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ABSTRACT

In this paper a partition theorem is proved which contains the Rogers-Ramanujan
identities and Euler’s partition theorem as special cases. Other partition theorems of
the Rogers-Ramanujan type are proved.

1. INTRODUCTION

In [3], Gordon proved the following striking generalization of the
Rogers-Ramanujan identities.

THEOREM. Let 0 << a < k be integers. Let A, (N} denote the number
of partitions of N into parts not of the forms 2k + 1)m, 2k + 1)m + a,
2k 4 )m + 2k + 1 — a). Let By, ,(N) denote the number of partitions
of N of the form N=b, + --- + b, (s> 1, otherwise arbitrary),
b; = b1, b; — by =2, and 1 appearing as a summand at most a — 1
times. Then,

Ak,a(N) = Bk,a(N)-

If k= 2,a=1,2, the above result reduces to the Rogers-Ramanujan
identities [4, p. 291]. Gordon’s method of proof was an extension of
Schur’s first proof of the Rogers-Ramanujan identities [6]. Gordon re-
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marks that his theorem paralleis Glaisher’s extension of Euler’s theorem.
Glaisher [2] proved:

THEOREM. Let r >0 be an integer. Let A,(N) denote the number of
partitions of N into parts not of the form rm (i.e., parts not divisible by r).
Let B,(N) denote the number of parttitions of N of the form N = b,
<oo 4 by (s > 1, otherwise arbitrary), by > byy, by — by > 1 (i,
no part appears more than r — 1 times). Then

If r = 2, the above theorem reduces to Euler’s theorem [4, p. 277].

In [1], a proof of Gordon’s theorem was given which was based on an
extension of a technique of Rogers and Ramanujan [5] and A. Selberg
[7]. In this paper we shall extend this method even further and shall obtain
(among other results) a general partition theorem which contains not only
the Rogers-Ramanujan-Gordon identities as a special case but also
contains the Euler-Glaisher theorem.

2. PRELIMINARY LEMMAS

Our main results will be based on the three following lemmas.

LeMMA 1. Let 0 =0y < ++» <@, <X, 0 <a <<k all be integers.
Let ¢, (M, N) be given for all integers M and N with 0 <i <k, and

croM,N)=0 for all k, M, N; 2.1
1 if M=N=0 and 1<iLk, 2.2)
0 if either M << 0 or N << 0 and not both are zero;

>

e, M) = |
e iM, N) — ¢ ;o M, N) = 3, ¢4 piri(M—2A(i—1)—a;, N—M).
=1 (2.3)

Then ¢ (M, N) is uniquely determined for all M and N (0 <i<<k),
and

?Mz

ck,a(M s N )
0
is the coefficient of q¥ in the power series expansion of

M1 (L= )7 I (L+ g o -+ + g™,
n=1 m=1
n=0 (mod A)

n=0.+Az (mod A(2k-+1))
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Proor: We define

Crilx;9) =1 — xiq" + g (— Drxhugt/2 @R+ DatutD—in
w=1
(1 —xq)--- (1 — xq*)

% (1 _ xiq(2u+1)i) (1 — q) — (1 — qﬂ)

Selberg [7, p. 4, Eq. 3] has proved
Cri(x; @) = Cria(x; @) + X1 — xq)C p—ia(xq; ).
If we define

oo

0r,i(x: @) = CuiGhi ) 11 (1~ ¥g)* 11

n=1

(1 + x%qe® L ... L xarqar”),
then

Or,i(x; q) = Qpi1(x; q) + xM-DgA-D(1 L xagee - ... |- xorger)
X Qpp—i+1(Xq; q)- (*)

