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What is the length of the shortest string consisting of elements of { 1 , . . . ,  n} that contains as 
subsequences all permutations of  any k-element subset? Many authors have considered the 
special case where k = n. We instead consider an incremental variation on this problem first 
proposed by Koutas and Hu. For a fixed value of n they ask for a string such that for all values 
of k <~ n, the prefix containing all permutations of any k-element subset as subsequences is as 
short as possible. The problem can also be viewed as follows: 

For k = 1 one needs n distinct digits to find each of the n possible permutations. In going 
from k to k + 1, one starts with a string containing all k-element permutations as suhsequences, 
and one adds as few digits as possible to the end of the string so that the new string contains all 
(k + 1)-element permutations. 

We give a new construction that gives shorter strings than the best previous construction. We 
then prove a weak form of lower bound for the number of digits added in successive suffxxes. 
The lower bound proof leads to a construction that matches the bound exactly. The length of a 
shortest prefix string is 

k(n - 2) + / ~ ( k  + 1 ) / +  3, for k > 2. 

The lengths for k = 1, 2 are n and 2n - 1. This proves the natural conjecturethat  requiring 
the strings to be prefixes strictly increases the length of the strings required for all but the 
smallest values of k. 

1. Introduction and problem history 

Knuth [3] poses the following problem which he attributes to Karp: What is the 
length of the shortest string consisting of elements of { 1 , . . . ,  n } that contains all 
permutations of the set as subsequences? Several published papers [1], [4], [6] 
give constructions for strings of length 

n 2 - 2 n + 4 ,  forn>13. 

For example the string 1231231 of length 7 contains the permutations 123, 132, 
213, 231, 312, and 321 as subsequences. Savage [8] generalizes Adleman's 
construction to the problem of finding a shortest string containing any permuta- 
tion of any k-element subset, obtaining an upper bound of 
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k ( n - 2 ) + 4 ,  for 3~<k~<n. 

Notice that the bounds are identical for k = n. Both of these upper bounds also 
appear in a technical report by Newey [7]. The best lower bound known for k = n 
is 

n 2 - c n  7/4+e, where e > 0 and c depends on e, 

due to Kleitman and Kwiatkowski [5]. 
In all of the constructions cited the relationship between the string for n and 

the string for n + 1 is nontrivial. Koutas and Hu, therefore, also consider the 
following related problem [6]. Let F(n, 1)=  n be the length of a shortest string 
containing all the elements of { 1 , . . . ,  n }. Now add as few numbers as possible to 
the end of the string until it contains all permutations of any two-element subset 
of { 1 , . . . ,  n}. The length of this string is F(n,  2); F (n, 2) = 2n - 1 because the 
last number among the first n does not need to appear again. Keep adding digits 
on the right, trying to minimize the length, so that prefixes of the string contain 
all permutations of k-element subsets, k = 3, 4 . . .  It is essential to observe that 
very few strings that achieve F(n, k) can be extended minimally to strings that 
achieve F(n, k + 1). This means that in defining F(n, k + 1) one should minimize 
over all prefixes satisfying the subsequence condition that are of length F(n, k). 
Koutas and Hu show by exhaustive case analysis that 

F(n,  3) = 3n - 2, 

They conjecture that 

F ( n , k ) = k ( n - 1 ) ,  

F(n, 4 ) = 4 n - 4 ,  

for 4<- .k- .<n-  1. 

F (n, 5) = 5n - 5. 

The notation of Koutas and Hu is a bit deceptive for the case of arbitrary k. 
The reason is that the definition for the string for k + 1 presumes that its shortest 
prefix which contains all k-element permutations is as short as possible. Therefore 
we define L(n, k) to be a sequence of k numbers where the ith number is the 
fewest number of digits one has to add to an optimal prefix for i -  1 to get a 
shortest prefix for i. We can restate the earlier results as: 

L(n, 1) = n, L(n, 2) = n, n - 1, L(n, 3) = n, n - 1, n - 1, 

L(n, 4 ) = n , n - l , n - l , n - 2 ,  L(n, 5 ) = n , n - l , n - l , n - 2 ,  n - 1 .  

Cai [2] disproves the conjecture of Koutas and Hu by constructing a string where 
for every fourth value of k starting with 4, 8 , . . .  one adds only n -  2 numbers 
instead of n - 1. Thus the length of Cai's string is 

k ( n - 1 ) + l - [ i 4 k ] ,  for l~<k ~<n. 

However, this does not prove an upper bound on F(n, k) for general k. For this 
reason our sequence notation captures the incremental nature of the problem 
much better than the original measure of length, F. Cai's construction first saves 
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an extra number at k = 8. However, we will show that it is already possible to 
save an extra number at k = 6. It is conceivable that the cost of saving a number 
earlier in the prefix, as demanded by the problem statement, is that later in the 
string it is not possible to save as many numbers as Cai's construction saves. If 
this were the case, the optimal string would actually be longer than Cai's string. 
Using the sequence notation two strings are compared lexicographically, and the 
one that saves an extra number sooner is better, regardless of which string is 
longer. More concretely, Cai's construction does show that L(n,  k)  is lexi- 
cographically less than or equal to 

n, n - l, n - l ,  n - 2, n - 1 ,  for l~<k~<n, 

where we use the horizontal bar to mean the sequence consisting of the first k 
elements of the infinite sequence in which the digits under the bar are repeated. 

