Partition Theorems Related to the Rogers-Ramanujan Identities*

George E. Andrews
Department of Mathematics, The Pennsylvania State
University, University Park, Pennsylvania
Communicated by Gian-Carlo Rota

Abstract

In this paper a partition theorem is proved which contains the Rogers-Ramanujan identities and Euler's partition theorem as special cases. Other partition theorems of the Rogers-Ramanujan type are proved.

1. Introduction

In [3], Gordon proved the following striking generalization of the Rogers-Ramanujan identities.

Theorem. Let $0<a \leq k$ be integers. Let $A_{k, a}(N)$ denote the number of partitions of N into parts not of the forms $(2 k+1) m,(2 k+1) m+a$, $(2 k+1) m+(2 k+1-a)$. Let $B_{k, a}(N)$ denote the number of partitions of N of the form $N=b_{1}+\cdots+b_{s} \quad(s \geq 1$, otherwise arbitrary), $b_{i} \geq b_{i+1}, b_{i}-b_{i+k-1} \geq 2$, and 1 appearing as a summand at most $a-1$ times. Then,

$$
A_{k, a}(N)=B_{k, a}(N) .
$$

If $k=2, a=1,2$, the above result reduces to the Rogers-Ramanujan identities [4, p. 291]. Gordon's method of proof was an extension of Schur's first proof of the Rogers-Ramanujan identities [6]. Gordon re-

[^0]marks that his theorem parallels Glaisher's extension of Euler's theorem. Glaisher [2] proved:

Theorem. Let $r>0$ be an integer. Let $A_{r}(N)$ denote the number of partitions of N into parts not of the form rm (i.e., parts not divisible by r). Let $B_{r}(N)$ denote the number of parttitions of N of the form $N=b_{1}$ $\cdots+b_{s}\left(s \geq 1\right.$, otherwise arbitrary), $b_{i} \geq b_{i+1}, b_{i}-b_{i+r-1} \geq 1$ (i.e., no part appears more than $r-1$ times). Then

$$
A_{r}(N)=B_{r}(N)
$$

If $r=2$, the above theorem reduces to Euler's theorem [4, p. 277].
In [1], a proof of Gordon's theorem was given which was based on an extension of a technique of Rogers and Ramanujan [5] and A. Selberg [7]. In this paper we shall extend this method even further and shall obtain (among other results) a general partition theorem which contains not only the Rogers-Ramanujan-Gordon identities as a special case but also contains the Euler-Glaisher theorem.

2. Preliminary Lemmas

Our main results will be based on the three following lemmas.
Lemma 1. Let $0=\alpha_{1}<\cdots<\alpha_{r}<\lambda, 0<a \leq k$ all be integers. Let $c_{k, i}(M, N)$ be given for all integers M and N with $0 \leq i \leq k$, and $c_{k, 0}(M, N)=0 \quad$ for all k, M, N;
$c_{k, i}(M, N)=\left\{\begin{array}{ll}1 & \text { if } M=N=0 \\ 0 & \text { if }\end{array} \quad\right.$ and $\quad 1 \leqq i \leqq k$,
$c_{k, i}(M, N)-c_{k, i-1}(M, N)=\sum_{j=1}^{r} c_{k, k-i+1}\left(M-\lambda(i-1)-\alpha_{j}, N-M\right)$.
Then $c_{k, i}(M, N)$ is uniquely determined for all M and $N(0 \leq i \leq k)$, and

$$
\sum_{M=0}^{N} c_{k, a}(M, N)
$$

is the coefficient of q^{N} in the power series expansion of

$$
\prod_{\substack{n=1 \\ n=0 \\ n=0 . \pm \lambda(\bmod \lambda) \\ \infty \\ m o d \\ m \\ \hline}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{\alpha_{2} m}+\cdots+q^{\alpha_{r} m}\right)
$$

