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ABSTRACT 

The problem is considered of passing from interpolation data for a real rational 
transfer-function matrix to a minimal state-variable realization of the transfer-function 
matrix. The tool is a Loewner matrix, which is a generalization of the standard Hankel 
matrix of linear system realization theory, and which possesses a decomposition into a 
product of generalized observability and controllability matrices. 

1. INTRODUCTION 

Let W(s) be a real rational transfer-function matrix, with W(w) finite. 
Define matrices Wi (the Markov coefficients) via 

w(s)=wo+wls-1+w,s-2+ .-a. (1) 

*Part of the work of this author was carried out at E. T. H. Ziirich. 
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The conventional realization problem of linear system theory is one of 
constructing from the infinite sequence {Wj} the transfer-function matrix 
W(s) or a state-variable realization thereof, i.e. a quadruple of real constant 
matrices A, B, C, D for which 

W(s)= D+C’(sZ-A)-‘B. (2) 

Generally, the constraint that A is of least dimension is applied. See e.g. 
[l, 21 for a treatment. 

The study of this problem is greatly aided by the concept of Hankel, 
controllability, and observability matrices. An important identity is that 

w, 
w3 
w, 

w, 
w, 
ws [ B AB A2B .** 1. (3) 

with the infinite Hankel matrix on the left possessing a finite rank, the 
McMillan degree of W(s); for minimal dimension A, the factorization on the 
right is into two matrices with full column rank (the infinite observability 
matrix) and full row rank (the infinite controllability matrix). The factoriza- 
tion can be exploited in the realization problem. 

Sometimes, the data are not an infinite sequence of Wi but a finite 
sequence. One is then faced with a partial realization problem, and a finite 
version of (3). This is discussed in [l, 31. 

The transformation s + l/s produces 

w(s-‘)=w,+w~s+w2s2+ *-*, (4) 

and one can thus regard the Wi as providing interpolation data concerning 
W(s-‘) at s = 0 [i.e. the values of W(s-‘) and its derivatives at s = O]. More 
or less equivalently, we can regard the Wi as providing interpolation data at 
s =a for W(s). 

Now let us ask what happens when the interpolation data concerning 
W(s) are not confined to s = 03, but can be associated with arbitrary points in 
the complex plane. Clearly, we still have a form of (partial) realization 
problem. In [4], we examined this problem under two significant restrictions: 
first, that W(s) was a scalar transfer function, and second, that we sought to 
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construct W(s) alone, rather than a state-variable realization, in the process 
eschewing examination of identities analogous to (3). 

In this paper, our aim is to remove these restrictions. In particular, we 
consider matrix transfer functions, we find state-variable realizations, and we 
present a (finite) analogue for (3). The Hankel matrix is replaced by a 
Loewner matrix [4-61, and the factors on the right side are replaced by 
generalized observability and controllability matrices (defined below). We 
have to take care to distinguish proper and nonproper W(s), this being more 
of an issue than for the conventional realization problem. 

In [4], we cited a number of occurrences of the interpolation problem in 
linear system theory. These continue to be of relevance when we are working 
with transfer-function matrices rather than scalar transfer functions, and a 
state-variable description may often be preferred. 

The paper is structured as follows: The next section is a review of key 
ideas from [4]. In Section 3, we deduce a number of properties of a 
(generalized) Loewner matrix and display the factorization analogous to (3). 
For clarity of exposition this section is divided into two parts, labeled 3 and 
3R, for the distinct and the repeated-point case, respectively. The results are 
used in Section 4 to present a construction for the quadruple {A, B,C, II). 

Section 5 contains some remarks on nonproper transfer functions, and 
Section 6 some concluding remarks. In contrast to [4], we pay no attention to 
the issue of recursion, i.e., taking an {A, B,C, II} solution of an interpolation 
problem and then stating how to modify it when one acquires an additional 
interpolation datum. 

2. THE LOEWNER MATRIX 

In this section we review the principal results of [4]. Consider first the 
problem of interpolating given distinct points. Thus the data are an array 
P ‘= f.(Si, YiX i E _Nl, with si z sj, and si E C, yi E C. If we are interested in 
interpolation with real functions, then si = s,? implies yi = yJF. A rational 
function 

4s) 
Y(S) = d(s) 

with n, d coprime is said to interpolate the above points iff 

YCsi) = Yi, iE_N. (6) 
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The rational interpolation problem is the problem of constructing one, or all, 
interpolating functions, sometimes with certain side conditions, such as 
minimality of the McMillan degree of y(e), denoted deg y(s), and given by 
max[deg n(s), deg d(s)l. 

