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ABSTRACT 

In this paper a partit ion theorem is proved which contains the Rogers-Ramanujan 
identities and Euler's partition theorem as special cases. Other partition theorems of 
the Rogers-Ramanujan type are proved. 

l .  INTRODUCTION 

In [3], Gordon proved the following striking generalization of the 
Rogers-Ramanujan identities. 

THEOREM. Let  0 < a < k be integers. Let Ak,a(N) denote the number 

of  partitions of  N into parts not o f  the forms (2k + 1)m, (2k + 1)m + a, 
(2k ~ 1)m + (2k + 1 -- a). Let Bk,~(N) denote the number of  partitions 

of  N of  the form N = b l +  . "  + b e  (s > 1, otherwise arbitrary), 
bi ~ bi+x , bi -- b~+~_l >_ 2, and 1 appearing as a summand at most a -- 1 
times. Then, 

Ak,a(N) = B~,a(N). 

If k = 2, a = 1, 2, the above result reduces to the Rogers-Ramanujan 
identities [4, p. 291]. Gordon's method of proof was an extension of 
Schur's first proof of the Rogers-Ramanujan identities [6]. Gordon re- 
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marks that his theorem parallels Glaisher 's extension of  Euler's theorem. 
Glaisher [2] proved: 

THEOREM. Let r > 0 be an integer. Let  At(N) denote the number of  
partitions of  N into parts not of  the form rm (i.e., parts not divisible by r). 
Let Br(N) denote the number of  parttitions of  N of  the form N = bl 
�9 . .  4- b8 (s ~ 1, otherwise arbitrary), b~ ~ b i + l ,  b i - -  bi+r_ 1 ~ 1 (i.e., 
no part appears more than r -- 1 times). Then 

At(N) = Br(N). 

I f  r = 2, the above theorem reduces to Euler's theorem [4, p. 277]. 
In  [1], a proof  of  Gordon 's  theorem was given which was based on an 

extension of a technique of Rogers and Ramanujan [5] and A. Selberg 
[7]. In this paper we shall extend this method even further and shall obtain 
(among other results) a general partition theorem which contains not only 
the Rogers-Ramanujan-Gordon identities as a special case but also 
contains the Euler-Glaisher theorem. 

2. P R E L I M I N A R Y  LEMMAS 

Our main results will be based on the three following lemmas. 

LEMMA 1. Let 0 ---- 17,1 < ~  < (],~. < 2 ,  0 < a < k all be integers. 
Let c~,i(M, N)  be given for all integers M and N with 0 < i < k, and 

e~,0(M, N) = 0 for all k, M, N; (2.1) 

c k ~ ( M , N ) = { l o  if M = N = 0  and l < ~ i < ~ k ,  ;(2.2) 
' if either M < 0 or N < 0 and not both are zero 

ck,i(M, N) -- Ck,~:_l(M, N) = ~ ck ,k_i+l(M--2( i - - l ) - -aj ,  N - - M ) .  
(2.3) j = l  

Then c~,~(M, N) is uniquely determined for all M and N (0 ~ i ~ k), 
and 

N 

Z ek,a(M, N) 
M=0 

is the coefficient o f  q N in the power series expansion o f  
o o  c~o 

1~ (1 - -  qn)-I [I (1 -~ q""~ + . . .  + q~'~).  
n = l  m = l  
n~o (mod .D 

n=-O.-t-2a (rood 2(2k+1)) 



424 ANDREWS 

PROOF: We define 
co 

C~,i(x; q) = 1 - -  xiq i -~ ~a (-- l)~xk~q 1/2(2k+i)~(a+l)-ia 
/ t = l  

• (1 - -  xiq (2~+1)i) (1 -- xq) . . .  (1 -- xq.) 
(1- 25 ~ (1 -- qz) 

Selberg [7, p. 4, Eq. 3] has proved 

C~,i(x; q) = Ck,i_l(x; q) + xi lqi 1 0 _ xq)C~, k_i+l(xq; q). 