Proof: We define

$$
\begin{aligned}
C_{k, i}(x ; q) & =1-x^{i} q^{i}+\sum_{\mu=1}^{\infty}(-1)^{\mu} x^{k \mu} q^{1 / 2(2 k+1) \mu(\mu+1)-i \mu} \\
& \times\left(1-x^{i} q^{(2 \mu+1) i}\right) \frac{(1-x q) \cdots\left(1-x q^{\mu}\right)}{(1-q) \cdots\left(1-q^{\mu}\right)}
\end{aligned}
$$

Selberg [7, p. 4, Eq. 3] has proved

$$
C_{k, i}(x ; q)=C_{k, i-1}(x ; q)+x^{i-1} q^{i-1}(1-x q) C_{k, k-i+1}(x q ; q)
$$

If we define

$$
\begin{aligned}
& Q_{k, i}(x ; q)=C_{k, i}\left(x^{\lambda} ; q^{\lambda}\right) \prod_{j=1}^{\infty}\left(1-x^{\lambda} q^{j \lambda}\right)^{-1} \prod_{n=1}^{\infty} \\
&\left(1+x^{\alpha_{2}} q^{\alpha_{2} n}+\cdots+x^{a_{r}} q^{\alpha_{r} n}\right)
\end{aligned}
$$

then

$$
\begin{align*}
Q_{k, i}(x ; q) & =Q_{k, i-1}(x ; q)+x^{\lambda(i-1)} q^{\lambda(i-1)}\left(1+x^{\alpha_{2}} q^{\alpha_{2}}+\cdots+x^{a_{r}} q^{a_{r}}\right) \\
& \times Q_{k, k-i+1}(x q ; q) \tag{*}
\end{align*}
$$

We may expand $Q_{k, i}(x ; q)$ as follows

$$
Q_{k, i}(x ; q)=\sum_{N=0}^{\infty} \sum_{M=0}^{\infty} b_{k, i}(M, N) x^{M} q^{N}, \quad|x| \leq 1,|q|<1 .
$$

We then easily verify by means of the definition of $Q_{k, i}(x ; q)$ and (*) that the $b_{k, i}(M, N)$ satisfy (2.1), (2.2), and (2.3). It follows by mathematical induction that these three conditions define the $b_{k, i}(M, N)$ uniquely. Also $b_{k, i}(M, N)=0$ if $M>N$ follows by mathematical induction. Therefore

$$
c_{k, i}(M, N)=b_{k, i}(M, N)
$$

and

$$
\begin{aligned}
\sum_{N=0}^{\infty} & \left(\sum_{M=0}^{N} c_{k, i}(M, N)\right) q^{N} \\
& =\sum_{N=0}^{\infty}\left(\sum_{M=0}^{N} b_{k, i}(M, N)\right) q^{N} \\
& =Q_{k, i}(1 ; q) \\
& \left.=\prod_{\substack{n=1 \\
n=0 \\
n=0 \pm \lambda i(\bmod \lambda) \\
\infty}}^{\infty}(2 k+1)\right)
\end{aligned}
$$

(by Jacobi's identity [4, p. 282]). Thus the lemma follows.

Lemma 2. Let $0=\alpha_{1}<\cdots<\alpha_{r}<\lambda, 0<a \leq k$ all be integers. Let $p_{k, a}(M, N)$ denote the number of partitions of N into M parts of the form $\sum_{i=1}^{\infty} f_{i} \cdot i$ (where $f_{i} \geq 0$ denotes the number of times the summand i appears in the partition) with (1) $f_{1} \leq \lambda a-1$; (2) for all $i, f_{i} \equiv \alpha_{j}$ $(\bmod \lambda)$ for some $j ;(3)$ iff $f_{i} \equiv \alpha_{j}(\bmod \lambda)$, then $f_{i}+f_{i+1} \leq \lambda k+\alpha_{j}-1$. We also define $p_{k, a}(0,0)=1, p_{k, a}(M, N)=0$ if either M or N is non-positive and not both are zero. Finally we set $p_{k, 0}(M, N)=0$ for all k, M, N. Then the $p_{k, i}(M, N)$ satisfy (2.1), (2.2), and (2.3) of Lemma 1.