We first improve the bound to 

n , n - l , n - l , n - 2 ,  for l<~k~<n. 

Then we prove a lower bound of 

n , n - l , n - l , n - 2 ,  n - l , n - 2 ,  for l<~k~<n, 

and finally, we exhibit a string matching this lower bound exactly. That is, the 
second sequence is L(n,  k). This shows that the restriction to prefix strings does 
indeed increase the length, since the upper bound for the general problem is 
strictly less than the length for the prefix problem provided k >i 5. 

The prefix restriction is natural because it limits the need for inductive 
reasoning in the proofs to the rightmost pieces, i.e., the sufftxes, of the string. 
The fundamental difficulty in improving the upper bound for this problem is that 
only a few strings that achieve L(n,  k)  can be extended (minimally) to achieve 
L(n,  k + 1). The fundamental difficulting in proving the lower bound is that the 
pattern of suffixes added for successive values of k is complicated, and as a result 
the case analysis for what can and cannot be found at the right end of the string is 
messy. 

2. Improved upper bound 

In this section we constructively prove the following upper bound: 

Theorem 1. L(n, k)  is lexicographically less than or equal to 

n , n - l , n - l , n - 2 ,  f o r l < ~ k < ~ n .  

Before beginning the formal construction we try to give some intuition for how 
Koutas and Hu arrived at their conjecture, and why their bound as well as Cai's 
can be improved. We call the sufftx added to an optimal prefix in going from 
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k -  1 to k, block k. The first block must  contain all n numbers.  Thereafter  the 

k th  block need not include the last number  of block k - 1. To see this suppose 

that  we are looking for the permutat ion x l  • • • Xk as a subequence where Xk is the 
last number  in block k -  1. We can assume as an inductive hypothesis that 

x ~ . . .  Xk-~ Occurs as a subsequence of the first k -  1 blocks. Furthermore 

Xk-~ =/=Xk, SO we don ' t  need the last number  to find x ~ . . .  Xk-~ as a subsequence. 

This implies that X l . . .  Xk is actually a subsequence of the first k - 1 blocks, and 

hence also a subsequence of the first k blocks even if block k does not contain Xk. 

This shows that L(n,  k)  is bounded by n, n - 1. 

Koutas and Hu  show that in the fourth block one can save an extra number;  

their string has only n - 2  numbers  in that  block [6]. Cai shows that one can save 

an extra number for every four blocks [2]. If  the fourth block is missing x~ and x2, 

and if they occur in that  order  in the third block then one has to make  sure that  

all the permutations that  end with x2x~ occur as subsequences. Cai constructs a 

nice inductive argument  that  restricts this difficulty to the last 4 blocks even if 

earlier blocks also save an extra number.  

However ,  it turns out that  one can save an extra number  more often than every 
fourth block, at the cost of refining the argument.  This construction then guides 

us to various observations about  how much more improvement one might expect. 

The lemmata and proofs of Section 3 in turn guide the construction of a string in 

Section 4 that matches the lower bound of Section 3. In our first construction that 

achieves the weaker  bounds of Theorem 1, blocks 5, 7, 9 , . . .  have n - 1 numbers 

each,  while blocks 4, 6, 8 , . . .  have n - 2 numbers each. 

Construction. Set 

A 1 = 1 , . . . ,  n ,  

A 2 = 1 , . . . ,  n - 1, 

A 3 = l , .  . . , n - 3 ,  n , n - 2 ,  

A 4 = l ,  . . . , n  

A s =  1, . . . , n 

A 6 = 1 ,  . . . , n 

- 5 ,  n - 1 ,  n - 3 ,  n - 4 ,  

- 5 ,  n - 2 ,  n - l , n , n - 3 ,  

- 4 ,  n - 2 ,  n - 1 .  

The string for k = 1 is A1; the string for k = 2 is A I A 2 ;  the string for k > 2 is the 

first k blocks of A I A ~ 3 A 4 A 5 A 6 .  Notice that A3 and A5 have n - 1 numbers each 
and A4 and A 6 have n - 2  numbers  each. Also, notice that the odd blocks after 

block 1 are missing the last number  of the previous block. Thus in the inductive 

proof  of correctness we only need to check the cases where k is even. 
Suppose k = 4. Block 4 is missing n and n -  2, but block 3 ends in n, n -  2; 

therefore,  the only 4-element permutat ions that could cause difficulty are those 

ending in n - 2 ,  n. Let  XlX2 n - -2 ,  n be such a permutation.  The last chance to 
find n is at the end of block 3 and the n - 2 immediately before it occurs in block 
2. If  x2 #: n - 1 then we can certainly find xxx2 among the first 2n - 3 numbers. If  
x2 = n - 1 then we use the n - 1 of block 1, but we now know that x~ < n - 1, 

therefore x I occurs earlier in the string. 
Backwards reconstruction of the "wors t  possible permutat ion"  also works for 
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larger  values of  k. Suppose  now k = 6 and  the  worst  possible pe rmuta t ion  is 

x l  • • • x6. Block  6 is missing n - 3 and n. Block 5 ends in n, n - 3, so x6 = n and 

x5 = n -  3. This  means we need  to use the  n -  3 of  b lock 4. The  only number  

af ter  it in b lock  4 is n - 4 ,  so x4 = n -  4, otherwise we can certainly find the 

pe rmu ta t i on  as a subsequence.  We use the n -  4 of block 3; the only  number  

af ter  it in b lock 3 that  does  not  already occupy a place in the pe rmuta t ion  is 

n - 2, so x3 = n - 2. We  use the  n - 2 of  b lock 2 and x2 = n - 1. All  the numbers  

tha t  might  appear  earlier in the  pe rmuta t ion  come before  n - 1 in the  first block 

so we can find Xl there.  

