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Abstract

This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals
involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such
formulas. We give some results in greater generality than in the literature. Notably we unify the continuous
and discrete case. We make many side remarks, for instance on wavelets, Mantica’s Fourier–Bessel
functions and Greville’s minimum Rα formulas in connection with discrete smoothing.
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1. Introduction

In many applications one needs to estimate or approximate the first or higher derivative of a
function which is only given in sampled form or which is perturbed by noise. Good candidates
for an approximation of the first derivative f ′(x) are the two expressions

3
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f (x + δξ) ξ dξ (1.1)
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and

3

2N


N +
1
2


(N + 1)δ

N
ξ=−N

f (x + δξ) ξ (1.2)

for δ small. The first one is continuous, the second one discrete. These formulas have a long
history going back to Cioranescu [11] (1938), Haslam-Jones [29] (1953), Lanczos [41, (5–9.1)]
(1956) and Savitzky and Golay [56] (1964). What remains hidden in (1.1) and (1.2) is that the
factor ξ in the integrand or summand can better be considered as an orthogonal polynomial of
degree 1 with respect to a constant weight function on [−1, 1] (in case of (1.1)) or with respect
to constant weights on {−N ,−N + 1, . . . , N } (in case of (1.2)). With this point of view it can
be immediately shown that (1.1) and (1.2) tend to f ′(x) as δ ↓ 0. Moreover the way is opened
to a far reaching generalization of (1.1) and (1.2) for the approximation of higher derivatives
and with the involvement of general orthogonal polynomials. Such results were already given by
Cioranescu [11] in 1938.

Curiously enough, none of the later papers mentioned above is referring to one of the earlier
papers. The results of Cioranescu [11] and Haslam-Jones [29] were hardly taken up by anybody.
On the other hand Lanczos [41, (5–9.1)] and in particular Savitzky and Golay [56] had a lot
of follow-up by others. One reason for this citation behavior is probably that Cioranescu and
Haslam-Jones were pure analysts, Lanczos was an applied mathematician working in numerical
analysis, and Savitzky and Golay were motivated by spectroscopy, considered as a part of
chemistry.

It is the aim of the present paper to give a survey of these results, developments and further
considerations suggested by them. Moreover, we formulate some results in a more general way
than has probably appeared before in literature. It was for us a surprise to see that so many
different parts of classical analysis and of applied mathematics are tied together by this theme.
All papers until now only treated smaller parts of this wide field. We hope to share with our
readers the pleasure to have a comprehensive view.

The present work stems from a long practice by the first author in signal processing in applied
situations, where he met the problem of differentiating an analog signal (and later a sampled
signal) disturbed by noise, see for instance [62]. The main problem occurring there was the
difficulty to build (or program) an ideal differentiator, because the noise of the system will cause
an instability. Therefore an integrating factor for the high frequencies to the differentiator is
needed. When the signal is sampled the same problem occurs [26]. Without being aware of
the literature mentioned in the beginning of this Introduction, he tried to use an integrating
factor by the method of the least squares and then he independently found special cases of
the approximation formulas for higher derivatives by integrals involving all classical orthogonal
polynomials as well as the Chebyshev polynomials of a discrete variable. He never published
the results, but he used them as material for a course in stochastic system theory at the “Saxion
Hogeschool” in Enschede.

The contents of this paper are as follows. In Section 2 we give preliminaries on orthogonal
polynomials and on the Taylor formula. In Section 3 we start formulating the approximation
theorem in great generality and next discuss how the contributions of Cioranescu, Haslam-
Jones and Lanczos are related to this general theorem. We emphasize the important role of
least-square approximation behind this theory. Our discussion gives room for several side
observations, for instance on Jacobi type polynomials and on wavelets. Section 4 is focused
on the discrete case and the applications to filters. We start with a multi-term extension of
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the main theorem in Section 3. Its special case of constant weights contains the seminal work
of Savitzky and Golay. We introduce the characteristic (or transfer) function and we make
connection with Mantica’s [45] Fourier–Bessel functions. In the smoothing case we discuss the
work by Greville [24] (based on older work by Sheppard [60]) on so-called minimum Rα and
minimum R∞ formulas. In the Appendix we give new derivations of the characteristic functions
for these cases, using Hahn and Krawtchouk polynomials. The R∞ case connects with another
survey paper [39] by the second author and Schlosser. Finally, in Section 5, we discuss log–log
plots of transfer functions in some simple cases.

2. Preliminaries

2.1. Orthogonal polynomials

Let µ be a positive Borel measure on R with infinite support (or equivalently a nondecreasing
function on R with an infinite number of points of increase) such that


R |x |

n dµ(x) < ∞ for all
n ∈ Z≥0. Consider polynomials pn (n ∈ Z≥0) of degree n such that

R
pm(x) pn(x) dµ(x) = 0 (m ≠ n). (2.1)

The pn are orthogonal polynomials with respect to the measure µ, see for instance [63]. Up to
constant nonzero factors they are uniquely determined by the above properties. If µ has support
within some closed interval I then we say that the pn are orthogonal polynomials with respect to
µ on I . Typical cases of the orthogonality measure µ are:

1. dµ(x) = w(x) dx on I with the weight function w a nonnegative integrable function on I .
Then (2.1) takes the form

I
pm(x) pn(x) w(x) dx = 0 (m ≠ n).

2. µ has discrete infinite support {x0, x1, x2, . . .}. So there are positive numbers w0, w1, w2, . . .

(weights) such that (2.1) takes the form

∞
k=0

pm(xk) pn(xk) wk = 0 (m ≠ n). (2.2)

3. Contrary to what was supposed earlier, we can also consider the case that µ has finite support
{x0, x1, . . . , xN } with corresponding weights w0, w1, . . . , wN . Then we have orthogonal
polynomials pn only for n = 0, 1, . . . , N and (2.1) takes the form

N
k=0

pm(xk) pn(xk) wk = 0 (m ≠ n). (2.3)

Special examples of case 1 are given by the classical orthogonal polynomials (Jacobi,
Laguerre and Hermite polynomials). In particular, we will meet the Legendre polynomials Pn ,
which are special Jacobi polynomials and where I = [−1, 1], w(x) = 1 and Pn(1) = 1.

A special example of case 3 are the Hahn polynomials x → Qn(x;α, β, N ) for α = β =

0 (n = 0, 1, . . . , N ). Here xi = i, wi = 1 (i = 0, 1, . . . , N ) and Qn(0; 0, 0, N ) = 1 (see [36,
Section 9.5] and references given there, or [48, Ch. 2], where another notation is used). Hahn
polynomials of general parameters were already introduced in 1875 by Chebyshev [10], long
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before Hahn, but the above special case of constant weights is in particular named after Cheby-
shev, although in a slightly different notation and normalization. See Chebyshev’s polynomials
of a discrete variable tn(x) = tn(x, N ) (n = 0, 1, . . . , N − 1) in [63, Section 2.8], [18, Section
10.23]. They are orthogonal on the set {0, 1, . . . , N − 1} with respect to constant weights 1.
Hence we must have that tn(x, N ) = const. Qn(x; 0, 0, N − 1). The constant can be computed
by comparing the recurrence relation [36, (9.5.3)] for α = β = 0 and N replaced by N − 1 with
the recurrence relation [18, 10.23(6)]. Then we obtain:

tn(x, N ) = (−N + 1)n Qn(x; 0, 0, N − 1), (2.4)

where (a)n := a(a + 1) . . . (a + n − 1) is the Pochhammer symbol. Thus tn(0, N ) = (−N + 1)n .
These polynomials are also known as Gram polynomials, see [33, Sections 7.13 and 7.16]. This
last name we will use in this paper. The polynomials x → tn(x, N ) have the shifted Legendre
polynomials x → Pn(2x − 1) (orthogonal on [0, 1] with respect to a constant weight function)
as a limit case (see [63, (2.8.6)]):

lim
N→∞

N−n tn(N x, N ) = Pn(2x − 1). (2.5)

For given orthogonal polynomials pn define the constants hn and kn by

hn :=


R

pn(x)
2 dµ(x), pn(x) = kn xn

+ terms of degree less than n. (2.6)

Lemma 2.1. We have
R

pn(x) xn dµ(x) =
hn

kn
. (2.7)

Proof. We have kn xn
= pn(x)+ qn−1(x) with qn−1 a polynomial of degree <n. Hence

kn


R

pn(x) xn dµ(x) =


R

pn(x)
2 dµ(x)+


R

pn(x) qn−1(x) dµ(x) = hn . �

One of the properties which characterize the classical orthogonal polynomials is that they are
given by a (generalized) Rodrigues formula

pn(x) =
1

Kn w(x)

dn

dxn (w(x) X (x)n) (2.8)

(see [18, 10.6(1)]). Here X is a polynomial of degree ≤2 and

Kn =
(−1)n kn n!

hn


R
(X (x))n dµ(x). (2.9)

For the proof of (2.9) substitute (2.8) and dµ(x) = w(x) dx in (2.7) and perform integration by
parts n times.