Proof: (2.1) and (2.2) are true by definition. We now prove (2.3).
$p_{k, i}(M, N)-p_{k, i-1}(M, N)$ counts the number of partitions of the type defined in the statement of the lemma with the added condition that 1 appears at least $\lambda(i-1)$ times and at most $\lambda i-1$ times as a summand. Therefore there are exactly r types of partitions being enumerated; they are classified by

$$
f_{1}=\lambda(i-1)+\alpha_{j}(1 \leq j \leq r)
$$

Since $f_{1} \equiv \alpha_{j}(\bmod \lambda), f_{1}+f_{2} \leq \lambda k+\alpha_{j}-1$ implies

$$
f_{2} \leq \lambda k+\alpha_{j}-1-\lambda(i-1)-\alpha_{j}=\lambda(k-i+1)-1 .
$$

Now let us subtract 1 from every summand of the partition under consideration. Since 1 appeared exactly $\lambda(i-1)+\alpha_{j}$ times formerly, the number of summands has been reduced to $M-\lambda(i-1)-\alpha_{j}$. Since there were M summands originally, we are now partitioning $N-M$. Since 2 originally appeared at most $\lambda(k-i+1)-1$ times, now 1 appears at most $\lambda(k-i+1)-1$ times. Consequency the partition has been transformed into one enumerated by

$$
p_{k, k-i+1}\left(M-\lambda(i-1)-\alpha_{j}, N-M\right)
$$

The above process establishes a one-to-one correspondence between those partitions enumerated by

$$
p_{k, i}(M, N)-p_{k, i-1}(M, N)
$$

for which

$$
f_{1}=\lambda(i-1)+\alpha_{j}
$$

and those partitions enumerated by

$$
p_{k, k-i-1}\left(M-\lambda(i-1)-\alpha_{j}, N-M\right)
$$

Thus

$$
p_{k, i}(M, N)-p_{k, i-1}(M, N)=\sum_{j=1}^{r} p_{k, k-i+1}\left(M-\lambda(i-1)-\alpha_{j}, N-M\right)
$$

Thus the lemma is established.

Lemma 3. Let $0=\alpha_{1}<\cdots<\alpha_{r}<\lambda, 0<a \leq k$ all be integers. Let $B_{k, a}(N)$ denote the number of partitions of N of the form $\sum_{i=1}^{\infty} f_{i} \cdot i$, with (1) $f_{1} \leq \lambda a-1$; (2) for all $i, f_{i} \equiv \alpha_{j}(\bmod \lambda)$ for some j; (3) if $f_{i} \equiv \alpha_{j}$ $(\bmod \lambda), f_{i}+f_{i+1} \leqq \lambda k+\alpha_{j}-1 ; B_{k, a}(0)=1$. Then $B_{k, a}(N)$ is the coefficient of q^{N} in the power series expansion of

$$
\prod_{\substack{n=1 \\ n=0(\bmod \lambda) \\ n=0 . \pm \lambda a(\bmod \lambda(2 k+1))}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{\alpha_{2} m}+\cdots+q^{\alpha_{r} m}\right)
$$

Proof: We note that

$$
B_{k, a}(N)=\sum_{M=0}^{N} p_{k . a}(M, N)
$$

where $p_{k, a}(M, N)$ is defined in Lemma 2. By Lemma 2 applied to Lemma 1, we see that $\sum_{M=0}^{N} p_{k, a}(M, N)$ is the desired coefficient. Hence the result follows.

3. Partition Theorems

We may now prove a great number of partition theorems of the Rogers-Ramanujan type by noting that the infinite product in Lemma 3 is the generating function for partition functions related to partitions in which the summands are restricted to certain arithmetic progressions. We give two of many possible examples.