If we define 
oo co  

Qk,i(x; q) ---- C~,z(xa; qZ) H (1 - -  x ) ' q ~ Z )  - 1  H 
j = l  n = l  

(1 + x"*q "*n + . . .  4- xarqarn), 
then 

QLi(x; q) ~- Q~,i_~(x; q) + xZ(i-X)q~(i-l)(1 + x"2q ~ + ""  + x~176 

• Qk,k-i+a(xq; q). (*) 

We may expand Qk,,i(x; q) as follows 

co  

Qk,i(x; q) = ~ Y~ b~.,i(M, N ) x i q  N, ] x l ~ 1, I q I < 1. 
N = 0  M = 0  

We then easily verify by means of the definition of Qk,i(x; q) and (*) 
that the bk,i(M, N) satisfy (2.1), (2.2), and (2.3). It follows by mathema- 
tical induction that these three conditions define the bk,i(M, N) uniquely. 
Also bk,~(M, N ) =  0 if M > N follows by mathematical induction. 
Therefore 

ck,i(M, N) : bk,i(M, N), 

and 
3/" 

co N 

= Qk,~(1 ; q) 
co 

= 1~ (1 --qn)-i ~ (1 + qa2m + . . .  + qa~m) 
J~=l m = l  
n ~ 0  ( r o o d  2) 

n=-O• ( r o o d  2 ( 2 k + 1 ) )  

(by Jacobi's identity [4, p. 282]). Thus the Iemma follows. 
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LEMMA 2. Let 0 = cq < . .  �9 < a r < 2, 0 < a <_ k all be integers. 
Let Pk,a(M, N)  denote the number of  partitions of  N into M parts of  the 
form E ~~ i=1 f i  " i (where f i  ~ 0 denotes the number o f  times the summand i 
appears in the partition) with (1) f l  ~< 2a -- 1 ; (2) for all i, f i  ~-- aj 
(mod 2) for some j;  (3) i f f i  ~ aj (rood 2), thenf~ +J~+l  ~ 2k q- a~ -- 1. 
We also define pe,a(O, O) = 1, Pk,a(M, N) = 0 if  either M or N is non-po- 
sitive and not both are zero. Finally we set Pk,o(M, N) = O for all k, M, N. 
Then the Pk,i(M, N) satisfy (2.1), (2.2), and (2.3) of Lemma 1. 

PROOF: (2.1) and (2.2) are true by definition. We now prove (2.3). 

Pk,i(M, N ) -  Pk,i-l(M, N)  counts the number  o f  parti t ions o f  the 
type defined in the statement o f  the l emma with the added condit ion that 
1 appears at least 2(i - -  1) times and at mos t  2i --  1 times as a summand.  

Therefore there are exactly r types o f  part i t ions being enumerated;  they 
are classified by 

fx = / ~ ( i - -  1 ) + a j  (1 ~ j ~ r ) ,  

Since f l  ~ a~ (mod 2), f~ § f2 G 2k -q- aj --  1 implies 

f 2 - - < 2 k q - a j - -  1 - - 2 ( i - -  l ) - - c  9 = 2 ( k - i - t -  1 ) - -  1. 

N o w  let us subtract  1 f rom every s u m m a n d  of  the part i t ion under 
consideration. Since 1 appeared exactly 2(i --  1) q- a~ times formerly, 
the number  o f  summands  has been reduced to M -- ;t(i --  1) --  a~. 
Since there were M summands  originally, we are now parti t ioning 

N -  M. Since 2 originally appeared at mos t  2(k -- i q- 1) --  1 times, 
now 1 appears at mos t  2(k -- i q- 1) --  1 times. Consequency the parti- 
t ion has been t ransformed into one enumerated by 

Pk,k-i+~(M -- ,~(i -- 1) -- a j ,  N -- M). 