We may expand Q, ;(x; q) as follows

Qrix;9) = X X by oM, N)xMg¥, Ix|<1, |q] <l
N=0 M=0
We then easily verify by means of the definition of Q; ;(x; ¢) and (*)
that the by, ;(M, N) satisfy (2.1), (2.2), and (2.3). It follows by mathema-
tical induction that these three conditions define the by, ;(M, N) uniquely.
Also by ,(M, N)=0 if M > N follows by mathematical induction.
Therefore
cri(M, N) = by ;(M, N),

and
00 N
> (z cri(M, N))qN
N=0 \M=0
co N
-3 ( S by (M, N))qN
N=0 M=0
= Opl;q)
= 1 =) (1 + g+ o+ g
Z:; {mod 4) m=t

n=0+1¢ (mod A(2k+1))

(by Jacobi’s identity [4, p. 282]). Thus the lemma follows.
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LeMMA 2. Let O =0y <+ <o, <A, 0 <a <k all be integers.
Let p;, (M, N) denote the number of partitions of N into M parts of the
form 232, f; - i (where f; > 0 denotes the number of times the summand i
appears in the partition) with (1) f; < Aa — 1; (2) for all i, f; = o,
(mod ) for some j; (3) iff; = o; (mod A), then f; + fin < Ak + o; — 1.
We also define p;, ,(0,0) = 1, p; (M, N) = O if either M or N is non-po-
sitive and not both are zero. Finally we set p;, o(M, N) = O for all k, M, N.
Then the py (M, N) satisfy (2.1), (2.2), and (2.3) of Lemma 1.

ProoF: (2.1) and (2.2) are true by definition. We now prove (2.3).

DPrei(M, N) — ppi1(M, N) counts the number of partitions of the
type defined in the statement of the lemma with the added condition that
1 appears at least A(i — 1) times and at most Ai — 1 times as a summand.
Therefore there are exactly r types of partitions being enumerated; they
are classified by

h=MWi—D+eog (Asj<T),
Since f; = a; (mod 1), f1 + f; < ik + «; — 1 implies

Now let us subtract 1 from every summand of the partition under
consideration. Since 1 appeared exactly A(i — 1) + «; times formerly,
the number of summands has been reduced to M — A(i — 1) — o;.
Since there were M summands originally, we are now partitioning
N — M. Since 2 originally appeared at most A(k — { + 1) — 1 times,
now 1 appears at most A(k — i + 1) — 1 times. Consequency the parti-
tion has been transformed into one enumerated by

Prg-in(M — 20 — 1) — a;, N — M).
The above process establishes a one-to-one correspondence between
those partitions enumerated by

Pri{M, N) — py ;1(M, N)
for which

and those partitions enumerated by

Pij—icaM — 2(i— 1)~ a;, N — M).
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Thus

r
Pri(M,N) — p i (M, N) = 3} pppinniM — 2(i — 1) — o;, N—M).
J=1

Thus the lemma is established.

LEMMA 3. Let 0 = oy < +++ <, < A, 0 < a <<k all be integers. Let
By, o(N) denote the number of partitions of N of the form X2, f; - i, with
M AA1Za—1;(Q2) foralli, f; = a; (mod 2) for some j; 3) if f; =
(mod ), fi+ finn = Ak + a; — 1; Bpo(0)=1. Then By ,(N) is the
coefficient of q¥ in the power series expansion of

[ (I—=gm™ 11 (4 g™ + - + go™).
n=1 m=1
n=0 (mod A)

n=0.%+Aa (mod A(2k+1))
ProOOF: We note that

N
Bk,a(N) = Z pk‘a(Ma N)

M=0

where py (M, N) is defined in Lemma 2. By Lemma 2 applied to Lemma
1, we see that 227, Pr.o(M,N) is the desired coefficient. Hence the result
follows.

3. PARTITION THEOREMS

We may now prove a great number of partition theorems of the
Rogers-Ramanujan type by noting that the infinite product in Lemma 3
is the generating function for partition functions related to partitions
in which the summands are restricted to certain arithmetic progressions.
We give two of many possible examples.