The explicit values of hn and kn defined by (2.6) can be given in our two main examples:

• Legendre polynomials Pn (see [36, (9.8.63), (9.8.65)]):

hn =
2

2n + 1
, kn = 2−n


2n

n


. (2.10)
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From this we immediately obtain the values of hn and kn in the case of shifted Legendre
polynomials x → Pn(2x − 1):

hn =
1

2n + 1
, kn =


2n

n


. (2.11)

• Gram polynomials x → tn(x, N ) (combine (2.4) with [36, (9.5.2), (9.5.4)]):

hn =
(N − n)2n+1

2n + 1
, kn =


2n

n


. (2.12)

From this we immediately obtain the values of hn and kn in the case of centered Gram
polynomials x → tn(x + N , 2N + 1):

hn =
(2N + 1 − n)2n+1

2n + 1
, kn =


2n

n


. (2.13)

The reproducing kernel for the space Pn of polynomials of degree ≤ n in the Hilbert space
L2(R, µ) is given by

Kn(x, y) :=

n
k=0

pk(x) pk(y)

hk
(x, y ∈ R). (2.14)

Then (see [1, Remark 5.2.2]) the Christoffel–Darboux formula gives

Kn(x, y) =
kn

kn+1 hn

pn+1(x)pn(y)− pn(x)pn+1(y)

x − y
(x ≠ y). (2.15)

The integral operator Kn corresponding to (2.14) is given by

(Kn f )(x) :=


R

f (y) Kn(x, y) dµ(y) ( f ∈ L2(R), x ∈ R). (2.16)

It is the orthogonal projection of the Hilbert space L2(R, µ) onto Pn . In particular,

Kn f = f ( f ∈ Pn). (2.17)

Furthermore, for f ∈ L2(R, µ),Kn f is the element of Pn which is on minimal distance to f (in
the metric of the Hilbert space L2(R, µ)).

Later we will need the following. For Legendre polynomials formula (2.15) for y = 1 and
with n replaced by n − 1 becomes:

Kn−1(x, 1) =
1
2

n
Pn(x)− Pn−1(x)

x − 1

=
1
2

n P(1,0)n−1 (x) (2.18)

=
1
2
(P ′

n(x)+ P ′

n−1(x)). (2.19)

The P(1,0)n−1 (x) in (2.18) is a Jacobi polynomial (see [63, Ch. 4]). We used (2.10) in the first
equality, [18, 10.8(32)] in (2.18), and [18, 10.10(13), 10.10(14)] in (2.19).
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2.2. Taylor formula

Recall a version of Taylor’s theorem formulated by Hardy [28, Section 151]:

Proposition 2.2. Let x ∈ R and let I be an interval containing x. Let f be a continuous function
on I such that its derivatives of order 1, 2, . . . , n at x exist. Then

f (y) =

n
k=0

f (k)(x)

k!
(y − x)k + o(|y − x |

n) as y → x on I . (2.20)

In this proposition the derivatives should be interpreted as right or left derivatives if x is an
endpoint of the interval I . (Although this special case is not explicit in Hardy’s formulation, it is
also a consequence of his proof.)

Proposition 2.2 suggests a notion more general than n-th derivative. Let f be a continuous
function on an interval I containing x and let there be constants c0, c1, . . . , cn such that

f (y) =

n
k=0

ck

k!
(y − x)k + o(|y − x |

n) as y → x on I . (2.21)

Then we call cn the n-th Peano derivative of f at x . This definition goes back to Peano [51]
in 1891. By Proposition 2.2 the existence of f (n)(x) implies the existence of the n-th Peano
derivative, equal to f (n)(x). The converse implication is true for n = 1 but not for n > 1, see a
counterexample in [19, Example 1.2].

For later use we restate Proposition 2.2 as follows:

Proposition 2.3. With the assumptions of Proposition 2.2 we have

f (x + δ) =

n
k=0

f (k)(x)

k!
δk

+ δn Fx,n(δ) (2.22)

with Fx,n continuous on I − x and Fx,n(0) = 0. Furthermore, Fx,n is bounded on I − x if f
is bounded on I . Finally, if I is unbounded and f is of polynomial growth on I then Fx,n is of
polynomial growth on I − x.

We can say more about the remainder term in (2.22) if moreover f ∈ Cn(I ) (see for
instance [3, Theorem 7.6]):

Proposition 2.4. Keep the assumptions of Proposition 2.2. Assume moreover that f ∈ Cn(I ).
Then for Fx,n(δ) in (2.22) we have

Fx,n(δ) =
1

(n − 1)!

 1

0


f (n)(x + tδ)− f (n)(x)


(1 − t)n−1 dt (2.23)

and the function (x, y) → Fx,n(y − x) is continuous on I × I . If f (n) is of polynomial growth
on I then Fx,n(δ) → 0 as δ → 0 uniformly for x in compact subsets of I .

3. Higher derivatives approximated by integrals

Let us first state and prove the main theorem and next discuss the many instances of it in the
literature, usually more restricted but occasionally more general than our formulation.
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Theorem 3.1. For some n let pn be an orthogonal polynomial of degree n with respect to
the orthogonality measure µ. Let x ∈ R. Let I be a closed interval such that, for some
ε > 0, x + δξ ∈ I if 0 ≤ δ ≤ ε and ξ ∈ supp(µ). Let f be a continuous function on I
such that its derivatives of order 1, 2, . . . , n at x exist. In addition, if I is unbounded, assume
that f is of at most polynomial growth on I . Then

f (n)(x) =
knn!

hn
lim
δ↓0

1
δn


R

f (x + δξ) pn(ξ) dµ(ξ), (3.1)

where the integral converges absolutely.

Proof. If I is bounded then the integral in (3.1) converges absolutely by continuity of f . If I
is unbounded then, for fixed δ ∈ [0, ε], we have for some r ≥ 0 that f (x + δξ) = O(|ξ |r ) as
ξ → ±∞ on supp(µ). So also in that case the integral in (3.1) converges absolutely.

By substitution of (2.22), by orthogonality and by (2.7) we have:

1
δn


R

f (x + δξ) pn(ξ) dµ(ξ)

=

n
k=0

f (k)(x) δk−n

k!


R
ξ k pn(ξ) dµ(ξ)+


R

Fx,n(δξ) ξ
n pn(ξ) dµ(ξ)

=
f (n)(x)

n!


R
ξn pn(ξ) dµ(ξ)+


R

Fx,n(δξ) ξ
n pn(ξ) dµ(ξ)

=
hn

knn!
f (n)(x)+


R

Fx,n(δξ) ξ
n pn(ξ) dµ(ξ).

Thus the theorem will be proved if we can show that

lim
δ↓0


R

Fx,n(δξ) ξ
n pn(ξ) dµ(ξ) = 0. (3.2)

By the second part of Proposition 2.3 we have the estimate |Fx,n(h)| ≤ C(1 + |h|)r (h ∈ I − x)
for some C > 0, r ≥ 0. Hence, for δ ∈ [0, ε] and ξ ∈ supp(µ) we have the estimate
|Fx,n(δξ)| ≤ C(1 + ε|ξ |)r . Thus, the dominated convergence theorem can be applied to the
left-hand side of (3.2). Then, again by Proposition 2.3, it follows that (3.2) is true. �

Note the following special cases of (3.1).

• Gram polynomials x → tn(x, N ) (use (2.12)):

f (n)(x) =
(2n + 1)! (N − n − 1)!

n! (N + n)!
lim
δ↓0

1
δn

N−1
ξ=0

f (x + δξ) tn(ξ, N ). (3.3)

• Centered Gram polynomials x → tn(x + N , 2N + 1) on 2N + 1 lattice points (use (2.13)):

f (n)(x) =
(2n + 1)! (2N − n)!

n! (2N + n + 1)!
lim
δ↓0

1
δn

N
ξ=−N

f (x + δξ) tn(ξ + N , 2N + 1). (3.4)
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In particular, for n = 1:

f ′(x) =
3

2N


N +
1
2


(N + 1)

lim
δ↓0

1
δ

N
ξ=−N

f (x + δξ) ξ. (3.5)

Analogues of (3.4) and (3.5) might also be given for the centered Gram polynomials x →

tn(x − N +
1
2 , 2N ) on 2N lattice points.

• Legendre polynomials Pn (use (2.10)):

f (n)(x) =
(2n + 1)!

2n+1n!
lim
δ↓0

1
δn

 1

−1
f (x + δξ) Pn(ξ) dξ. (3.6)

In particular, for n = 1:

f ′(x) =
3
2

lim
δ↓0

1
δ

 1

−1
f (x + δξ) ξ dξ. (3.7)

• Shifted Legendre polynomials x → Pn(2x − 1) (use (2.11)):

f (n)(x) =
(2n + 1)!

n!
lim
δ↓0

1
δn

 1

0
f (x + δξ) Pn(2ξ − 1) dξ. (3.8)

3.1. Cioranescu’s 1938 paper

A variant of Theorem 3.1 was first stated and proved by Cioranescu ([11], formula (M′)) in
1938 for the case that dµ(x) = w(x) dx is absolutely continuous with bounded support within
an interval [a, b]. He showed for f ∈ Cn([a, b]) that there exists η ∈ (a, b) such that

n!

 b
a f (y) pn(y) w(y) dy b

a yn pn(y) w(y) dy
= f (n)(η). (3.9)

Then he took limits for b ↓ a in the left-hand side of (3.9) (see [11], formula (9)) with pn
remaining an orthogonal polynomial on the shrinking interval [a, b] with respect to the weight
function w restricted to [a, b]. The limit on the right-hand side of (3.9) then becomes f (n)(a).
In general, this limit formula for f (n)(a) will not be contained in (3.1) since the weight function
(after rescaling it to a fixed interval) will not remain the same during the limit process. But
Cioranescu’s limit result in the case of shifted Legendre polynomials is the same as (3.8). The
case n = 1 of (3.8) is explicitly mentioned by Cioranescu (see [11], formula (9′)).