For  the  induct ive step assume tha t  any pe rmuta t ion  X l . . .  xj for ] < k, can be 

found  as a subsequence in the  first j blocks. We  consider  two cases depending  on 

whe the r  k is divisible by 4 or not. If  k - - 0  (mod 4), then  the worst  possible 

pe rmu ta t i on  ends in n - 4, n - 3, n - 1, n - 2, n. The  n - 4 used is in b lock k - 5 

which is of the  form A3. In  tha t  block the  only  numbers  after  n - 4 have  already 

been  used, so we can find X k - 5  in that  block.  By the induct ion hypothes is  we can 

f i n d  Xl  • • • X k - 6  in the first k - 6 blocks. If k - 2 (mod 4) then  the worst  possible 

pe rmu ta t i on  ends in n - 1, n - 2, n - 4, n - 3, n. We  use the n - 1 in b lock  k - 5 

which is of  the  form As. In  tha t  block the  only  numbers  after  n - 1 a l ready occur 

in the  pe rmuta t ion ,  so we c a n  find Xk-5 in that  block,  and once again we can find 

x l . . .  X k - 6  in the first k - 6 blocks. [] 

This  const ruct ion suggests many  quest ions about  the detai led s t ructure  of a 

shor tes t  string. Two par t icular ly  obvious ones  are: 

- Is it possible to have fewer  than  n - 2 numbers  in a b lock? 

- I s  it possible to have n - 2  numbers  in 2 consecutive blocks? 

One  might  th ink  that  as k gets large the class of  "wors t  possible pe rmuta t ions"  

becomes  very  restricted and  "therefore it would  seem likely that  many  numbers  

could  be omit ted .  Because of  the incrementa l  na ture  of  the p rob lem,  however ,  

one  must  know the exact sequence  L ( n ,  k )  before  making any claims abou t  how 

few numbers  need  appear  in block k + 1. For  example  one  could h a v e  a string 

tha t  has  n -  1 numbers  in the  penul t imate  b lock and n -  3 numbers  in the last 

b lock,  but  the  problem s t a t emen t  requires tha t  one  prefer  a string with a block of 

size n - 2 fol lowed by a b lock  of  size n - 1, if such a string exists. 

3. A iexicographic lower bound 

In  this sect ion we cons ider  by how much  one  can improve  on the const ruct ion 

in the  previous  section. W e  prove  a series of  l emmata  tha t  when  put  toge the r  give 

a very  precise charac ter iza t ion  of  how m a n y  numbers  one  might  be able to save in 

construct ing the  block sequence .  Because the  lower  bound  p roo f  assumes 

greediness ,  so that  if it is possible to save numbers ,  one  saves them immedia te ly ,  

it  canno t  address  the ques t ion  of  length of  the  string. I t  is conceivable  tha t  one 
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cannot be as greedy as Theorem 2 suggests, but nevertheless the length of the 
shortest prefix string is less than the length given by the block length sequence in 
Theorem 2. However, in Section 4 we show the significance of the lower bound 
by exhibiting a string that matches it exactly. For the first two lemmata we 
assume that S is an optimal string, so that all n of its prefixes are as short as 
possible. 

Lemma 1. No number occurs twice in a block of  S. 

Proof. Let j ~< n be given. By definition every (j - 1)-element permutation can be 
found in the first j - 1 blocks. Thus to find any j-element permutation we need at 
most one element of the j th  block. S is a shortest string, and hence the j th block 
need not contain two copies of the same number. Since j was arbitrary, no block 
contains two copies of the same number. [] 

Lemma 2. Let j <~ n and a subset, P, of  { 1 , . . . ,  n} of  size n - j = : p be given. 
There is a permutation of the elements of  P that cannot be found as a subsequence 
in the first p - 1 blocks of  S. That is, some element of  block p is needed to find that 
permutation. 

Proof. We build such a permutation, x ~ . . .  xp explicitly. Let x~ be the element of 
P that occurs last in block 1. Let P~ = P \ { x ~ , . . . ,  xi}. For 1 ~<i < p ,  let xi+l be 
the element of P~ that occurs latest in block i + 1. By Lemma 1, it is impossible to 
use two elements of the same block to find the p-element permutation, x t . . .  xp 
as a subsequence. [] 

It is essential that the set specified in Lemma 2 is arbitrary. 

Lenmm 3. No number can be missing from two consecutive blocks. Furthermore, 
if block j is missing two distinct numbers xl and x2, then the numbers cannot both 
be missing from block j + 2. 

Proof. Suppose xl is missing from both block j and block j + 1. By Lemma 2 we 
can construct a j-element permutation not using xl that requires some element of 
block j in order to be found as a subsequence. If we now append x1 to the 
permutation (string), the resulting (j" + 1)-element permutation cannot be found 
in the first j + 1 blocks. 

