. 3B) over a range of dif-

ferent plasmid concentrations. As a control, we showed that

transfection of Bcl-2 inhibits paclitaxel-induced CK18 cleavage

(Fig. 3C). Expression of exogeneous GFP-BAD in transfected

cells was verified by flow cytometry (Fig. 3D).
4. Discussion

In this study, we report the characterization of the BAD Ser-

ine 128 phosphorylation in proliferating non-neural cells. The

phosphorylation of BAD at Serine 128, catalyzed by the
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proline-directed kinases Cdc2 and JNK, promotes apoptosis in

neuronal cells upon the suppression of neuronal activity or the

activation of the p75 neurotrophin receptor [5,7,9]. Here, we

report that the phosphorylation of BAD at Serine 128 also oc-

curs in proliferating non-neural cells. The evidence provided in

our study is consistent with the idea that both Cdc2 and JNK

contribute to the phosphorylation of BAD at Serine 128 in

proliferating cells. However, transfection of a BAD cDNA

expression vector that cannot be phosphorylated at Serine

128 did not block taxol-induced apoptosis in proliferating

cells. In addition, we were unable to demonstrate increased

binding of Ser-128 phosphorylated BAD to Bcl-XL in taxol

treated cells (M.H., unpublished data). Together, our results

suggest that in contrast to the critical role of the BAD Serine

128 phosphorylation in inducing apoptosis in neuronal cells,

the phosphorylation of BAD Serine 128 does not appear to

promote cell death in proliferating fibroblasts. We interpret

these results to suggest that phosphorylation of BAD at Serine

128 exerts distinct effects on apoptosis in neuronal cells and

non-neural cells. In future studies, it will be important to deter-

mine the mechanisms that underlie the cell-specific nature of

the biological effect of the BAD Serine 128 phosphorylation.

The possibility remains that the phosphorylation of BAD at

Serine 128 may serve roles in apoptosis in proliferating cells

under specific circumstances. Given the importance of BAD

in the death of thymocytes in response to DNA damage [17],

it will be interesting to determine if the phosphorylation of

BAD at Serine 128 plays any role in this situation. In addition,

since BH3-only proteins may play roles in the cell outside of

apoptosis, for example in regulation of the cell cycle [18], it will

be interesting to determine if the BAD Serine 128 phosphory-

lation might impact on the cell cycle. In the future, it will be

important to determine the function of BAD Serine 128 phos-

phorylation in different tissues using a mouse knock-in

approach.

Mitogen activated kinase pathways are important for apop-

tosis induction by many stimuli, and are targets for combina-

tion therapy with taxol [19]. Many apoptotic signals cause

activation of Jun-N-terminal kinase (JNK), and JNK activa-

tion has been linked to apoptosis [20]. Microtubuli inhibitors

activate JNK in a variety of different cell lines [21,22], and inhi-

bition of JNK protects cells from cytotoxicity induced by mito-

tic inhibitors [13]. Our results confirm previous findings of a

pro-apoptotic role of JNK in paclitaxel-induced apoptosis [13].

The Cdc2 kinase has also been implicated in paclitaxel-

induced apoptosis. Inhibition of this kinase using pharmaco-

logical inhibitors or anti-sense oligonucleotides results in

apoptosis inhibition [12]. We found that the Cdc2 inhibitor

purvalanol inhibits taxol-induced apoptosis (M.B., unpub-

lished results). However, since purvalanol blocks the cell cycle,

it might inhibit apoptosis by indirect mechanisms, rather than

due to a direct effect leading to blocking of Cdc2 phosphoryla-

tion of a specific substrate. One possibility would be inhibition

of JNK activation in mitotic cells.

The co-transfection method described here is simple and

possible to perform in larger series and promises to be useful

for the characterization of apoptotic signaling pathways. It

was particularly useful for paclitaxel-induced apoptosis,

which is difficult to study. Taxol-induced increases in the cas-

pase-mediated cleavage of the transfected marker (CK18)

were inhibited by expression of Bcl-2. These results serve as

a validation of the method and are consistent with previous
findings on the role of Bcl-2 in taxol-induced apoptosis

[23,24].
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