The above process establishes a one- to-one correspondence between 
those parti t ions enumerated by 

Pk,i(M, N)  -- pk,i_l(M, N) 

for which 

A = 2 ( i - -  1 ) - t - a  3 

and those partit ions enumerated by 

p~,k_i_~(M -- 2(i -- 1) --  a~, N -- M). 
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Thus 

pk,,z(M, N) -- pk,i_l(M, N) = ~ Pk,~, ~+~(M-- 2(i -- 1) -- aj,  N- -M) .  
3==1 

Thus the lemma is established. 

LEMMA 3. Let 0 = al < �9 �9 �9 < % < 2, 0 < a ~ k all be integers. Let 

Bk,a(N) denote the number of  partitions of  N of  the form ~--.ai(~=xfi �9 i, with 
( l ) f l  < 2a -- 1; (2)for all i, f i  -- a i (mod 2) for some j; (3) i f  f i  -~ c 9 
(mod ,;t), j~ q- J~+l --<-- ,;tk + a 3 -- 1 ; B~,,(0) ---- 1. Then Bk,,(N) is the 
coefficient of  qN in the power series expansion o f  

oo oo 

I-[ (1 ~ qn)-I I I  (1 + q,~2m + . . .  + q,~rm). 
n = l  m = l  
n ~ O  ( m o d  2) 

n~O.rk2a ( r o o d  2 ( 2 k + 1 ) )  

PROOF: We note that 
N 

Bk,a(N) = ~ pk,,~(M, N) 
M = O  

where Pk,a(M, N) is defined in Lemma 2. By Lemma 2 applied to Lemma 
1, we see that ~ = o p k , , ( M , N )  is the desired coefficient. Hence the result 
follows. 

3. PARTITION THEOREMS 

We may now prove a great number of  partition theorems of the 
Rogers-Ramanujan type by noting that the infinite product in Lemma 3 
is the generating function for partition functions related to partitions 
in which the summands are restricted to certain arithmetic progressions. 
We give two of many possible examples. 

THEOREM 1. Let 2 > 0, 0 < a ~ k be integers. Let  A2,k,a(N ) denote the 
number of  partitions of N into parts not of  the forms 2(2k + 1)m, 
2(2k + 1)m + 2a, 2(2k + 1)m q- 2(2k § 1 -- a). Let B2,k,a(N) denote 

the number of  partitions of  N of  the form ~=x f i �9 i, where (1)fl  ~ 2a -- I ; 
(2) i f  f~ ~ a(mod 2) (O ~ a < 2), then f i  q- 3~+l ~ 2k + a -- 1. Then 

A2,k,a(N) = B~,k,a(N). 
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PROOF: In  L e m m a  3, take r = 2, aj  = j -  1 (1 ~ j _ ~  r). Then 
Bz,~,~(N) is the coefficient of  qN in the power  series expansion of  

o o  ~ o  

l ]  (1 - -  qn) 1 [ I  ( l  + q'** + . . . .  ? q(~-l)m) 
n = l  m = l  
n---0 (rood 2) 

n~O.:zl:2a (rood 2(2k+1)) 

oo (1 -- ql(2~+i)(n+ll)(1 -- q~(~k+l)n+z~)(l - -  q,~(2k+a)n+~(2k+i-a)) 
= H  

n~O 
o o  

= ~, A,L~,,(N)qN. 
N=O 

Therefore  

(1 - -  qn+l) 

A.~,k,a(N) ---- Ba,k,a(N). 

COROLLARY 1.1. The Rogers-Ramanujan-Gordon 
in Section 1). 

PROOF: In  Theorem 1, take 2 = 1. 

identities (given 

COROLLARY 1.2. The Euler-Glaisher theorem (given in Section 1). 

PROOF: T a k e  2 = r, k ---- a ~-- 1 in T h e o r e m  1. A r , I , I ( N  ) denotes the 
number  of  part i t ions o f  N into parts  ~ 0, 4- r (mod  3 r), i.e., parts  

0 (mod  r). Let  us now consider a general  par t i t ion Y '~ l J i  �9 i enu- 
merated  by  Br,I,I(N). We first note that  if3~ ~ 2 r, then j~ + j~+l ~ 2 r, 
which contradicts  the restriction that  3~ -? J~+~ --< r q- r - -  1 =- 2 r --  1. 