3.2. Substitution of the Rodrigues formula

For classical orthogonal polynomials pn and for f ∈ Cn(I ) with f (n) of polynomial growth
on I we can also prove (3.1) by substituting dµ(x) = w(x) and the Rodrigues formula (2.8)
together with (2.9), and by performing integration by parts n times:

knn!

hnδn


I

f (x + δξ) pn(ξ)w(ξ) dξ

=


I f (n)(x + δξ) X (ξ)n w(ξ) dξ

I X (ξ)n w(ξ) dξ
→ f (n)(x) as δ ↓ 0. (3.10)

In the Legendre case w(x) = 1 this was already observed by Cioranescu [11, p. 296].
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3.3. Haslam-Jones’ 1953 paper

Next Theorem 3.1, for the case that µ has bounded support, was observed (with proof
omitted as being easy) in 1953 by Haslam-Jones [29, p. 192], who was apparently not aware of
Cioranescu’s result. In fact, in his formulation the measure µ only has to be real, not necessarily
positive. Furthermore, f only has to be continuous with an n-th Peano derivative at x (see (2.21)).
Note that our proof of Theorem 3.1 can be used without essential changes under the weaker
hypotheses of Haslam-Jones.

In fact, the assumptions in [29] are still weaker. Haslam-Jones assumes, for given n > 0, a
real, not necessarily positive measure ν with bounded support (or equivalently a function ν of
bounded variation) on a finite interval J such that


J xk dν(x) = 0 for k = 0, 1, . . . , n − 1 and

J xn dν(x) = κ ≠ 0. Then for a function f which is continuous on a neighborhood of x and
has n-th Peano derivative cn in x we have

cn =
n!

κ
lim
δ↓0

1
δn


J

f (x + δξ) dν(ξ). (3.11)

Again this can be proved as we did for Theorem 3.1, without essential changes.

3.4. A special case of Haslam-Jones’ results

We will consider here a special case of (3.11) which is essentially different from Theorem 3.1.
Let {pm} be a system of orthogonal polynomials on [−1, 1] with respect to a positive Borel
measure µ. Let Km(x, y) be the corresponding Christoffel–Darboux kernel given by (2.14),
(2.15). Fix n and define the measure ν in (3.11) by 1

−1
f (ξ) dν(ξ) := f (1)−

 1

−1
f (ξ) Kn−1(ξ, 1) dµ(ξ). (3.12)

Indeed, by the reproducing kernel property the right-hand side of (3.12) equals 0 if f is a
polynomial of degree <n, while for f (ξ) := ξn the right-hand side of (3.12) becomes

−

 1

−1
ξn−1(ξ − 1) Kn−1(ξ, 1) dµ(ξ) =

kn−1 pn(1)
knhn−1

 1

−1
ξn−1 pn−1(ξ) dµ(ξ)

=
pn(1)

kn
≠ 0.

Thus for this case (3.11) becomes

cn =
n! kn

pn(1)
lim
δ↓0

1
δn


f (δ)−

 1

−1
f (x + δξ) Kn−1(ξ, 1) dµ(ξ)


. (3.13)

In particular, take dµ(ξ) := dξ on [−1, 1]. Then substitute (2.19), by which (3.13) takes the form

cn = 2n


1
2


n

lim
δ↓0

1
δn


f (δ)−

1
2

 1

−1
f (x + δξ) (P ′

n(ξ)+ P ′

n−1(ξ)) dξ


. (3.14)

For this case Haslam-Jones [29] showed that if the limit on the right of (3.14) exists then the n-th
Peano derivative of f at x exists and it equals cn given by (3.14). A different proof of this result
was given by Gordon [21].
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3.5. Connection with Jacobi type orthogonal polynomials

For a larger family of examples than (3.14) consider formula (3.12) with dµ(x) := (1 − x)α

(1 + x)β+1 dx (α, β > −1). Then pm(x) = P(α,β+1)
m (x), a Jacobi polynomial (see [63, Ch. 4]).

From [63, (4.5.3)] we obtain that

Kn−1(x, 1) =
Γ (n + α + β + 2)

2α+β+2Γ (α + 1)Γ (n + β + 1)
P(α+1,β+1)

n−1 (x).

Then the vanishing of the right-hand side of (3.12) for polynomials f of degree<n can be written
more explicitly as

Γ (α + β + 2)

2α+β+1Γ (α + 1)Γ (β + 1)

 1

−1
f (x)

(1 + x) P(α+1,β+1)
n−1 (x)

2P(α+1,β+1)
n−1 (1)

(1 − x)α(1 + x)β dx

−
(β + 1)n(n − 1)!

(α + β + 2)n(α + 2)n−1
f (1) = 0.

Hence, for fixed n, the polynomial (1+x)P(α+1,β+1)
n−1 (x) is the n-th degree orthogonal polynomial

with respect to a measure on [−1, 1] consisting of the weight function (1 − x)α(1 + x)β and a
negative constant times a delta weight at x = 1. On comparing with [37, Theorem 3.1] (extended
to negative multiples of delta weights by analytic continuation) we can identify this orthogonal
polynomial with a Jacobi type polynomial:

P(α,β;0,N )
n (x) = c(1 + x)P(α+1,β+1)

n−1 (x),

where

N = −
(β + 1)n(n − 1)!

(α + β + 2)n(α + 2)n−1
and c =

P(α,β;0,N )
n (1)

2P(α+1,β+1)
n−1 (1)

=
α + 1

2n
.

This corresponds correctly with [37, (2.1)], which simplifies for M = 0 and the above choice of
N to

P(α,β;0,N )
n (x) =

α + 1
n(n + α + β + 1)

(1 + x)
d

dx
P(α,β)n (x).

The above formulas extend by continuity to the case β = −1, which occurs if dµ(x) = dx (the
case considered in (3.14)).

3.6. Lanczos’ 1956 work

In a book published in 1956 Lanczos [41, (5–9.1)], apparently unaware of the earlier
work by Cioranescu [11] and Haslam-Jones [29], rediscovered formula (3.7). He called this
differentiation by integration. His work got quite a lot of citations, see for instance [25,59,32,53,
9,8,65]. The name Lanczos derivative, notated as f ′

L(x), became common for a value obtained
from the right-hand side of (3.7). In [53,9] also (3.6) (the Legendre case for general n) was
rediscovered.

As an important new aspect Lanczos observed that

3
2δ

 1

−1
f (x + δξ) ξ dξ =

 1
−1 f (x + δξ) ξ dξ

δ
 1
−1 ξ

2 dξ
,
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as an approximation of f ′(x), is the limit as N → ∞ of the quotient of Riemann sums

N−1
N

ξ=−N
f (x + δξ/N ) ξ/N

δN−1
N

ξ=−N
(ξ/N )2

=
3

2N


N +
1
2


(N + 1)

N

δ

N
ξ=−N

f (x + N−1δξ) ξ.

We have seen this last expression already in (3.5) (the special case of (3.1) with a centered Gram
polynomial of degree 1). The expression approximates f ′(x) for N−1δ small. In fact, (3.5) was
the starting point of Lanczos, see [41, (5–8.4)].

3.7. Interpretation by least-square approximation

Lanczos [41, (5-8.4)] arrived at (3.5) by a least-square minimization (a technique invented by
Gauss and Legendre, see for instance [16]). For this compare the function ξ → f (x + δξ) with
a linear function g(ξ) := a0 + a1ξ such that the squared distance

S(a0, a1) :=

N
ξ=−N


f (x + δξ)− g(ξ)

2
=


η=−δN ,−δ(N−1),...,δN


f (x + η)− (a0 + δ−1a1η)

2
is minimal. Then the slope δ−1a1 of the straight line η → a0 + δ−1a1η minimizing the distance
will approximate f ′(x) for small δ. The minimum is achieved for a unique (a0, a1), where one
finds a1 in this simple case already by solving ∂

∂a1
S(a0, a1) = 0. Thus Lanczos obtained

δ−1a1 =

N
ξ=−N

f (x + δξ)ξ

δ
N

ξ=−N
ξ2

=
3

2δN


N +
1
2


(N + 1)

N
ξ=−N

f (x + δξ) ξ,

and he thus arrived at (3.5).
We can interpret (3.1) as a more general least-square approximation. By the assumptions on

f in the Theorem 3.1 the function ξ → f (x + ξδ) is in L2(R, µ) for each δ ∈ [0, ε]. Let
ξ → Pn,x,δ[ f ](ξ) be the polynomial of degree ≤ n which is on minimal distance from the
function ξ → f (x + ξδ) in the Hilbert space L2(R, µ). Then

Pn,x,δ[ f ](η) =

n
k=0

1
hk


R

f (x + δξ) pk(ξ) dµ(ξ)


pk(η). (3.15)

Then

δ−n(Pn,x,δ[ f ])(n)(0) =
p(n)n (0)
δnhn


R

f (x + δξ) pn(ξ) dµ(ξ)

=
knn!