A key tool for studying this problem is the Loewner matrix. Consider the 
rational function y(s) defined by the identity 

cj # 0 but otherwise arbitrary. (7) 

Generically, deg y(s) = r. Clearly, y(sj) = yj for j = 1,2,. . . , r + 1, and if 
r + 1 = N, then all the interpolation conditions (6) are fulfilled, with y(s) of 
degree N - 1 (generically). However, interpolation of N points should be 
possible with a y(s) of degree approximately N/2. It turns out that if we 
choose r + 1 < N in (7) and choose the cj in a specific way, then, subject to 
the satisfaction of a certain side condition given later (and sat&ability 
is generic), the entire N points can be interpolated. In particular, in order to 
interpolate the points indexed by j = r + 2,. . . , N, the coefficients cj have to 
satisfy 

r~cjYr+l+i-Yj =o, 
i=1,2 ,..., N-r-l, 

j=l sr+l+i - ‘i 

(8) 

or 

Lc=o, (9) 

where c = (c i,...,crfl)‘and L is a matrix of dimensions (N - r - 1) X (r + 11, 

the Loewner matrix, with 

Lij = 
Yr+l+i - Yj 

‘r+l+i - sj . 
(10) 

A key property of L, given in [4] and formally stated below in a 
comprehensive theorem, is the following: Given a rational function y(s), let 
the pairs (sir yi) be obtained by sampling y(s). If L is any p X 9 Loewner 
matrix formed form these pairs with p, 9 > deg y, there holds 

rankL=degy. (II) 
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As a corollary, every square Loewner matrix of size deg y formed from a 
subset of the above pairs of points, and thus any square submatrix of L of 
size deg y, is nonsingular. 

Before reviewing the main result, we shall explain how to treat multiple 
points. These are points si at which information is availabie not only about 
the value of the function, but also about the values of a certain number of 
derivatives. The key is to define a generalized Loewner matrix, which still 
has the property (11). Let vi be the multiplicity of si, with si # sj for i # j. 
There are 8 distinct si, and ~r + vs + . . . + vO = N. The array is written as 

P := {( si; y& : (i?j> E I}> z:={(i,j):jE_vi,iE@}, (12) 

and a rational function is said to interpolate P if 

Dj_lY(Si) = yi,j-l, (i, j) E 1. (13) 

Here, D denotes differentiation with respect to s. Thus the array information 
is 

P={si;y(si) )...) yqsJ ,...) se;y(s,) ,...) yvqse)}. (14) 

The array has distinct points just when vi = 1 for all i, and yi,” is what was 
earlier denoted by yi. 

Let Q denote the set of si, with each listed vi times. Partition Q 
arbitrarily into two nonempty sets R,T, called the row set and column set 

respectively. The sum of the number of occurrences of si in R and T is vi. 
The elements of R are ordered and denoted by ri, i = 1,2,. . . ,I RI, and those 
of T, also ordered, by tj, j = 1,2,. . ., ITI. Assume that ITI = r + 1. Thus 

R={ri:=s;forsomekE@,iEN-r-l}, 

T={tj:=sjforsomeZEe,jEr+l}. 

To each such partitioning of Q, we associate an (N - r - 1) X (r + 1) matrix 
L, referred to as a Loewner or generalized Loewner matrix according as 
vi = 1 for all i or vi > 1 for some i. To determine Lij we need to know how 
many times the value assumed by ri occurs in the subset {r,, . . . , ri_ 1} of R 
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and how many times the value assumed by tj occurs in the subset {tl, . . . , J t._ 1 1 
of T. Let these two nonnegative integers be k, 2 respectively. Then 

L.. := DkD’ Y(T) - y(t) 
IJ rt 

r-t 
if ri # tj (15) 

r=ri,t=t, 

and 

k!Z! 
Lij=(k+l+l)!DIkfz+“y(t)l,=g if ri=tj. (16) 

EXAMPLE. Suppose P ={(sl; ylo),(s2; Y~~,Y~~,Y~~,Y~~),(~~; ~3~)). Take 
R = (rl, r2, rJ = (sg, s2, s2) and T = {t,, t,, tJ = Is,, s2, s2). Then 

L= 

Y30 - YlO Y30 - Yzo a Y3_YW 

s3 - Sl s3- s2 at 
i I s3 - t t = sz 

Y20 - YlO 

s2 -s1 

Note that any submatrix of a Loewner matrix is again a Loewner matrix, 
while only certain submatrices of a generalized Loewner matrix are general- 

ized Loewner matrices. For example, the submatrix formed from rows 1,2 
and columns 1,2 in the example above is a generalized Loewner matrix, but 
the submatrix formed from rows 1,3 and columns 1,2 or columns 1,3 is not. 