For the second part assume that Xl and x2 are missing from blocks j and j + 2. 
By Lemma 1, they can occur at most once each in block j + 1. We can assume 
without loss of generality that they occur in the order x~x2. By Lernma 2, we can 
construct a j-element permutation that does not use x~ or x2, but requires some 
element of block ] to be found as a subsequence in the first ] blocks. We can then 
append xzx~ to the permutation, and the resulting (j + 2)-element permutation 
cannot be found as a subsequence in the first j + 2 blocks. [] 
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Lemma 4. I f  block j is missing the last two numbers o f  block j - 1, and i f  the last 
or penultimate number of  block j -  1 is the last or penultimate number o f  block 
j -  3 and is missing from block j -  2, then block j + 1 can be missing only one 
number (the last number of  block j). 

Proof. Let x~ be the last or penultimate number of block j -  3 and the last or 
penultimate number of block j - 1 that does not occur in either block j - 2 or 
block j. Let x2 be the last number of block j. Note that x2 may occur in block 
j -  1, but it cannot occur after Xl because if there is a number after x: in block 
j - 1 it is the last number of that block and must be missing from block j. Suppose 
we wanted to omit some number x3 in addition to x2 from block j + 1. BY Lemma 
3, x3 cannot be one of the numbers missing from block j. We can build a 
( j -  2)-element permutation that does not use any member of {xl, x2, x3} and 
requires some element of block j - 2 to be found as a subsequence. We append 
XlX2X3 to that permutation making a (j + 1)-element permutation. 

By assumption x~ does not occur in block j - 2, so we need to go to the last two 
elements of block j - 1 to find it. Also, x2 does not occur after Xl in block j - 1, 
so the best we can do is use the x2 that occurs as the last element of block j. We 
assumed that x3 does not appear in block j + 1,  and thus we have a (j  + 1)- 
element permutation that cannot be found in the first j + l  blocks, a 
contradiction. [] 

Lemma 4 provides the first subst.antial piece of an induction step. Under its 
restrictive assumptions we can prove that after two blocks of size n -  2 there 
cannot be a third such block. Lemma 5 fills in the remaining piece by showing 
that the number missing in that third block of size n - 1 is also missing two blocks 
later, and by considering the contents of the block in between. 

Lemma 5. Suppose block ] has n - 2 numbers, block j + 1 has n - 2 numbers, 
and block j + 2 has n - 1 numbers. Suppose further that the last number o f  block 
j - 2 is the penultimate number o f  block j and does not appear in block j + 1. Then 
we can conclude that block j + 3 has at least n - 2 numbers, and i f  block j + 3 has 
exactly n - 2  numbers, then block ] + 4 has at least n -  2 numbers. Moreover, 
block ] + 4 can be missing two numbers only if  the last number of  block j + 1 is the 
penultimate number of  block j + 3 and is missing from block ] + 4. 

Proof. Let xl and x 2 be the last two numbers of block j ;  both are missing from 
block j + 1, and xl is missing from block j - 1. Let x3 be the last number of block 
j + 1; x3 is missing from block j + 2. Let x4 be the last number of block j + 2, and 
let x5 ~ x4 be any other number that does not occur in block j + 3. Suppose for 
the moment  that x4 = x~. Then we build a (j  + 1)-element permutation not using 
x4 or x5 that requires some element of block j + 1 to be found as a subsequence. 
We append x4x5 to that permutation, and the resulting (j  + 3)-element permuta- 
tion cannot be found in the first j + 3 blocks. 
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Suppose instead that Xx =/:x4, and that x5 is defined as before. We build a 
( j -  1)-element permutation not using xl,  x3, x4, or x5 that requires some 
element of block j - 1. We try to append XlX3X4X5 to this permutation to build a 
(j + 3)-element permutation that does not occur as a subsequence of the first j + 3 
blocks. The only circumstance under which we cannot build this permutation is if 
xl = x5. This proves that block j + 3 can be missing at most two numbers, and if 
two numbers are missing one must be xl,  but x~ cannot be the last number of 
block j + 2 because we dispensed with that case in the previous paragraph. 

Consider what can be missing from block ] + 4. We built a (j + 2)-element 
permutation that ended in x~x3x4 where we needed the x4 that occurs as the last 
element of block j + 2. The elements x~ and x4 do not occur in block j + 3 if that 
block has n - 2  numbers, so they cannot be missing from block j + 4. If block 
j + 4 were missing two numbers other than x3, we could make sure they did not 
occur in that ( / +  2)-element permutation, and then append them in reverse order 
to get a (j + 4)-element permutation that could not be found as a subsequence of 
the first four blocks. Thus block j + 4 can be missing at most x3 and one other 
number x6. In order to complete the proof we need to show that if both numbers 
are missing from block j + 4, then block j + 3 ends in XaX 6. 

First suppose that block j + 3 has x3 as its last number (instead of the 
penultimate as we claim). Then we can build a (j + 1)-element permutation that 
does not use xl,  x3, or x6 and requires some element of block j + 1 in order to be 
found as a subsequence. The number x~ does not occur in block j + 1, x3 does not 
occur in block j + 2, and, in fact, the next occurrence of x3 is at the end of block 
j + 3. Therefore if we append xlx3x6 to our permutation, we get a (j  + 4)-element 
permutation that cannot be found in the first j + 4 blocks. 