Theorem 1. Let $\lambda>0,0<a \leq k$ be integers. Let $A_{\lambda, k, a}(N)$ denote the number of partitions of N into parts not of the forms $\lambda(2 k+1) m$, $\lambda(2 k+1) m+\lambda a, \lambda(2 k+1) m+\lambda(2 k+1-a)$. Let $B_{\lambda, k, a}(N)$ denote the number of partitions of N of the form $\sum_{i=1}^{\infty} f_{i} \cdot i$, where (1) $f_{1} \leq \lambda a-1$; (2) if $f_{i} \equiv \alpha(\bmod \lambda)(0 \leq \alpha<\lambda)$, then $f_{i}+f_{i+1} \leq \lambda k+\alpha-1$. Then

$$
A_{\lambda, k, a}(N)=B_{\lambda, k, a}(N)
$$

Proof: In Lemma 3, take $r=\lambda, \alpha_{j}=j-1(1 \leq j \leq r)$. Then $B_{\lambda, k, a}(N)$ is the coefficient of q^{N} in the power series expansion of

$$
\begin{aligned}
& \prod_{\substack{n=1 \\
n=0 \\
n=0 . \pm \bmod \lambda) \\
\hline}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{m}+\cdots+q^{(\lambda-1) m}\right) \\
= & \prod_{n=0}^{\infty} \frac{\left(1-q^{\lambda(2 k+1)(n+1)}\right)\left(1-q^{\lambda(2 k+1) n+\lambda a}\right)\left(1-q^{\lambda(2 k+1) n+\lambda(2 k+1-a)}\right)}{\left(1-q^{n+1}\right)} \\
= & \sum_{N=0}^{\infty} A_{\lambda, k, a}(N) q^{N} .
\end{aligned}
$$

Therefore

$$
A_{\lambda, k, a}(N)=B_{\lambda, k, a}(N)
$$

Corollary 1.1. The Rogers-Ramanujan-Gordon identities (given in Section 1).

Proof: In Theorem 1 , take $\lambda=1$.
Corollary 1.2. The Euler-Glaisher theorem (given in Section 1).
Proof: Take $\lambda=r, k=a=1$ in Theorem 1. $A_{r, 1,1}(N)$ denotes the number of partitions of N into parts $\neq 0, \pm r(\bmod 3 r)$, i.e., parts $\neq 0(\bmod r)$. Let us now consider a general partition $\sum_{i=1}^{\infty} f_{i} \cdot i$ enumerated by $B_{r, 1,1}(N)$. We first note that if $f_{i} \geq 2 r$, then $f_{i}+f_{i+1} \geq 2 r$, which contradicts the restriction that $f_{i}+f_{i+1} \leq r+r-1=2 r-1$. Suppose $f_{i}=r+\beta$ where $0 \leq \beta \leq r-1$, then $f_{i}+f_{i+1} \geq r+\beta$, which contradicts the restriction that, since $f_{i} \equiv \beta(\bmod r), f_{i}+f_{i+1}$ $\leq r+\beta-1$. Consequently $f_{i}<r$ for all i.

Now suppose $f_{i}<r$ for all i; I claim that such a partition is one of those enumerated by $B_{r, 1,1}(N)$. Clearly the condition that $f_{1} \leq r-1$ is fulfilled. If $f_{i} \equiv \beta(\bmod r)(0 \leq \beta<r)$, then since $f_{i}<r, f_{i}=\beta$; thus, $f_{i}+f_{i+1} \leq \beta+r-1$. Thus the second condition is fulfilled. Therefore $B_{r, 1,1}(N)$ enumerates the number of partitions of N in which each part appears at most $r-1$ times. Thus the result follows.