THEOREM 1. Let 4 > 0,0 < a < k be integers. Let A, ;. .(N) denote the
number of partitions of N into parts not of the forms A(2k + 1)m,
AQk + Ym 4+ Aa, A2k + U)m + A2k 4+ 1 — a). Let B, ; o(N) denote
the number of partitions of N of the form 22, f; - i, where (1) f; < la — 1;
Q) if fi=almod ) (0 <« <), then f; + fiuy < ik + a — 1. Then

A}.ka(N) Blka(N)
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ProoF: In Lemma 3, take r=14, o; = j— 1 (1 < j<<r). Then
B, 1 o(N) is the coefficient of ¢¥ in the power series expansion of

H (1 — qn)—l H (] + qm = q(l—l)m)
"o (mod 2 mt

n=0.%x2z (mod A(2k-+1))

©0 (1 . ql(2k+1)(n+1))(1 — qﬂ(2k+1)n+la‘)(] — ql(2k+l)n+l(2k+1—a))
- Eo 1 — g
= }: Al,k,a(N)qN'

N=0

Therefore
A; 1o(N) = B, 1 o(N).

CoroLLARY 1.1. The Rogers-Ramanujan-Gordon identities (given
in Section 1).

Proof: In Theorem 1, take 4 = 1.

COROLLARY 1.2. The Euler-Glaisher theorem (given in Section 1).

ProoF: Take A =r, k =a =1 in Theorem 1. 4,, () denotes the
number of partitions of N into parts = 0, 4 r(mod 3 r), i.e., parts
= 0 (mod r). Let us now consider a general partition 232, f; - i enu-
merated by B, ; ;(N). We first note that if f; > 2 r, then f; + f;,, = 27,
which contradicts the restriction that f; + f;,; <r+r—1=2r— 1.
Suppose fi=r+ f where 0 < <r—1, then f;+fin=>r+ 8,
which contradicts the restriction that, since f; = f (modr), f; -+ fina
<r+4 f — 1. Consequently f; < r for all i.

Now suppose f; << r for all i; I claim that such a partition is one of
those enumerated by B, ; ;(N). Clearly the condition that f; <r — 1 is
fulfilled. If f; = B (mod r) (0 < B < r), then since f; < r, f; = [3; thus,
fi + fisa < + r — 1. Thus the second condition is fulfilled. Therefore
B, ; 1(N) enumerates the number of partitions of N in which each part
appears at most r — 1 times. Thus the result follows.

We now give a corollary of a rather different nature.

COROLLARY 1.3. By 51ri2,c2r0a(NV) = Baria k,a(N).

Proor: This follows directly from Theorem 1 since both

A1,2rk+r+k,(2r+1)a(N ) and Asgei1,k,0(N)
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enumerate the number of partitions of N into parts
# 0, +(2r + Da (mod(2r + 1) (2k + 1)).

It would be of interest to prove this result by a more direct means.

THEOREM 2. Let 0 < pu << 4, 2uld, 0 <a <k all be integers. Let
A, 1.1,a(N) denote the number of partitions of N into parts which are either
= p(mod 2u) or else =0(mod i) and =£ 0,4 Aa(mod A2k + 1)).
Let B, ; 1.4(N) denote the number of partitions of N of the form X2, f; + i
with (1) fi<<Zda—1; 2) for all i, f; =0, or p(mod A); B) if fi=«
(mod A) (where « is either O or p), then f; + fi,1 < Ak + o — 1.

Then

Au,l,k,a(N) = By,l,k,a(N)-

ProoF: By Lemma 3, B, ; ; (N) is the coeflicient of ¢¥ in the power
series expansion of

oo

(o]
I1 A —=gn*II A+ g™
n=1 m=1

n=0 (mod 1)
n=0.%+iz (mod A(2k+1))

()

oo
= 1l (I — ¢ I (A — gomera?
n=1 m=0
n=0 (mod 1)
n=0.,+2Aa (mod A(2k+1,)

(by Euler’s identity [4, p. 277])

= Z A,u,l,k,a(N)qN'
N=0

Therefore
B,u,l,k,a(N) = A,u,l,k,a(N)'

If y =k =a =1, =2, then Theorem 2 reduces to Euler’s theorem;
however, I know of no other special cases of the above theorem having
been proved before. I thus give an example with y = 1, A=k =a =2
(which incidentally also follows from Theorem 1 with A = k = a = 2).