Suppose  j ~ = r - + - f l  where 0 ~ / 3 _ ~ r - -  1, then ) ~ + f ~ + l ~ r + f l ,  
which contradicts  the restriction that,  since f i  -=/3 (rood r), j~ + J~+l 
_~ r §  --  1. Consequent ly  j~ < r for  all i. 

N o w  suppose j~ < r for  all i; I c laim tha t  such a par t i t ion is one of  
those enumera ted  by  Br,I,~(N). Clearly the condit ion tha t  f l  --~ r --  1 is 
fulfilled. I f f i  - - /3  (rood r) (0 ~ / 3  < r), then since f~ < r,f~ = / 3 ;  thus, 
J i  § J~+l --~/3 + r --  1. Thus  the second condi t ion is fulfilled. Therefore 
B~,I,I(N) enumerates  the n u m b e r  of  par t i t ions  of  N in which each par t  
appears  at mos t  r --  1 t imes, Thus the result  follows. 

We now give a corol lary of  a ra ther  different nature. 

C O R O L L A R Y  1 . 3 .  B1,2rk+r+k,(2r+l)a(N ) = B2r+I,~,.(N). 

PROOF: This follows directly f rom T h e o r e m  1 since bo th  

A1,2rk+r+k,(2r+1)a(N) and A2r+l,k,.(N) 
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enumera te  the number  of  par t i t ions  of  N into par ts  

0, •  + 1)a (mod(2r  + 1) (2k + 1)). 

I t  would be o f  interest to p rove  this result by a more  direct means.  

oo 

II 
n = l  

n~O.5:2a 

- _  fi 
n=----O 

n ~ O . •  

(by Euler 's  identi ty [4, p. 277]) 

= Z Au,,Lk,a(N)q N. 
N=0 

THEOREM 2. Let 0 < # < 2, 2/z[2, 0 < a < k all be integers. Let 
Aa,2,k,a(N) denote the number of  partitions of  N into parts which are either 

#(rood 2#) or else ~ 0(rood 2) and ~ O, ~ 2a(mod  2(2k + 1)). 

Let B~,~,k,a(N) denote the number of  partitions of  N of  the form ~ = l f i  �9 i 
with (1) f~ ~ 2a --  1; (2) for all i, f i  ~-- O, or # ( m o d  2); (3) / f j~  ~ 
(mod 2) (where a is either 0 or tz), thenf~ + f i + l  --< 2k + a --  1. 

Then 
Al,,2,k,a(N ) = B.,a,k,a(N ). 

PROOF: By L e m m a  3, B~,,~,~,,,(N) is the coefficient o f  qN in the power  
series expansion of  

(1 -- q")-~ f i  (1 + q.m) 
~'~=1 

(rood 2) 
(rood ~,(2k+l)) 

(1 --  qn)-I f i  (1 -- q2m,+~,)-~ 
m=0 

(rood ;0 
(mod 2(2k+1,) 

Therefore  
Bz,a,k,a(N) = A~,a,k,a(N). 

I f #  = k = a = 1, 2 = 2, then Theorem 2 reduces to Euler 's  theorem;  
however,  I k n o w  of  no other  special cases of  the above theorem having 
been proved  before.  I thus give an example  with # - -  1, 2 = k ---- a = 2 
(which incidentally also follows f rom T h e o r e m  1 with 2 = k ---- a = 2). 

COROLLARY 2.1. AI,2,~,2(N)= B~,2,2,2(N). Ax,2,2,z(N) is the number 
of  partitions of  N into parts ~ 1, 2, 3, 5, 7, 8, 9 (mod 10). B~,~,%~(N) 
denotes the number of  partitions of  N into parts such that each part appears 
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at most three times with the restrictions that i f  n appears as a summand two 

or three times then (n + 1) may appear at most once, and i f  n appears once 
or not at all then (n + 1) may appear at most three times. 