We now give a corollary of a rather different nature.
Corollary 1.3. $B_{1,2 r k+r+k,(2 r+1) a}(N)=B_{2 r+1, k, a}(N)$.
Proof: This follows directly from Theorem 1 since both

$$
A_{1,2 r k+r+k,(2 r+1) a}(N) \quad \text { and } \quad A_{2 r+1, k, a}(N)
$$

enumerate the number of partitions of N into parts

$$
\not \equiv 0, \pm(2 r+1) a(\bmod (2 r+1)(2 k+1)) .
$$

It would be of interest to prove this result by a more direct means.

Theorem 2. Let $0<\mu<\lambda, 2 \mu \mid \lambda, 0<a \leq k$ all be integers. Let $A_{\mu, \lambda, k, a}(N)$ denote the number of partitions of N into parts which are either $\equiv \mu(\bmod 2 \mu) \quad$ or \quad else $\equiv 0(\bmod \lambda) \quad$ and $\neq 0, \pm \lambda a(\bmod \lambda(2 k+1))$. Let $B_{\mu, \lambda, k, a}(N)$ denote the number of partitions of N of the form $\sum_{i m 1}^{\infty} f_{i} \cdot i$ with (1) $f_{1} \leq \lambda a-1$; (2) for all $i, f_{i} \equiv 0$, or $\mu(\bmod \lambda)$; (3) if $f_{i} \equiv \alpha$ $(\bmod \lambda)($ where α is either 0 or $\mu)$, then $f_{i}+f_{i+1} \leq \lambda k+\alpha-1$.

Then

$$
A_{\mu, \lambda, k, a}(N)=B_{\mu, \lambda, k, a}(N)
$$

Proof: By Lemma 3, $B_{\mu, \lambda, k, a}(N)$ is the coefficient of q^{N} in the power series expansion of

$$
\begin{aligned}
& \prod_{\substack{n=1 \\
n=0(\bmod \lambda) \\
n \equiv 0 . \pm \lambda a(\bmod \lambda(2 k+1))}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{\mu m}\right) \\
& =\prod_{\substack{n=1 \\
n=0(\bmod \lambda) \\
n=0 . \pm \lambda a(\bmod \lambda(2 k+1,)}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=0}^{\infty}\left(1-q^{2 m \mu+\mu}\right)^{-1} \\
& m
\end{aligned}
$$

(by Euler's identity [4, p. 277])

$$
=\sum_{N=0}^{\infty} A_{\mu, \lambda, k, a}(N) q^{N} .
$$

Therefore

$$
B_{\mu, \lambda, k, a}(N)=A_{\mu, \lambda, k, a}(N) .
$$

If $\mu=k=a=1, \lambda=2$, then Theorem 2 reduces to Euler's theorem; however, I know of no other special cases of the above theorem having been proved before. I thus give an example with $\mu=1, \lambda=k=a=2$ (which incidentally also follows from Theorem 1 with $\lambda=k=a=2$).

Corollary 2.1. $A_{1,2,2,2}(N)=B_{1,2,2,2}(N) . A_{1,2,2,2}(N)$ is the number of partitions of N into parts $\equiv 1,2,3,5,7,8,9(\bmod 10) . B_{1,2,2,2}(N)$ denotes the number of partitions of N into parts such that each part appears
at most three times with the restrictions that if n appears as a summand two or three times then $(n+1)$ may appear at most once, and if n appears once or not at all then $(n+1)$ may appear at most three times.