δnhn


R

f (x + δξ) pn(ξ) dµ(ξ)

approximates f (n)(x) as δ ↓ 0. Thus we arrive at (3.1).
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Also observe that clearly
R

f (x + δξ) pn(ξ) dµ(ξ) =


R

Pn,x,δ[ f ](ξ) pn(ξ) dµ(ξ).

Hence, we can rewrite (3.1) as

f (n)(x) =
knn!

hn
lim
δ↓0

1
δn


R

Pn,x,δ[ f ](ξ) pn(ξ) dµ(ξ). (3.16)

For the Legendre case (3.6) this interpretation by least-square approximation was given in [9].
But earlier, in 1990, Kopel and Schramm [40], apparently unaware of any predecessors, arrived
at the case n = 1 of (3.8) while they were guided by least-square approximation.

3.8. Even orthogonality measures

We can refine Theorem 3.1 if we assume that the orthogonality measure µ considered there is
even, i.e., that dµ(−x) = dµ(x). Then the corresponding orthogonal polynomials pn are even
or odd according to whether n is even or odd, respectively. The simplest example is given by the
Legendre polynomials. Now also modify the assumptions about f (n)(x) in Theorem 3.1. Only
assume that the right n-th derivative f (n)+ (x) and left n-th derivative f (n)− (x) exist. Then by an
easy adaptation of the proof of Theorem 3.1 we get (3.1) with on the left-hand side the symmetric
n-th derivative of f at x :

1
2


f (n)+ (x)+ f (n)− (x)


=

knn!

hn
lim
δ↓0

1
δn


R

f (x + δξ) pn(ξ) dµ(ξ). (3.17)

The special case of this result for Legendre polynomials (see (3.6), (3.7)) was observed in
[25, Proposition 1] for n = 1 and in [9, Theorem 2] for general n. The special case of (3.17)
for centered Gram polynomials (see (3.4)) was observed in [8, Theorem 1.1].

Moreover, in [9, pp. 370–371] and [65, Section 4] examples were given for the Legendre case
with n = 1, where the limit on the right-hand side of (3.7) exists, but the left and right derivative
of f at x do not exist. Earlier, in [40, pp. 231–232] an example was given where the limit of the
right-hand side of (3.8) for n = 1 exists, while the right derivative of f at x does not exist.

Consider the proof of Theorem 3.1 if we know that f (k)(x) exists for k up to some m > n.
Then

1
δn


R

f (x + δξ) pn(ξ) dµ(ξ) =
hn

knn!
f (n)(x)+

n
k=m+1

f (k)(x) δk−n

k!


R
ξ k pn(ξ) dµ(ξ)

+ δm−n


R
Fx,m(δξ) ξ

m pn(ξ) dµ(ξ) =
hn

knn!
f (n)(x)+ O(δ) as δ ↓ 0.

We can say more if moreover µ is an even measure. Then


R ξ
n+1 pn(ξ) dµ(ξ) = 0 and thus we

have, as δ ↓ 0,

1
δn


R

f (x + δξ) pn(ξ) dµ(ξ) =
hn

knn!
f (n)(x)+


o(δ) if f (n+1)(x) exists,
O(δ2) if f (n+2)(x) exists.

(3.18)

The Legendre case of (3.18) was observed for n = 1 in [41, (5–9.3)] and for general n
in [53, (4)].
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3.9. Generalized Taylor series

Rewrite (3.1) as

f (n)(x) =
knn!

hn
lim
δ↓0

1
δn


R

f (x + ξ) pn(δ
−1ξ) dµδ(ξ). (3.19)

Here µδ(E) := µ(δ−1 E). Then the polynomials x → pn(δ
−1x) are orthogonal with respect to

the measure µδ . The formal Taylor series

∞
n=0

f (n)(x)

n!
ηn (3.20)

can accordingly be seen as a termwise limit of the formal generalized Fourier series
∞

n=0

1
hn


R

f (x + ξ) pn(δ
−1ξ) dµδ(ξ)


pn(η)

=

∞
n=0

1
n!


kn n!

δn hn


R

f (x + ξ) pn(δ
−1ξ) dµδ(ξ)


δn pn(δ

−1η)

kn
. (3.21)

Indeed, use (3.19) and the limit δn pn(δ
−1η)/kn → ηn as δ ↓ 0.

While for a big class of orthogonal polynomials and for f moderately smooth, the series (3.21)
converges with sum f (x + η) because of equiconvergence theorems given in [63, Ch. 9 and 13],
we will need analyticity of f in a neighborhood of x for convergence of (3.20) to f (x + η).
In the case of Jacobi polynomials and for f analytic on a neighborhood of x we can use Szegő
[63, Theorem 9.1.1]. Then an open disk around x of radius less than the convergence radius of
(3.20) is in the interior of the ellipse of convergence (3.21) for δ small enough. This was discussed
for Legendre polynomials by Fishback [20].

A different limit from orthogonal polynomials to monomials is discussed by Askey and
Haimo [4]. This involves Gegenbauer polynomials, which we write as Jacobi polynomials
P(α,α)n (x) = k(α,α)n xn

+ · · ·:

lim
α→∞

P(α,α)n (x)

k(α,α)n

= xn . (3.22)

Consider now the formal expansion of f (x + η) for η ∈ [−1, 1] in terms of the polynomials
P(α,α)n (η):

∞
n=0

1

h(α,α)n

 1

−1
f (x + ξ) P(α,α)n (ξ) (1 − ξ2)α dξ


P(α,α)n (η)

=

∞
n=0

1
n!


k(α,α)n n!

h(α,α)n

 1

−1
f (x + ξ) P(α,α)n (ξ) (1 − ξ2)α dξ


P(α,α)n (η)

k(α,α)n

=

∞
n=0

1
n!

 1
−1 f (n)(x + ξ) (1 − ξ2)n+α dξ 1

−1(1 − ξ2)n+α dξ

P(α,α)n (η)

k(α,α)n

,

where we used the identity for δ = 1 in (3.10). The last form of the above formal series tends
termwise to the formal Taylor series (3.20). This is seen from (3.22) and the fact that the measure
(1 − ξ2)n+α dξ/

 1
−1(1 − ξ2)n+α dξ tends to the delta measure as α → ∞ (see [4, p. 301]).
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As observed in [4, p. 303], the function f has to be increasingly smooth as α grows in order to
have convergence in the expansion of f (x + η) in terms of P(α,α)n (η).

3.10. Connection with the continuous wavelet transform

The continuous wavelet transform Φg (see for instance [14,38]) is defined by

(Φg f )(a, b) := |a|
−

1
2


R

f (t) g

a−1(t − b)


dt ( f ∈ L2(R), a, b ∈ R, a ≠ 0). (3.23)

Here we will take the wavelet g as a nonzero function in (L1
∩ L2)(R) such that


R g(t) dt = 0.

For orthogonal polynomials pn(x) let the orthogonality measure have the form dµ(x) =

w(x) dx (essentially item 1 in Section 2.1) with w(x) ≥ 0 for x ∈ R and with the functions
x → xn w(x) in (L1

∩ L2)(R) for all n = 1, 2, . . . . Put

gn(x) := pn(x) w(x). (3.24)

Then, for n = 1, 2, . . . the functions gn are in (L1
∩L2)(R) and satisfy


R gn(t) dt = 0. Now con-

sider the continuous wavelet transform (3.23) for g equal to such gn and compare with (3.1). Then
R

f (x + ξδ) pn(ξ)w(ξ) dξ = δ−1


R
f (t) gn


δ−1(t − x)


dt = δ−

1
2 (Φgn f )(δ, x). (3.25)

Hence, (3.1) can now be written as

f (n)(x) =
knn!

hn
lim
δ↓0

1

δn−
1
2

(Φgn f )(δ, x). (3.26)

A similar observation about the continuous wavelet transform approximating the n-th
derivative was made by Rieder [54, (5)] in the case of (3.23) with g having its first n moments
equal to zero. In fact, he recovers formula (3.11), first obtained by Haslam-Jones [29], for ν
absolutely continuous, f, cn being the n-th distributional derivative of f , and the limit taken in a
suitable Sobolev norm (see also [54, Theorem 2.3]). An example of a wavelet g having its first n
moments equal to zero is Daubechies’ wavelet nψ of compact support, see [13, p. 984].

The continuous wavelet transform Φgn with gn given by (3.24) and w(x) being a weight
function for one of the classical orthogonal polynomials (Jacobi, Laguerre, Hermite) was
considered by Moncayo and Yáñez [47].

3.11. A special case: the n-th order finite difference as approximation of the n-th derivative

For N = n+1 we can see that (3.3) specializes as an n-th order finite difference approximating
the n-th derivative. Indeed, write (3.3) as

f (n)(x) = lim
δ↓0
(Dn,δ,N f )(x),

where (see also (2.4) and [36, (9.5.1)])

(Dn,δ,N f )(x) :=
(2n + 1)! (N − n − 1)!

n! (N + n)!