For example, if N = 10, the partitions enumerated by A1,~,2,2(10) 
are 

9 + 1 , 8  

5 + 3 +  

5 + 1 + 1 + 1 +  

3 + 3 + 2 + 1 +  

3 + 2 + 2 + 1 +  

3 + 1 + 1 + 1 +  

2 + 2 + 2 + 2 +  

2 + 2 + 1 + 1 +  

1 + 1 + 1 + 1 +  

+ 2 , 8 + 1 + 1 , 7 + 3 , 7 + 2 + 1 , 7 + 1 + 1 + 1 , 5 + 5 ,  

2 , 5 + 3 + 1 + 1 , 5 + 2 + 2 + 1 , 5 + 2 + 1 + 1 + 1 ,  

1 + 1 , 3 + 3 + 3 + 1 , 3 + 3 + 2 + 2 ,  

1 , 3 + 3 + 1 + 1 + 1 + 1 , 3 + 2 + 2 + 2 + 1 ,  

1 + 1 , 3 + 2 + 1 + 1 + 1 + 1 + 1 ,  

1 + 1 + 1 + 1 , 2 + 2 + 2 + 2 + 2 ,  

1 + 1 , 2 + 2 + 2 + 1 + 1 + 1 + 1 ,  

1 + 1 + 1 + 1 , 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1  

1 + 1 + 1 + 1 + 1 + 1 .  

ThusA1,e,e,2(10)=26. 
Thepau t i t ionsenumera tedbyB1 ,2 ,2 ,2 ( lO)  are 

1 0 , 9 + 1 , 8 + 2 , 8 + 1 + 1 , 7 + 3 , 7 + 2 + 1 , 7 + 1 + 1 + 1 ,  

6 + 4 , 6 + 3 + 1 , 6 + 2 + 2 , 6 + 2 + 1 + 1 , 5 + 5 , 5 + 4 + 1 ,  

5 + 3 + 2 , 5 + 3 + 1 + 1 , 5 + 2 + 2 + 1 , 5 + 2 + 1 + 1 + I ,  

4 + 4 + 2 , 4 + 4 + 1 + 1 , 4 + 3 + 3 , 4 + 3 + 2 + 1 ,  

4 + 3 + 1 + 1 + 1 , 4 + 2 + 2 + 2 , 3 + 3 + 3 + 1 ,  

3 + 3 - - 2 + 1 + 1 , 3 + 2 + 2 + 2 + 1 .  

Thus B1,2,2,2(10)= 26 also. 
We conclude with the following rather curious result, 

COROLLARY 2.2. Let a(N) be the number o f  partitions of  N into an odd 

number o f  parts o f  the form N = bl + . . .  + b2s+l (s ~ O, otherwise 
arbitrary) such that bl ~ b~+l , b2i+l > bz~+2, a(0) = 0. Then 

B1,4,2,1(N ) = a(N + 1). 

PROOF: By Theorem 2, 
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oo 

y~ B1,4,~,I(N ) qN = 
N=0 

[8 p. 162,  eq .  96] 

f i  (1 -- qn)-I I~ (1 + qm) 
n =  7R=1 
n---O (rood 4) 

n~O,-t- 4 (rood 20) 
oo oo 

: I]  (1 -- q2~ -- q2On+12)-I H (1 + q,n) 
n = 0  ~ n = l  

oo q(n+l) ~ 

: q - 1  n_~_.0 (1 - -  q)  - - -  -(]- - -  q2~+1) 

_ q-1 ~ a(N)qAr 
N = I  

c~  

~ a(N + 1)q N. 
N=0 

The identification of the generating function for a(N) follows by the 
standard graph-theoretic technique [4, p. 291] using the fact that 

( n +  1) 2--  1 + 1 + 2 + 2 +  . . .  + n + n +  (n+ 1). 

Similar results may be obtained from some of the other identities of 
Slater [8]. 
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