COROLLARY 2.1. A; 35 4(N) = B 44 :(N). A;2.2(N) is the number
of partitions of N into parts =1, 2, 3, 5,7, 8, 9 (mod 10). B, ;5 +(N)
denotes the number of partitions of N into parts such that each part appears
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at most three times with the restrictions that if n appears as a summand two
or three times then (n ++ 1) may appear at most once, and if n appears once
or not at all then (n -+ 1) may appear at most three times.

For example, if N = 10, the partitions enumerated by 4, ,,,(10)
are

94+1,84+2,84+14+1,743,74+2+1,74+14+1+1,54+5,
S4+342,54+3+14+1,54+2424+1L,5424+1+141,
S+ +14+14+1+1,3+34+341,343+2+42,
34+342+141, 34+34+14+14+1+1, 34+24+24+241,
3+24+24+1 4141, 3424141414141,
3+14+1+1 41414141, 242424242,
24242424141, 2424241414141,
24+24+1+14+1+1414+0L,24+14+1+14+14+14+141
I1+14+1+14+14+14+14+141+1.

Thus 4, 5, 2(10) = 26.
The pautitions enumerated by B, ,,, (10) are

10, 941, 842, 8141, 743, T--2+1, T4+14+1+1,
614 64341, 61242 64+2+141, 545 5+4+1,
543402 5434141, 5424241, 542414141,
44442 44441+1, 44343, 4434241,
443414141, 4424242, 343+43+1,

343 —24141, 342424241

Thus B 5, (10) = 26 also.
We conclude with the following rather curious result.

COROLLARY 2.2. Let a(N) be the number of partitions of N into an odd
number of parts of the form N =b; + -+ + by,.; (s =0, otherwise
arbitrary) such that by > b;,1, by > byirs, a(0) = 0. Then

Bl,4,2,1(N) = a(N + 1).

Proor: By Theorem 2,
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> B1,4,2,1(N) gV = I1 Q—=gH*II d+4gm
N=0 = m=1
n=0 (mod 4)

n=0,+4 (mod 20)

— 103[ (1 — q20n+8)—1(1 — q20n+12)—~1 ﬁ (1 + q’m)
n=0

m=1

n+1)?
_100 q(+)

A=Y (e b))
[8 p. 162, eq. 96]

= g1 X a(N)g"
N=

1

= > a(N + Dg¥.
N=0

The identification of the generating function for a(N) follows by the
standard graph-theoretic technique [4, p. 291] using the fact that

A+12=14+142+2+ - tntn+@+1).

Similar results may be obtained from some of the other identities of
Slater [8].

REFERENCES

1. G. E. ANDREWS, An Analytic Proof of the Rogers-Ramanujan-Gordon Identities,
Amer. J. Math. To appear,

2. J. W. L. GLAISHER, A Theorem in Partitions, Messenger of Math. 12 (1883), 158-170.

3. B. GorpoN, A Combinatorial Generalization of the Rogers-Ramanujan Identities,
Amer. J. Math. 83 (1961), 393-399.

4. G. H. HarpY AND E. M. WRIGHT, An Introduction to the Theory of Numbers,
4th ed. Oxford University Press, London, 1960.

5. L. J. RoGgers AND S. RamMaNuiaN, Proof of Certain Identities in Combinatory
Analysis, Proc. Camb. Philos. Soc. 19 (1919), 211-216.

6. 1. J. Scuur, Ein Beitrag zur additiven Zahlentheorie, Akad. Wiss. Berlin, Sitz-
ungsber. 1917, 302-321.

7. A. Selberg, Uber einige arithmetische Identititen, Avh. Norske Akad. Vid.-Oslo
1936, No. 8.

8. L. J. SLATER, Further Identities of the Rogers-Ramanujan Type, Proc. London Math.
Soc. 54 (1952), 147-167.