1
δn

N−1
ξ=0

f (x + δξ) tn(ξ, N )

=
(2n + 1)! (N − 1)! (−1)n

n! (N + n)! δn

N−1
ξ=0

f (x + δξ) 3 F2


−n, n + 1,−ξ

1,−N + 1
; 1

.
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Now put N := n + 1 and use that for ξ = 0, 1, . . . , n we have by [49, (15.2.4)]:

3 F2


−n, n + 1,−ξ

1,−n
; 1


=

ξ
k=0

(−ξ)k (n + 1)k
k! k!

= 2 F1


−ξ, n + 1

1
; 1


= (−1)ξ


n

ξ


.

Hence

(Dn,δ,n+1 f )(x) = δ−n
n
ξ=0

(−1)n−ξ


n

ξ


f (x + δξ) = (∆n

δ f )(x),

where

(∆δ f )(x) :=
f (x + δ)− f (x)

δ
.

4. Filters for higher derivatives

The following theorem is a multi-term variant of Theorem 3.1.

Theorem 4.1. Let {pk}k=0,1,2,... be a system of orthogonal polynomials with respect to the
orthogonality measure µ. Let m, n be integers such that 0 ≤ m ≤ n. Let x ∈ R. Let I be a
closed interval such that, for some ε > 0, x + δξ ∈ I if 0 ≤ δ ≤ ε and ξ ∈ supp(µ). Let f be
a continuous function on I such that its derivatives of order 1, 2, . . . , n at x exist. In addition, if
I is unbounded, assume that f is of at most polynomial growth on I . Then

1
δm

n
j=m

1
h j


R

f (x + δξ) p j (ξ) dµ(ξ)


p(m)j (0) = f (m)(x)+ o(δn−m) as δ ↓ 0. (4.1)

If f ∈ Cn(I ) and f (n) is of polynomial growth on I then (4.1) holds uniformly for x in compact
subsets of I .

Note that (4.1) turns down to (3.1) if m = n.

Proof. With the notation (2.14) we can rewrite the left-hand side of (4.1) as

δ−m

∂

∂η

m 
R

f (x + δξ)Kn(ξ, η) dµ(ξ)


η=0

. (4.2)

By substitution of (2.22) and by application of (2.17) the expression (4.2) is equal to

n−m
l=0

f (m+l)(x)

l!
δlηl


η=0

+ δn−m

∂

∂η

m 
R
ξn Fx,n(δξ)Kn(ξ, η) dµ(ξ)


η=0

= f (m)(x)+ δn−m


R
ξn Fx,n(δξ)


∂

∂η

m

Kn(ξ, η)


η=0

dµ(ξ).

Now use the same argument as at the end of the proof of Theorem 3.1, calling Proposition 2.3
and using dominated convergence, in order to show that

lim
δ↓0


R
ξn Fx,n(δξ)


∂

∂η

m

Kn(ξ, η)


η=0

dµ(ξ) = 0.

For the proof of the last statement also use Proposition 2.4. �
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Remark 4.2. In view of (3.15) we can rewrite (4.1) as

f (m)(x) =
1
δm

dm

dηm Pn,x,δ[ f ](η)


η=0

+ o(δn−m) as δ ↓ 0 (m = 0, 1, . . . , n). (4.3)

If f is a polynomial of degree ≤ n then (4.3) holds exactly without the term o(δn−m) because

Pn,x,δ[ f ](η) = f (x + δη).

For f having derivatives at x up to order n + 1 we can refine (4.1) as follows.

Proposition 4.3. Keep the assumptions of Theorem 4.1. Moreover assume that f (n+1)(x) exists.
Then

1
δm

n
j=m

1
h j


R

f (x + δξ) p j (ξ) dµ(ξ)


p(m)j (0)

= f (m)(x)−
p(m)n+1(0) f (n+1)(x)

kn+1 (n + 1)!
δn−m+1

+ o(δn−m+1) as δ ↓ 0. (4.4)

If f ∈ Cn+1(I ) and f (n+1) is of polynomial growth on I then (4.4) holds uniformly for x in
compact subsets of I .

Proof. Write the left-hand side of (4.4) as (4.2). Then substitute (2.22) with n replaced by n + 1
and apply (2.17). Then the expression (4.2) becomes

f (m)(x)+
f (n+1)(x)

(n + 1)!
δn−m+1


∂

∂η

m 
R
ξn+1 Kn(ξ, η) dµ(ξ)


η=0

+ δn−m+1


R
ξn+1 Fx,n+1(δξ)


∂

∂η

m

Kn(ξ, η)


η=0

dµ(ξ).

By a similar argument as in the proof of Theorem 4.1 we see that the last term equals o(δn−m+1)

as δ ↓ 0. By application of (2.17) the second term becomes

f (n+1)(x)

(n + 1)!
δn−m+1


∂

∂η

m 
R
ξn+1


Kn+1(ξ, η)−

pn+1(ξ) pn+1(η)

hn+1


dµ(ξ)


η=0

= −
p(m)n+1(0)

hn+1 (n + 1)!
δn−m+1


R
ξn+1 pn+1(ξ) dµ(ξ).

Then (4.4) follows by using (2.7). �

4.1. Even orthogonality measures

If in Proposition 4.3 the orthogonality measure µ is even and if n − m is odd then
p(m)j (0) = 0 whenever j − m is odd, so the sum on the left-hand side of (4.4) then runs over

j = m,m + 2, . . . , n − 1. Moreover, for p(m)n+1(0)/kn+1 occurring on the right-hand side of (4.4)
we then have that

(−1)(n−m+1)/2 p(m)n+1(0)

kn+1
> 0. (4.5)
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In order to prove (4.5) we can assume without loss of generality that kn > 0. Then, for all j and
for x large, p( j)

n+1(x) > 0. Also note that p( j)
n+1 is a polynomial of degree n + 1 − j which is

even or odd according to whether n + 1 − j is even or odd. Since pn+1 belongs to a family of
orthogonal polynomials, it has n +1 simple real zeros. The number of positive zeros is (n +1)/2
if n + 1 is even and n/2 if n + 1 is odd. Now it follows by induction with respect to j that p( j)

n+1
has (n + 1 − j)/2 positive zeros if n + 1 − j is even and (n − j)/2 if n + 1 − j is odd. So we
arrive also at this property for j = m, and then (4.5) readily follows.

Thus, for µ an even measure and n − m an odd number we can rewrite (4.4) as follows for
δ ↓ 0.

1
δm


j=m,m+2,...,n−1


R

f (x + δξ) p j (ξ) dµ(ξ)

 p(m)j (0)

h j

= f (m)(x)− (−1)(n−m+1)/2 |p(m)n+1(0)| f (n+1)(x)

|kn+1| (n + 1)!
δn−m+1

+


o(δn−m+1) if f (n+1)(x) exists,

o(δn−m+2) if f (n+2)(x) exists,

O(δn−m+3) if f (n+3)(x) exists.

(4.6)

This is proved by a slight adaptation of the proof of Proposition 4.3. Furthermore, (4.6) holds
uniformly for x in compact subsets of I if the appropriate derivative of f of order n + 1, n + 2
or n + 3 is continuous and of polynomial growth on I .

Remark 4.4. Note that for fixed m the approximation of the left-hand side of (4.6) (and
earlier formulas (4.1), (4.3) and (4.4)) to f (m)(x) becomes better as n increases. However,
this observation disregards the frequency spectrum of the signal f and the effect of noise. See
Remark 4.5 for a discussion of these aspects.

4.2. Filters

We can consider the left-hand side of (4.1) as a filter (continuous or discrete depending on
the choice of µ) for m-th order differentiation at x . In general, a continuous respectively analog
filter sends an input function f to an output function g by convolution with a fixed real-valued
function ρ:

g(y) =

N
x=M

f (y − x) ρ(x) (y ∈ Z), (4.7)

g(y) =

 N

M
f (y − x) ρ(x) dx (y ∈ R). (4.8)

Here M may be −∞ and N may be ∞. Filters are widely used in electrical engineering, with
analog filters being continuous and digital filters being discrete. There y is usually the time
variable t and instead of ρ one writes h, the unit impulse response. If M and N are finite in
(4.12), one speaks about a finite impulse response (FIR) filter, otherwise about an infinite impulse
response (IIR) filter. The Fourier transform φ of ρ is called the characteristic function or transfer
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function (also denoted by H ) of the filter:

φ(ω) :=

N
x=−M

ρ(x) e−i xω, (4.9)

φ(ω) :=

 N

−M
ρ(x) e−i xω dx . (4.10)

Equivalently, φ equals the quotient g/ f of the input function g and the output function f if
f (y) := eiωy . Standard books of digital filter theory are for instance [2,27]. In [2, p. 306] methods
are described for the design of digital differentiators.