Now suppose that x3 is neither the last nor the penultimate number of block 
j + 3. This means that x6 is the last element of block j + 3, and that some other 
number, y~, is the penultimate number in block j + 3. Once again construct a 
(j - 1)-element permutation that requires some element of block j - 1; we shall 
see momentarily which numbers should not be used in this permutation, so that 
they can be appended to it. Append x x to the permutation. The next occurrence 
of Xl is as the penultimate number in block j. Append the penultimate number of 
block j + 1, call it Y2, which is known to be distinct from x~ because xl does not 
occur in block j + 1. Next append the last number of block j + 2 other than Y2; 
call this number Y3. We can assume that Xl is not among the last two numbers of 
block j + 2 because if it were, then we could apply Lemma 4 with j in that Lemma 
corresponding to j + 3 in this one to conclude that block j + 4 would have n - 1 
numbers. Therefore, we do not need the explicit restriction that y 3 ~ x l ,  and 
know that Y3 is among the last two numbers of block j + 2. Observe that neither 
the last element of block j + 2  nor xl occur in block j + 3 ,  therefore 

{Xl, Y2, Y3} ~: {x6, Yl}- Choose Y4 e {x6, Yl} \ {Xl, Y2, Y3}, and append y4X3 to the 
permutation to get a (j + 4)-element permutation that cannot be found in the first 
j + 4 blocks provided that the original ( j -  1)-element permutation contains no 

member of {Xl, x3, )2, Y3, Y4}. 
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Since Lemma 2 guarantees that such a ( j -  1)-element permutation exists, the 
final assertion that the last number of block ] + 1 is the penultimate number of 
block j + 3 holds. [] 

We can actually get even more information from the last construction in the 
proof. If xs~y3, then we could just append x6x3 to the permutation at the last 
step and get an even broader contradiction implying that block j + 4 could not be 
missing anything other than x6. If there is any hope of having only n - 2 elements 
in block j + 4, then x6 = Y3. That is, the last element of block j + 3 must be among 
the last two numbers of block j + 2. Since it cannot be the last number, and yet 
occur in block j + 3, x6 must be the penultimate number of block j + 2. The 
reader can check that the string exhibited in Section 4 has this property. 

It is important to see how Lemmata 4 and 5 can be used in tandem. First one 
establishes the conditions of Lemma 5 in order to show that two consecutive 
blocks have at least n - 2  numbers and that if they both have exactly that many 
then the last two numbers of the first are missing from the second, and so on. The 
conclusions of Lemma 5 are precisely the assumptions needed to apply Lemma 4 
to show that block after the two of size n - 2 has n - 1 elements. After applying 
Lemma 4 one can again apply Lemma 5 for the next two blocks, repeating the 
process until j reaches n. 

Theorem 2. L(n, k) is lexicographically greater than or equal to 

n , n - l , n - l , n - 2 ,  n - l , n - 2 ,  forl<~k<~n. 

Proof. We mentioned before that Koutas and Hu show that the first 5 elements 
of this sequence must be the same as for L(n, k). We prove that if both blocks 6 
and 7 have exactly n -  2 numbers then the last number of block 4 is the 
penultimate number of block 6 and is missing from block 7. We also prove that 
blocks 6 and 7 can be missing at most two numbers each. This establishes the 
hypotheses necessary to apply Lemma 5 for the first time with j = 6. Lemma 5 
shows that if blocks 6 and 7 have no more than n - 2 numbers each, we can then 
apply Lemma 4, to show that block 8 has n -  1 numbers. The conclusion of 
Lemmata 5 and 4 now enable us to again apply Lemma 5 with j = 9, and we can 
repeat the cycle as often as necessary to obtain the sequence given in the 
statement of the Theorem. Of course, there may be a block where Lemmata 4 
and 5 would permit the omission of 2 numbers, but for other reasons we can omit 
only 1; however, this does not violate Theorem 2 since we compare the sequences 
of block lengths lexicographically. 

Let Yl be the element missing from block 2. We show that yl is also missing 
from blocks 4 and 6 and occurs as the penultimate element of block 3. Suppose 
first that two other elements v~, v2 were missing from block 4. Notice that both vl 
and v2 must occur in block 3, so they are distinct from the last element of block 2, 
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call it v3. Thus if vl ,  v2 occur in that order in block 3, the 4-element permutation 
ylv3v2v~ cannot be found as a subsequence in the first four blocks. This shows 
that Yl is missing from block 4. 

Next suppose that ),1 is the last element of block 3 and the other number 
missing from block 4 is v4. Then we begin with any pair not using y~ or v4 that 
requires some element of block 2 and append y~v4 to get a 4-element permutation 
that cannot be found in the first four blocks. 

Next suppose that y~ is not the penultimate element of block 3, so that block 3 
ends vsv4 where v5 is some other number that occurs in blocks 1, 2, 3, and 4. Let 
v6 be the last element of block 2, and use the technique of Lemma 2 to build a 
3-element permutation out of {v4, vs, v6} that requires some element of block 3 
to be found as a subsequence. Since v6 is missing from block 3, that element must 
be v4 or vs, both of which occur after yl in block 3. If we append ),1 to the 
3-element permutation, we get a 4-element permutation that cannot be found in 
the first four blocks. Thus yl must be the penultimate number of block 3. 