For example, if $N=10$, the partitions enumerated by $A_{1,2,2,2}(10)$ are

$$
\begin{aligned}
& 9+1,8+2,8+1+1,7+3,7+2+1,7+1+1+1,5+5 \\
& 5+3+2,5+3+1+1,5+2+2+1,5+2+1+1+1, \\
& 5+1+1+1+1+1,3+3+3+1,3+3+2+2, \\
& 3+3+2+1+1,3+3+1+1+1+1,3+2+2+2+1, \\
& 3+2+2+1+1+1,3+2+1+1+1+1+1, \\
& 3+1+1+1+1+1+1+1,2+2+2+2+2 \\
& 2+2+2+2+1+1,2+2+2+1+1+1+1, \\
& 2+2+1+1+1+1+1+1,2+1+1+1+1+1+1+1 \\
& 1+1+1+1+1+1+1+1+1+1 .
\end{aligned}
$$

Thus $A_{1,2,2,2}(10)=26$.
The pautitions enumerated by $B_{1,2,2,2}$ (10) are

$$
\begin{aligned}
& 10,9+1,8+2,8+1+1,7+3,7+2+1,7+1+1+1 \\
& 6+4,6+3+1,6+2+2,6+2+1+1,5+5,5+4+1, \\
& 5+3+2,5+3+1+1,5+2+2+1,5+2+1+1+1, \\
& 4+4+2,4+4+1+1,4+3+3,4+3+2+1, \\
& 4+3+1+1+1,4+2+2+2,3+3+3+1, \\
& 3+3-2+1+1,3+2+2+2+1
\end{aligned}
$$

Thus $B_{1,2,2,2}(10)=26$ also.
We conclude with the following rather curious result.

Corollary 2.2. Let $a(N)$ be the number of partitions of N into an odd number of parts of the form $N=b_{1}+\cdots+b_{2 s+1}(s \geq 0$, otherwise arbitrary) such that $b_{i} \geq b_{i+1}, b_{2 i+1}>b_{2 i+2}, a(0)=0$. Then

$$
B_{1,4,2,1}(N)=a(N+1)
$$

Proof: By Theorem 2,

$$
\begin{aligned}
\sum_{N=0}^{\infty} B_{1,4,2,1}(N) q^{N} & =\prod_{\substack{n=\\
n \neq 0(\bmod 4) \\
n \equiv 0, \pm 4(\bmod 20)}}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{m}\right) \\
& =\prod_{n=0}^{\infty}\left(1-q^{20 n+8}\right)^{-1}\left(1-q^{20 n+12}\right)^{-1} \prod_{m=1}^{\infty}\left(1+q^{m}\right) \\
& =q^{-1} \sum_{n=0}^{\infty} \frac{q^{(n+1)^{2}}}{(1-q) \cdots\left(1-q^{2 n+1}\right)}
\end{aligned}
$$

[8 p. 162, eq. 96]

$$
\begin{aligned}
& =q^{-1} \sum_{N=1}^{\infty} a(N) q^{N} \\
& =\quad \sum_{N=0}^{\infty} a(N+1) q^{N}
\end{aligned}
$$

The identification of the generating function for $a(N)$ follows by the standard graph-theoretic technique [4, p. 291] using the fact that

$$
(n+1)^{2}=1+1+2+2+\cdots+n+n+(n+1)
$$

Similar results may be obtained from some of the other identities of Slater [8].

References

1. G. E. Andrews, An Analytic Proof of the Rogers-Ramanujan-Gordon Identities, Amer. J. Math. To appear.
2. J. W. L. Glaisher, A Theorem in Partitions, Messenger of Math. 12 (1883), 158-170.
3. B. Gordon, A Combinatorial Generalization of the Rogers-Ramanujan Identities, Amer. J. Math. 83 (1961), 393-399.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. Oxford University Press, London, 1960.
5. L. J. Rogers and S. Ramanujan, Proof of Certain Identities in Combinatory Analysis, Proc. Camb. Philos. Soc. 19 (1919), 211-216.
6. I. J. Schur, Ein Beitrag zur additiven Zahlentheorie, Akad. Wiss. Berlin, Sitzungsber. 1917, 302-321.
7. A. Selberg, Uber einige arithmetische Identitäten, Avh. Norske Akad. Vid.-Oslo 1936, No. 8.
8. L. J. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc. 54 (1952), 147-167.

[^0]: * Research supported in part by National Science Foundation Grant NSF 6592.