4.3. The characteristic function

We continue with the left-hand side of (4.1) considered as a filter. Let us assume that µ is an
even measure and that n − m is odd, so that we can work with (4.6). We obtain the characteristic
function φ of the filter defined by the left-hand side of (4.6) if we put there f (ξ) := eiωξ with
ω ∈ R and take x := 0:

φ(ωδ) :=
1
δm


j=m,m+2,...,n−1


R

eiωδξ p j (ξ) dµ(ξ)

 p(m)j (0)

h j

= (iω)m


1 −
|p(m)n+1(0)|

|kn+1| (n + 1)!
(δω)n−m+1

+ (δω)n−m+3 G(δω)


, (4.11)

with G a bounded function on R (for the proof of the second equality use Proposition 2.3 with f
bounded).

Remark 4.5. From the last part of (4.11) we see that for differentiation with fixed order m the
first term gives the characteristic function (iω)m of the ideal differentiator. The second term
has degree n + 1 in ω and gives rise to a falling down of the characteristic function, since the
coefficient has negative sign. So for high frequencies the filter will be a low pass filter and for low
frequencies the filter works well for differentiation. Increase of n brings the filter in a sense closer
to the ideal differentiator (see also Remark 4.4 for approximation to f (m)(x) in the x-domain),
but the pass band will also increase, causing more high frequency noise (see Section 5.2 and
Fig. 1 for an example in the Legendre case). In the practice of the construction of a differentiating
filter one has to decide to what frequency the differentiation must do the job and how much
noise one accepts. This all depends on the frequency contents of the signal and the noise. See
also the discussion for the case of constant weights by Barak [5, p. 2761] (for m = 0) and by
Luo et al. [43, Section 5] (for general m).

4.4. Smoothing filters

For m = 0 the filters given by the left-hand sides of (4.1) and (4.6) are examples of smoothing
filters. These have a very long history, see [57,58] and references given there, which go back as
far as De Forest’s work in 1878. We put M := −N in (4.7) and M = −N = −1 in (4.8):

g(y) =

N
x=−N

f (y − x) ρ(x) (y ∈ Z), (4.12)
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g(y) =

 1

−1
f (y − x) ρ(x) dx (y ∈ R), (4.13)

and we usually take ρ symmetric: ρ(x) = ρ(−x).
We say that (4.12) or (4.13) is exact for the degree j (where j < 2N in case of (4.12)) if

g = f whenever f is a polynomial of degree ≤ j , but g ≠ f for some polynomial f of degree
j + 1. Because of symmetry of ρ, such j will always be odd.

Exactness of (4.12) for degree at least 2n + 1 < 2N can equivalently be stated as

ρ(x) =

N
k=0

ck t2k(x + N , 2N + 1) (x ∈ {−N ,−N + 1, . . . , N })

with

ck = t2k(N , 2N + 1)/h2k if k = 0, 1, . . . , n,

where y → t2k(y, 2N +1) is a Gram polynomial (see (2.4)) and h2k is the corresponding constant
given by (2.6). For such ρ the sum of squares

N
x=−N ρ(x)

2 is minimal if and only if ck = 0 for
n < k ≤ N . Then

ρ(x) = K2n(x + N , N ) (x ∈ {−N ,−N + 1, . . . , N }), (4.14)

where K2n is the Christoffel–Darboux kernel of degree 2n (see (2.14)) for the orthogonal
polynomials y → tk(y, 2N + 1).

Similarly, in case of (4.13) and assuming that ρ is a polynomial, the requirements that the
formula is exact for the degree 2n + 1 and that

 1
−1 ρ(x)

2 dx is minimal are equivalent to

ρ(x) = K2n(x, 0) (x ∈ [−1, 1]), (4.15)

where K2n is the Christoffel–Darboux kernel of degree 2n for the Legendre polynomials Pk .
More generally than (4.14) we can work with orthogonal polynomials pn satisfying (2.2) or

(2.3) for equidistant points running over a symmetric set and with symmetric weights:

N
x=−N

pm(x) pn(x)w(x) = 0 (m ≠ n),

where w(x) = w(−x). In terms of these polynomials pn exactness of (4.12) for degree at least
2n + 1 < 2N can equivalently be stated as

ρ(x) =

N
k=0

ck p2k(x) w(x) (x ∈ {−N ,−N + 1, . . . , N }) (4.16)

with

ck = p2k(0)/h2k if k = 0, 1, . . . , n. (4.17)

In particular, the choice

ρ(x) := K2n(x, 0) w(x) =
k2n p2n(0)
k2n+1h2n

p2n+1(x) w(x)

x
, (4.18)

with K2n the Christoffel–Darboux kernel and with (2.15) used for the second equality, will make
(4.12) exact for the degree 2n + 1.
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The characteristic function for (4.12) respectively (4.13) is defined by (4.9) with M = −N
respectively (4.10) with M = −N = −1. The condition that (4.12) or (4.13) is exact for the
degree 2n + 1 is equivalent with the condition that φ has power series of the form

φ(ω) = 1 − aω2n+2
+ · · · (4.19)

with a ≠ 0.
An m-fold iteration of (4.12) (with N = ∞ for convenience) yields

gm(y) =

∞
x=−∞

f (y − x) ρm(x) (y ∈ Z),

where ρm = ρ ∗ · · · ∗ ρ is an m-fold convolution product. De Forest raised in 1878 the
question for which choices of ρ the asymptotic behavior of ρm(x) for large m can be described.
Schoenberg [57, Theorem 1 and Remark 1 on p. 358] showed that this is possible precisely if the
characteristic function satisfies

|φ(ω)| < 1 for 0 < ω < 2π. (4.20)

If (4.20) is satisfied then the smoothing is called stable. Clearly (4.20) will imply that (4.19)
holds with a > 0. For ρ given by (4.18) we see from (4.11) that a > 0 is satisfied for any choice
of the weights and that a is explicitly given by

a =
|p2n+2(0)|

|k2n+2| (2n + 2)!
.

The stability condition (4.20) can also be considered for the continuous smoothing formula
(4.13), where now ω ∈ R \ {0} in (4.20). For the Legendre case where ρ is given by (4.15),
stability was proved by Trench [64] and Lorch and Szego [42].

4.5. Fourier–Bessel functions

As a common generalization of (4.12) and (4.13) with ρ given by (4.15) and (4.18),
respectively, we can consider a smoothing formula

g(y) =


R

f (y − x) r(x) dµ(x) (4.21)

with µ an even positive orthogonality measure for the orthogonal polynomials pn and with r
given by

r(x) := K2n(x, 0) =

n
j=0

p2 j (0) p2 j (x)

h2 j
=

k2n p2n(0)
k2n+1h2n

p2n+1(x)

x
. (4.22)

(Such usage of the Christoffel–Darboux formula was emphasized in [52] for the cases of Gram
and Legendre polynomials.) Then we can define the corresponding characteristic function by

φ(ω) :=


R

r(x) e−i xω dµ(x)

=

n
j=0

p2 j (0)

h2 j


R

p2 j (x) e−i xω dµ(x)
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=
k2n p2n(0)
k2n+1h2n


R

p2n+1(x)

x
e−i xω dµ(x). (4.23)

Thus

φ′(ω) =
k2n p2n(0)
i k2n+1h2n


R

p2n+1(x) e−i xω dµ(x). (4.24)

In the Legendre case dµ(x) = dx with support [−1, 1] we can evaluate integrals occurring above
in terms of (spherical) Bessel functions as follows: 1

−1
Pn(x) e−i xω dx = i−n


2π
ω

Jn+
1
2
(ω) = 2i−n jn(ω), (4.25)

see [49, (18.17.19), (10.47.3)] or [6, (4)]. In the Chebyshev case dµ(x) = (1 − x2)−1/2 dx,
Tn(cos θ) := cos(nθ) we similarly obtain (see [49, (10.9.2)])

π−1
 1

−1
Tn(x) e−i xω dx = i−n Jn(ω). (4.26)

Formula (4.26) was the reason for Mantica [44,45] to call the functions

Jn(ω;µ) :=


R

pn(x) e−i xω dµ(x) (4.27)

Fourier–Bessel functions (where he took pn orthonormal andµ a probability measure). The same
functions occur in [34] as the functions Kn

[m] (in the notation of [34, Section 2.1]). Formula
(4.25) played an important role in the proof of the stability result in the Legendre case, see [42].
It also occurred in [53, (14), (15)] for a formal operational calculus in connection with the right-
hand side of (3.6) before taking limits. In the Appendix we will compute the Fourier–Bessel
functions for the case of the shifted symmetric Hahn polynomials (4.28).

4.6. Stability of smoothing in case of symmetric Hahn and Krawtchouk polynomials

The shifted symmetric Hahn polynomials

pn(x) := Qn(N + x;α, α, 2N ) (n = 0, 1, . . . , 2N ) (4.28)

are orthogonal polynomials on {−N , N + 1, . . . , N } with respect to the symmetric weights

wx :=
(α + 1)N+x

(N + x)!

(α + 1)N−x

(N − x)!
, (4.29)

see [36, (9.5.1) and (9.5.2)]. Assume that α is a nonnegative integer. Consider in terms of these
polynomials pn formulas (4.16) and (4.17) characterizing exactness for degree at least 2n + 1.
Now observe that, by [36, (9.5.9)], we have

∆α
x (wx pn(x)) =

(2N + 1)α
α!