Next suppose that block 6 is missing two numbers, w~ and w2 neither of which is 
y~, and that the numbers occur in that order in block 5. Note also that they must 
be distinct from the last element of block 4, zx, because z~ does not occur in block 
5. Build a 2-element permutation requiring some element of block 2 that does not 
use any element of {w~, w2, yD Zl}. Append YlZlW2W1 to get a 6-element 
permutation that cannot be found in the first 6 blocks. It is necessary to know that 
yl is the penultimate element of block 3 to ensure that we have to go to the end of 
block 4 to find z~ after it. This also shows that block 6 can be missing at most two 
numbers. Let wl be the number missing from block 6 other than y~, if there is a 
second number missing. If y~ were the last element of block 5, then we could not 
find any 6-element permutation ending in y~w~ where the fourth element in the 
permutation required some member of block 4. The reason is that Yl is also 
missing from block 4. Therefore, wx must be the last number of block 5, if block 6 
is missing two numbers. 

Next we show that if block 6 is missing two numbers, which must be y~ and Wl, 
then block 7 can be missing at most two numbers one of which must be Zl, the 
last number of block 4. Suppose instead that block 7 is missing two other 
numbers, z2 and z3, and that they occur in that order in block 6. Note that both z2 
and z3 are distinct from both Wl and y~ because neither Wl nor Yl occurs in block 6. 
We begin with a 2-element permutation not using any member of 
{w~, ),1, zl, z2, z3} that requires some element of block 2. Then we append 
y~z~wlz3z2 to get a 7-element permutation. To find Yl we have to go to the 
penultimate number of block 3; the next occurrence of z~ is at the end of block 4; 
the next occurrence of wl is at the end of block 5; finally, we cannot find z3z2 in 
blocks 6 and 7. 

It remains only to show that Zl, the last number of block 4, is the penultimate 
element of block 6. We know from Lemma 3 that zl must reappear somewhere in 
block 6, since it is missing from block 5. We show first that if block 7 is missing 
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two numbers then zl cannot be the last number of block 6. Suppose Y2 were the 
other number missing from block 7. Build a 5-element permutation not using Y2 
or Zl that requires some element of block 5. Then append zly2, to get a 7-element 
permutation that cannot be found in the first 7 blocks. 

The remaining possibility is that zl occurs before the penultimate number in 
block 6. Let z4 be the last element of block 6; it does not occur in block 7. We 
just proved that Zl:~ z4. In order to complete the proof we show first that no 
member of block 4 and block 6 can reappear in block 5 after z4. For this 
argument it does not matter where yx and the last number of block 3 which are 
both missing from block 4 reappear in block 5. Of course, the last number of 
block 5, w~, does occur after z4 in that block. Suppose that some other number, 
u, did occur after z4 in block 5. Observe that u is distinct from wl and y~ because 
they do not occur in block 6; u :/: Zl because z~ is missing from block 5. We start 
with a two-element permutation that requires some element of block 2, and 
append y~ for which we must use the penultimate member of block 3. If u occurs 
after wl in block 4, we append uw~z4Zl to get a 7-element permutation that cannot 
be found in the first 7 blocks. To see this observe we assumed that u occurs after 
w~ in block 4, so we must use the w~ at the end of block 5, and z~ and z4 are 
missing from block 7. The other case has u before w~ in block 4. Then we make a 
slight change by instead appending wxuz4z~ to the permutation to get a bad 
7-element permutation. We need to use the u of block 5 and it occurs after z4 in 
that block, so we cannot find the permutation. A similar argument shows that the 
last number of block 3 cannot occur after z4 in block 5, since we can just 
substitute that number for u in the last bad permutation we constructed resulting 
in similar problems. 

Now we return to the objective of showing that z~ is the penultimate element of 
block 6. Suppose there is a z5 distinct from z4 that comes after zl in block 6. 
Again z5 must be distinct from Yl and Wl since they are missing from block 6. We 
start with a 2-element permutation using no member of {wl, yl, zl, z4, Zs} that 
requires some number of block 2. We append y~ to force us to the penultimate 
number of block 3. Next we append z4 and w~ in the order opposite to their order 
in block 4. This forces us to use either the last element of block 5 (w0 or the z4 
near the end of block 5. We just proved in the previous paragraph that z5 cannot 
occur after z4 in block 5. Therefore if we make z5 the sixth number in our 
permutation, we have to go to block 6 to find it. We then append z~ which we 
assumed does not occur after z5 in block 6, and does not occur in block 7. This 
gives a 7-element permutation that cannot be found in the first 7 blocks. 
Therefore z~ must be the penultimate number of block 6, as claimed. [] 

4. Optimal Construction 

In this section we prove constructively that the lower bound of the previous 
section is also an upper bound. 
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T h e o r e m  3 .  L(n ,  k)  =n ,  n - 1, n - 1, n - 2 ,  n - 1, n - 2 ,  for  l<<-k<-n. 