Qn+α(N + x + α; 0, 0, 2N + α),

where ∆x ( f (x)) = (1 f )(x) := f (x + 1)− f (x). It follows that

N
x=−N−α

((∆αρ)(x))2 (4.30)
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is minimal for ρ given by (4.16) and (4.17) if and only if ck = 0 for n < k ≤ N . Greville

[24, Section 3] (1966) denotes (4.30) by R2
α (after division by


2α
α


). Therefore he calls the

smoothing formula (4.12) the minimum Rα formula if ρ is taken such that (4.30) is minimal.
Greville [24, (4.2)] gives an explicit formula for the characteristic function φ in case of a
minimum Rα formula. He ascribes this formula to Sheppard [60] (1913). We will derive this
formula in the Appendix. Greville [24, Section 5] next proves the stability property (4.20)
for these cases. Curiously, Greville does not mention Hahn polynomials in any way. Hahn
polynomials in this context seem to come up first in [7, Section 3.2].

As a special case of [36, (9.5.16)] there is the limit formula

lim
α→∞

Qn(x + N ;α, α, 2N ) = Kn


x + N ;

1
2
, 2N


= 2 F1


−n,−N − x

−2N
; 2


(4.31)

where the polynomials x → Kn(x; p, N ) are Krawtchouk polynomials (see [36, Section 9.11]).
The corresponding weights (4.29), suitably normalized, tend for α → ∞ to the symmetric
weights

wx :=


2N

N + x


(x = −N ,−N + 1, . . . , N ),

with respect to which the polynomials pn(x) = Kn(x+N ;
1
2 , 2N ) are orthogonal. The smoothing

formula with ρ given by (4.18) for this pn and w is called the minimum R∞ formula by
Greville [24, Section 6]. He obtains the characteristic function φ for this case explicitly as a
limit case of his formula in the minimum Rα case (see also (A.9)), not working with Krawtchouk
polynomials at all. (Krawtchouk polynomials seem to come up first in this context in [7, Section
3.3].) But Greville also obtains in some way that,

φ(k)(π) = 0 (k = 0, 1, . . . , 2N − 2n − 1). (4.32)

Let us prove this by observing from (4.31) that

p2N (x) = 2 F1


−2N ,−N − x

−2N
; 2


=

N+x
j=0


N + x

j


(−2) j

= (−1)N+x .

Hence

φ(k)(π) =

N
x=−N

ρ(x) (−i x)k (−1)x = i2N−k
N

x=−N

K2n(x, 0) xk p2N (x) wx = 0

for k < 2N − 2n by orthogonality. Now Greville concludes from (4.19) and (4.32) that

φ(ω) = 1 − (sin2(ω/2))n+1 P(sin2(ω/2)) = (cos2(ω/2))N−n Q(sin2(ω/2)) (4.33)

for certain polynomials P of degree N − n − 1 and Q of degree n. From that he immediately
derives that Q(z) is equal to the power series of (1 − z)−N+n truncated after the term with zn ,
i.e.,

Q(z) =

n
k=0

(N − n)k
k!

zk > 0 (0 ≤ z ≤ 1). (4.34)
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By a similar argument we see that

P(z) =

N−n−1
k=0

(n + 1)k
k!

(1 − z)k > 0 (0 ≤ z ≤ 1). (4.35)

Hence, by (4.33),

0 ≤ φ(ω) < 1 (0 < ω < 2π),

which is even stronger than the stability condition (4.20).
Identity (4.33) with Q and P given by (4.34), (4.35) has a long history which is surveyed

in [39]. However, this paper missed Greville’s paper and the connection with Krawtchouk
polynomials. A sequel to [39], tracing (4.33)–(4.35) back to 1713, is in preparation.

By a short chain of identities, using (4.33) and (4.34), φ(ω) can be expressed as

φ(ω) = (N − n)


N

n

  cos2(ω/2)

0
s N−n−1(1 − s)n ds,

see [39, top of p. 249]. Hence φ is monotonically decreasing on [0, π] from 1 to 0. Such filters
without ripples are called maximally flat by Herrmann [31] (see also [55]). Herrmann gave the
same argument as above for solving (4.33), apparently unaware of Greville [24].

4.7. The Savitzky–Golay paper and its follow-up

The first instance of an approximation of first and higher derivatives by formula (4.1) with
possibly n > m was given by Savitzky and Golay [56] in 1964. They only dealt with the case of
constant weights on {−N ,−N +1, . . . , N }, they used only very special N , n and m, and they did
not explicitly mention or use the corresponding orthogonal polynomials. They were motivated
by applications in spectroscopy. Their paper had an enormous impact, for instance with 5432
citations in Google Scholar in January 2012. Some corrections to [56] were given by Steinier
et al. [61] in 1972.

Probably, Gorry [22] (1990) was the first who gave (4.1) in a more structural form in
the case of constant weights on an equidistant set using centered Gram polynomials. Next,
in [23] (1991) he considered (4.1) on a finite non-equidistant set, still with constant weights.
Meer and Weiss [46] (1992) gave (4.1) for orthogonal polynomials on a set {−N ,−N +

1, . . . , N } with respect to general weights. They made this more explicit in the cases of centered
Gram polynomials and of centered Krawtchouk polynomials with symmetric weights.

We recommend Luo et al. [43] as a relatively recent survey of follow-up to the Savitzky–Golay
paper.

5. Filter properties in the frequency domain: some examples

In Section 4 many so-called linear filters for derivatives were mentioned. In electrical
engineering one uses the transfer function H for understanding the properties of the filter. This is
the Fourier transform of the unit impulse response of the filter, see (4.9), (4.10) where we wrote
φ instead of H . In general, this function is complex-valued. We can show the properties of the
filter in the frequency domain by a log–log plot of the modulus of the transfer function (which
may be complemented by a phase plot). In general, for a differentiation filter of order n, H(ω)
should behave for low frequencies like ωn , and for high frequencies like a constant (equal to zero
in the ideal case). When the behavior is different, the filter is called unstable.
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5.1. The Lanczos derivative

The (analog) filter corresponding to the Lanczos derivative is given by (3.7) ignoring the limit:

g(x) =
3
2δ

 1

−1
f (x + ξδ) ξ dξ. (5.1)

The output function g can be considered as a continuous (i.e. unsampled) approximation of the
first derivative of the input function f . The transfer function H(ω) is equal to the quotient of g
and f with f (y) := eiωy . A short computation gives

H(ω) =
3
2δ

 1

−1
eiδωξ ξ dξ = iω

3

(δω)3


sin(δω)− δω cos(δω)


= iω(1 + O(δ2ω2)) as δω ↓ 0, (5.2)

compatible with (4.11) for m = 1, n = 2. For small ωδ we have arg(H(ω)) = π/2. The modulus
of H(ω) for δ = 1 is given in Fig. 1, case n = 1 as a log–log plot.

Fig. 1. Modulus of transfer function for the first order analog filter, n = 1 and 3.

5.2. Multi-term variant of the Lanczos derivative

To get a better approximation we can use Eq. (4.1) with pn a Legendre polynomial:

g(x) =
1
δm

[(n−m)/2]
k=0

P(m)m+2k(0)

hm+2k

 1

−1
f (x + δξ) Pm+2k(ξ) dξ. (5.3)

Here

P(m)m+2k(0)

hm+2k
=

2m(−1)k


1
2


m+k


m + 2k +

1
2


k!

by [18, 10.10(26), 10.9(19)] and (2.10). For m = n = 1 (5.3) reduces to (5.1). For the transfer
function we obtain (see also (4.11)):
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Hm,n(ω) =
2m

δm

[(n−m)/2]
k=0

(−1)k


1
2


m+k


m + 2k +

1
2


k!

 1

−1
eiωδξ Pm+2k(ξ) dξ

=
2m+1im

δm

[(n−m)/2]
k=0


1
2


m+k


m + 2k +

1
2


k!

jm+2k(δω),

where the spherical Bessel functions jm+2k entered by (4.25). An explicit formula for spherical
Bessel functions is given in [49, (10.49.2)]. In particular,

j1(z) =
1

z2


sin z − z cos z


,

j3(z) =
1

z4


(15 − 6z2) sin z − (15 − z2)z cos z


.

Thus H1,1(ω) is given by (5.2). After some computation we obtain

H1,3(ω) =
15iω

2
(21 − 8(δω)2) sin(δω)+ (−21δω + (δω)3) cos(δω)

(δω)5
. (5.4)

The modulus of H1,3(ω) for δ = 1 is also given in Fig. 1, case n = 3. It is clear that for n = 3
the plot stays close to a straight line until higher values of ω than for n = 1.

5.3. First order Savitzky–Golay filter

When the input signal of the filter is given by a vector of (for convenience) odd dimension
2N+1 obtained by sampling a function f on equidistant points x−Nδ, x−(N−1)δ, . . . , x+Nδ,
then we may use (3.4) ignoring the limit as a discrete filter for the n-th derivative of f at x . In
particular, for n = 1, we can use (3.5):

g(x) =
3

2N


N +
1
2


(N + 1)δ

N
ξ=−N

f (x + δξ) ξ.

For the transfer function

H(ω) =
3

2N


N +
1
2


(N + 1)δ

N
ξ=−N

eiδωξ ξ (5.5)

we obtain by straightforward computation that

H(ω) =
3i

2(2N + 1)δ


sin


1
2
δω

−2


sin(Nδω)
N

−
sin((N + 1)δω)

N + 1


. (5.6)

Note that the phase shift is exactly π/2.
The modulus of H(ω) for δ = 1 and for N = 1 and 2 is given in Fig. 2. See [43, Figure 1] for

similar pictures.

5.4. Butterworth filter

If one needs a filter that does differentiation for low frequencies very well and has a good
suppression for high frequencies then there are better filters than the ones discussed in this
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Fig. 2. Modulus of transfer function for the first order discrete filter, N = 1 and 2.

paper until here. For example there are the so-called Chebyshev, inverse Chebyshev, Elliptic,
Butterworth and Bessel filters. These filters all differentiate, but the choice of the most suitable
filter depends on the properties one needs, for instance a constant phase response, a good
amplitude response, less side-lobes etc. We mention here the so-called n-th order Butterworth
filter. The square of the modulus of the transfer function of an n-th order analog Butterworth
filter that differentiates with order m is given by

|Hm,n(ω)|
2

=
ω2m

1 + (ω/ω0)2n
= ω2m

|H0,n(ω)|
2 (n > m). (5.7)

Here ω0 is the so-called cutoff frequency. It is at this frequency ω0 where the asymptotics of the
low frequency part and the high frequency part of the transfer function meet. The factor ω2m is
the square of the modulus of the transfer function (iω)m of the ideal m-th order differentiator.

As an example see Fig. 3 showing the transfer function of a seventh order Butterworth filter
with ω0 = 1 (see how the side lobes differ from those of Fig. 2).

In (5.7) one has to make a choice of Hm,n(ω) as follows:

Hm,n(ω) =
(iω)m

pn(iω)
with |pn(iω)|

2
= 1 + (ω/ω0)

2n

such that pn is a polynomial of degree n with real coefficients for which all (possibly complex)
roots have negative real part. Then (4.10) and (4.8) take the form

H0,n(ω) =


∞

0
ρ(t) e−iωt dt, g(t) =


∞

0
f (t − τ) ρ(τ) dτ.

ρ(t) is called the impulse response of the filter. It follows that the output function g satisfies a
differential equation with the input function f as inhomogeneous part:

pn(d/dt) g(t) = f (t).

For instance, for n = 1 we have

p1(iω) = 1 + iω/ω0, ρ(t) = ω0 e−ω0t , ω−1
0 g′(t)+ g(t) = f (t).



E. Diekema, T.H. Koornwinder / Journal of Approximation Theory 164 (2012) 637–667 663

Fig. 3. Transfer function for seventh order Butterworth filter.

For n = 2 we have

p2(iω) = 1 + 21/2 (iω/ω0)+ (iω/ω0)
2, ρ(t) = 21/2 ω0 e−2−1/2ω0t sin(2−1/2ω0t).

One can obtain the transfer function for the Butterworth filter in the digital case from H0,n(ω)

in the analog case by so-called frequency warping: replace ω by 2T −1 tan(ωT/2), where T
is the length of the sampling interval. Then some linear combination of finitely many output
values g(x), g(x − T ), . . . will be equal to some linear combination of finitely many input values
f (x), f (x − T ), . . . (a so-called recursive filter).

There are important differences for practical applications between filters obtained from
orthogonal polynomials, as amply considered in this paper, and the Butterworth filter. In the
analog case the Butterworth filter can be much easier constructed physically. But in the discrete
case the filters obtained from orthogonal polynomials are much easier to handle in the time
domain than the Butterworth filter.

For more details about the Butterworth filter for m = 0 see [50, Section 5.2.1] (both analog
and digital), [35, Section 3.2] (analog) and [27, Section 12.6] (digital). See [30, Section IV-A]
and [12, Section 6.2] for Butterworth filters in connection with wavelets.

Appendix

Here we derive an explicit expression for the Fourier–Bessel functions (see (4.27)) associated
with the shifted symmetric Hahn polynomials (see (4.28)). First observe that by the duality
between Hahn polynomials and dual Hahn polynomials (see the formula after (9.6.16) in [36])
the generating function [36, (9.6.12)] for dual Hahn polynomials can be rewritten in terms of
Hahn polynomials:

(1 − t)n 2 F1


n − N , n + α + 1

−β − N
; t


=

N !

(β + 1)N

N
x=0

wx Qn(x;α, β, N ) t x , (A.1)

where

wx :=


α + x

x


β + N − x

N − x


, (A.2)

i.e., the weight occurring in the orthogonality relation [36, (9.5.2)] for Hahn polynomials.
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Next, in (A.1) take β = α, t := e−iθ , replace N by 2N , shift x to x + N and apply Pfaff’s
identity [1, (2.3.14)]. Then

(2α + 2)2N+n

22n(2N )!

α +

3
2


n

ei Nθ (1 − e−iθ )n 2 F1


n − 2N , n + α + 1

2n + 2α + 2
; 1 − e−iθ



=

N
x=−N

wx pn(x) e−i xθ , (A.3)

where pn(x) and wx are given by (4.28) and (4.29), respectively.
Now use the quadratic transformation [17, 2.11(30)] and the expression [18, 10.9(20)] of

Gegenbauer polynomials in terms of hypergeometric functions:

2 F1


n − 2N , n + α + 1

2n + 2α + 2
; 1 − e−iθ


= e

i


1
2 n−N


θ

2 F1


n − 2N , 2N + n + 2α + 2

n + α +
3
2

;
1
2


1 − cos


1
2
θ



=
(2N − n)!

(2n + 2α + 2)2N−n
e

i


1
2 n−N


θ

C n+α+1
2N−n


cos


1
2
θ


.

Thus we can rewrite (A.3) as

(α + 1)n
(−2N )n

i−n


2 sin


1
2
θ

n

C n+α+1
2N−n


cos


1
2
θ


=

N
x=−N

wx pn(x) e−i xθ . (A.4)

The left-hand side of (A.4) gives an expression for the Fourier–Bessel function (4.27) associated
with the shifted symmetric Hahn polynomials (4.28).

Now let φ be defined by (4.23), (4.22) with pn given by (4.28). Then combination of (4.24),
(A.4) and [18, 10.9(22)] yields that

dφ(ω)

d


sin2


1
2ω
 = C


sin2


1
2
ω

n

2 F1


−N + n + 1, N + n + α + 2

2n + α +
5
2

; sin2


1
2
ω


(A.5)

where

C = (−1)n+1 22n+1 k2n p2n(0)
k2n+1 h2n

(α + 1)2n+1

(−2N )2n+1

(4n + 2α + 4)2N−2n−1

(2N − 2n − 1)!

= (−1)n
(N + α + 1)n+1 (−N )n+1

n + α +
3
2


n+1

n!

. (A.6)

In the last equality we used [36, (9.5.2), (9.5.4)] for hn and kn and [15, (2.4)] together with
[36, (9.5.3)] for getting

p2n(0) =


1
2


n
(N + α + 1)n

−N +
1
2


n
(α + 1)n

. (A.7)
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Formulas (A.5), (A.6) coincide with formulas (4.3), (4.4) in [24] if we replace N , n, α by n, k,m,
respectively. Integration of (A.6) together with φ(0) = 1 yields

φ(ω) = 1 +
(−1)n

n!

N
k=n+1

(N + α + 1)k (−N )k
n + α +

3
2


k
(k − n − 1)!


sin2


1
2ω
k

k
. (A.8)

Formula (A.8) coincides with formula (4.2) in [24], which Greville (in his earlier form (4.1))
ascribes to Sheppard [60]. However, we have only been able to find a match of the special case
m = 0 of [24, (4.1)] with a formula in Sheppard’s paper, namely with [60, (64)].

In the limit for α → ∞ formula (A.8) becomes

φ(ω) = 1 +
(−1)n

n!

N
k=n+1

(−N )k
(k − n − 1)!


sin2


1
2ω
k

k
. (A.9)

This coincides with the formula after (6.1) in [24], and also with (4.33) combined with (4.35)
and [1, (2.3.15)].

If α ∈ Z≥0 then the left-hand side of (A.4) can be written as a finite sum, where the number
of terms is independent of N . First observe that by [49, (14.13.1), (14.3.21), (5.5.5)] we have

Cλ
n (cos θ) =

Γ (2λ+ 1)

22λΓ (λ+ 1)2
(2λ)n
(λ+ 1)n

(sin θ)1−2λ
∞

k=0

(1 − λ)k(n + 1)k
(n + λ+ 1)kk!

× sin

(2k + n + 1)θ


(λ > 0, 0 < θ < π). (A.10)

For λ ∈ Z>0 the above series terminates after the term with k = λ−1. Hence, for α ∈ Z≥0 (A.4)
takes the form

− 2 in+2α


2N + α

α

 
2 sin


1
2
θ

−n−2α−1 n+α
k=0

(−1)k


n + α

k


×
(−2N − 2α − n − 1)k

(−2N − α)k
sin


1
2
(2N + 2α + n − 2k + 1) θ



=

N
x=−N

wx pn(x) ei xθ . (A.11)

For α = 0 and n = 1 formula (A.11) specializes to (5.6) with H(ω) given by (5.5). Use that
Q1(N + x; 0, 0, 2N ) = x/N .
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