C o n s t r u c t i o n .  S e t  

A 1 = 1, . . . , n ,  

A2=l,  . . , n - I ,  

A3 =1, . . , n - 3 ,  

A4=I, . , n - 5 ,  

As =1, . , n - 6 ,  

A 6 = 1, , n - 6, 

A 7 = l  , , n - 6 ,  

A s = l ,  , n - 6 ,  

A 9 =  1, , n - 6 ,  

Alo = 1, , n - 6, 

A l l =  1, , n - 6, 

A12 = 1, 

A13 = 1, 

n ,  n - 2 ,  A 1 4  = 1,  

n - l , n - 4 ,  n - 3 ,  A t s = l ,  

n - 2 ,  n - 5 ,  n , n - 4 ,  n - 1 ,  AI6=I, 

n - 2 ,  n - 5 ,  n - 3 ,  n - 4 ,  A17=1 ,  

n - l , n , n - 2 ,  n - 5 ,  A l s = l ,  

n - 4 ,  n - l , n - 3 ,  n , n - 2 ,  A19=1, 

n - 4 ,  n - l , n - 5 ,  n, A ~ = I ,  

n--2, n - 3 ,  n--4, n - 1 ,  A21=1,  

n , n - 2 ,  n - 5 ,  n - 3 ,  n - 4 ,  A22=1 , 

n - 6 ,  n , n - 2 ,  n - l , n - 3 ,  

n - 6 ,  n - 4 ,  n - 5 ,  n , n - 2 ,  

n - 6 ,  n - 3 ,  n - 4 ,  n - l , n - 5 ,  n, 

n - 6 ,  n - 3 ,  n - 4 ,  n - 2 ,  n - 5 ,  

n - 6 ,  n , n - l , n - 3 ,  n - 4 ,  

n - 6 ,  n - 5 ,  n , n - 2 ,  n - l , n - 3 ,  

n - 6 ,  n - 5 ,  n , n - 4 ,  n - 1 ,  

, . - 6 ,  n - 3 ,  n - 2 ,  n - 5 ,  n, 

n - l , n - 3 ,  n - 4 ,  n - 2 ,  n - 5 ,  

n - l , n - 3 ,  n , n - 2 ,  

n - 5 ,  n - 4 ,  n - l , n - 3 .  

The string for k consists of the first k blocks of 

A1A 2A 3A,A sA6A 7AsA9A loA nA12A13A14A15A16A 17A18A19A20A21A22, 

where each A is one block. If k ~< 5 all of the elements such as n - 6  which are 
less than 1 are deleted. We can check that the string contains all k-element  

permutations by the same "worst possible permutat ion" technique that we used 
to prove Theorem 1. Once again we need only consider those values of k for 
which block k has only n -  2 elements.  Notice that every block begins with 
1 , . . . ,  n - 6, so these elements can have no role at the end of the worst possible 
permutation. Therefore,  for each value of k that we want to check we will only 
exhibit the longest suffix of the worst possible permutation consisting of elements 
from {n - 5 ,  n - 4 ,  n - 3 ,  n - 2 ,  n - 1, n}. 

Before exhibiting the worst possible suffixes, we observe that the suffixes of the 
repeating blocks were not constructed haphazardly even if that appears to be the 

case. For example  consider the blocks starting with A15. That block has n -  2 
elements but its predecessor has n - 1. In the previous section we showed that in 
that case block A15 must be missing the last element and another element  of its 
predecessor, A14 which is not the penult imate element;  it is easiest to choose the 
other missing element  as the antepenult imate element of A14. In this way we 
ensure that all the bad permutat ions for k = 15 (mod 18) end in n - 5, n, n - 1, 
since n - 5 is the only number  after n - 1 in block A~4 other than n which must 
appear later in the permutations. We also showed that A~6 must be missing the 
last two numbers  of A15, and that the penultimate number  of block A~5 must be 
the last number  of block A13. Notice also that the relative order of numbers  that 
appear in consecutive blocks (after block 5) is never changed. 

For k = 4 the worst possible suffix is n - 2, n. For k - 6 it is n - 2, n - 3, n - 
4, n - 1, n, and one also needs to check permutations ending in n - 2, n - 3, n - 
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Table  1 

k (mod 18) suffax(es) 

0 n, n - 5 ,  n - 4 ,  n - 3 ,  n - 2  or n, n - 5 ,  n - 4 ,  n -  1, n - 2  or 
n, n - 5 ,  n - 3 ,  n -  1, n - 2  or n, n - 4 ,  n - 3 ,  n -  1, n - 2  or 
n , n - 5 ,  n - 4 ,  n - 3 ,  n - l , n - 2  

1 n - 3 ,  n - l , n - 4  
3 n - 3 ,  n -  1, n, n - 5 ,  n - 4  or n - 3 ,  n -  1, n, n - 2 ,  n - 4  or 

n - 3 ,  n -  1, n - 5 ,  n - 2 ,  n - 4  or n - 3 ,  n, n - 5 ,  n - 2 ,  n - 4  o r  
n - 3 ,  n -  1, n, n - 5 ,  n - 2 ,  n - 4  

4 n - 5 ,  n - 2 ,  n 
6 n - 5 ,  n - 2 ,  n - 3 ,  n -  1, n or n - 5 ,  n - 2 ,  n - 3 ,  n - 4 ,  n or 

n - 5 ,  n - 2 ,  n -  1, n - 4 ,  n or n - 5 ,  n - 3 ,  n -  1, n - 4 ,  n or 
n - 5 ,  n - 2 ,  n - 3 ,  n -  1, n - 4 ,  n 

7 n - l ,  n - 4 ,  n - 3  

9 n - l ,  n - 4 ,  n - 5 ,  n - 2 ,  n - 3  or n -  1, n - 4 ,  n - 5 ,  n, n - 3  or  
n -  1 , n - 4 ,  n - 2 ,  n,  n - 3  or  n -  1, n - 5 ,  n - 2 ,  n, n - 3  or  
n -  1, n - 4 ,  n - 5 ,  n - 2 ,  n, n - 3  

10 n - 2, n, n - 5 

12 n - 2 ,  n, n -  1, n - 4 ,  n - 5  or n - 2 ,  n, n -  1, n - 3 ,  n - 5  or  
n - 2 ,  n , n - 4 ,  n - 3 ,  n - 5 o r n - 2 ,  n - l , n - 4 ,  n - 3 ,  n - 5 ,  or  

n - 2 ,  n, n -  1, n - 4 ,  n - 3 ,  n - 5  

13 n - 4 ,  n - 3 ,  n -  1 

15 n - 4 ,  n - 3 ,  n - 2 ,  n, n -  1 or n - 4 ,  n - 3 ,  n - 2 ,  n - 5 ,  n -  1 or  
n - 4 ,  n -  3, n, n - 5 ,  n -  1 or n - 4 ,  n - 2 ,  n, n - 5 ,  n -  1 or 
n - 4 ,  n - 3 ,  n - 2 ,  n, n - 5 ,  n -  1 

16 n, n - 5, n - 2. 

1, n. Table 1 lists the suffaxes for larger values of k by congruence class. Note  that 
the sufftx for k = 6 is different from the sufftx for k = 24, 4 2 , . . .  because in the 

first case the last three blocks are A4AsA6 whereas in the other cases the last 
three blocks are A22AsA6. For k = 9 the only change from the general case 
k - - - 9 ( m o d l 8 )  is that n - l , n - 5 ,  n - 2 ,  n , n - 3  and n - l , n - 4 ,  n - 5 ,  n -  
2, n , n - 3  are replaced by n - 4 ,  n - 5 ,  n - 2 ,  n , n - 3  and n - 4 ,  n - l , n -  
5, n - 2, n, n - 3 because n - 1 and n - 4 occur in different orders in A 4  and A22. 
If k (mod 18) e {2, 5, 8, 11, 14, 17}, then the string ends with a block of size n - 1, 

so we don't need to check anything. 
These can be checked by the same tedious "worst possible permutation" 

method we used to prove Theorem 1. As an example we work out the case 
k --= 12 (mod 18). This corresponds to a string ending with a block of the form A 1 2 .  

That block is missing n - 5  and n - 4  which occur in that order in Al l .  In Al l ,  
both n - 3 and n - 4 occur after n - 5, so we need to check permutations ending 
in n - 3, n - 5 and permutations ending in n - 4, n - 5. Note that there will be 
multiple bad suffixes only in those cases where block k is missing two numbers 

which are not the last two numbers of block k - 1. 
First consider the suffix n - 3, n - 5. There are two unused numbers in A~o after 

n -  3, namely n -  1 and n -  4. If the permutation ends in n -  1, n -  3, n -  5, 
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t h e n  t h e  on ly  u n u s e d  n u m b e r  in  A9 a f t e r  n - 1 is n ;  t he  on ly  u n u s e d  n u m b e r  in  A s  

a f te r  n is n - 2. T h e r e  a re  no  u n u s e d  n u m b e r s  in A 7 af te r  n - 2. This  c o r r e s p o n d s  

to  t h e  en t ry  n -  2, n,  n -  1, n -  3, n -  5 in  Tab le  1. If  i n s t e a d  t h e  p e r m u t a t i o n  

e n d s  in  n - 4, n - 3, n - 5, t h e n  in  A9 t h e r e  a re  two  u n u s e d  n u m b e r s  a f te r  n - 4, 

n a m e l y  n - 1 a n d  n. If  w e  c h o o s e  n,  t h e n  w e  mus t  use  n - 2 b e f o r e  it, t o  ge t  t h e  

suf f~  n - 2, n,  n - 4, n - 3, n - 5. If  w e  c h o o s e  n - 1 i n s t e a d  o f  n,  w e  ge t  t h e  

SUffLX n -- 2, n -- 1, n - 4, n -- 3, n -- 5 wh ich  can be  f o u n d  in  A7 t h r o u g h  A n  or  

n - 2, n,  n - 1, n - 4, n - 3, n - 5 w h i c h  can  be  f o u n d  in  A 6 t h r o u g h  Al l .  

T h e  o t h e r  b a d  p e r m u t a t i o n s  e n d  in  n - 4, n - 5. T h e  o n l y  u n u s e d  n u m b e r  a f t e r  

t he  n - 4  in  A~o is n - 1, so w e  can  f ind any  p e r m u t a t i o n  tha t  d o e s  n o t  e n d  in  

n - 1, n - 4, n - 5. T h e  on ly  u n u s e d  n u m b e r  in A9 af te r  t h e  n - 1 is n. T h e  o n l y  

u n u s e d  n u m b e r  in  As  af ter  t he  n is n -  2. T h e r e f o r e  t h e s e  p e r m u t a t i o n s  e n d  in  

n - 2, n,  n - 1, n - 4, n - 5, t he  first e n t r y  in t he  c o r r e s p o n d i n g  row  of  t h e  t ab le .  

T h e r e  a re  no  u n u s e d  n u m b e r s  in  A7 a f t e r  t he  n - 2 .  This  impl ies  tha t  if w e  can  

f ind all p e r m u t a t i o n s  If l eng th  k - i in  t he  first k - i b locks  fo r  1 ~< i ~< 6, t h e n  w e  

can  f ind all p e r m u t a t i o n s  o f  l eng th  k in  t he  first k blocks.  []  

C o r o n a r y .  F ( n ,  k )  = k ( n  - 2) + [13(k + lJ  + 3, f o r  k ~ 2. 
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