The definition of the generalized Loewner matrix is, not surprisingly, 
such that the result (11) continues to hold; see the main theorem below. For 
use in the main theorem, we also need to define the generalized Loewner 
matrix L* which is constructed from L by rearranging the row and column 
sets (through reassignment of the last element of the column set to be the 

last element of the row set); thus 

R* = R U(t,+,} = [rl,r2,...,rN_r_l,tr+l), 

T*=T-{t,+l}={tl,t2 ,..., t,}. 
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The main result of [4] is: 

THEOREM 2.1. Given the Npairs of points (s~,Y~,~_~), jE_vi, iE& let L 

be a square or almost square generalized Zoewner matrix, so that L is r X r or 

r x (r + 1) with r = (integer part of N/2), according as N is even or odd. Let 

rank L = q, and suppose that if N is even, q < r. Then 

(a) y all q X q submatrices of L and L* are nonsingular, the minimal- 

McMillan-degree rational function y min(~) interpolating the given points 

satisfies 

deg ymin = q, (17) 

and in this case, y mi”(s) is the unique interpolating function of degree q, and 

the degrees of all possible interpolating functions are q, N - q, N - q + 1,. , . . 
(b) Zf the condition in (a) is not satisfied, then 

degymin=N-q, 

and y”‘“(s) is not unique. The degrees of all possible interpolating functions 

are N - q, N - q + 1,. . . . 

REMARKS. 

(a) When all si are distinct, the formulae (7) and (9) can be used for the 

construction of y(s) in case deg ymin = q. Generalization is possible for the 

case of repeated si. In case deg ymi” > q and/or one seeks interpolating 

functions of degree at most N - q + r - 1 for r = 1,2,. . . , q, one proceeds as 
follows. Let L, denote a Loewner matrix of size (q - ~1 X(N - q + 7r), 

obtained via reassignment of some of the row set defining L to to the column 
set for L,. Let ST,, be the set of column vectors c,=(ci,~~,...,c~_~+,J 

satisfying 

L,c, = 0 (19) 

and such that with 
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Then (7) with r + 1 = N - 9 + r yields y(s). Again, generalization is possi- 
ble when there are repeated points. The family of all interpolating functions 
of degree at most N - 9 + r - 1 is parametrizable in terms of N -29 +2rr 
- 1 parameters, since the normalized c, are parametrized in terms of 

N - 2 9 + 2 r - 1 parameters. [The effect of (21) is inessential on this conclu- 
sion.] 

(b) There is a simple condition for the interpolating function to be 
proper, viz. 

q+l 
c Cj#O when deg y min = 9, (22) 

j=l 

N-qta 

c Cj#O when degy”‘“=N-9, degy=(N-9+7-l). 
j=l 

(23) 

Note that in case deg ymin = 
may be that the unique ymi” 

9 the cj are unique (to within scaling) and it 
is improper. In this case, or when deg y ,c” > 9, 

there always exists a proper interpolating y(s) with McMillan degree N - 9. 
(c) Realization data at s =m, or Markov coefficients (such as arise in the 

usual linear system-theory problems) can be accommodated. If Markov 
coefficients are known, i.e. coefficients in a power-series expansion of f(s) in 
powers of s-l, then one can work with g(s)=f(s-‘), in which case the 
Markov coefficients of f(s) become equivalent to g(O), g’(O), . . . . More 
generally, one can work with 

with ad-bc#O. 

The conventional Hankel matrix of realization theory becomes a generalized 
Ioewner matrix. 

(d) Recursive solutions to the interpolation problem are also available. 
(e) The dichotomy that either deg ymin = 9 or deg ymin = N - 9 with 

nothing in between-i.e., deg ymi” = 9 + 1 is excluded (unless N - 9 = 
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9 + l&is explained in [4], but in a fairly technical way. We can offer more 
insight in an alternative way, provided we appeal to the remark stated 
immediately after (11). Suppose that L has rank 9, has a singular 9 X 9 
submatrix, and is of dimension m x(m + 1); thus N = 2m + 1. Then deg ymi” 
= 9 is excluded by this singularity [see remark following (ll)]. Suppose that 
&g y min = g say. Let us take this y”‘“(s) and evaluate it at a whole further 
collection of points additional to those used in the construction of L, so that 
in all, 2g + 1 points are involved. Let us then set up a Loewner matrix of 
dimension g x(g + l), call it L,; the row set and column set used for L, 

include the row set and column set used for L. Thus we have 

IT+1 g--m 

Le=g_:[ :, ::I 
with every g X g submatrix of L, nonsingular, by virtue of (11) and the 
following remark, and with L possessing rank 9 (and a singular 9 x 9 
submatrix). A necessary consequence is that g > N - 9. To see this, let 
L,, E, denote L,, L, without their last columns, and observe that by row and 
column operations the following hold: 

g=rank L La 

[ -1 Lb L 

/ m-q+1 g--m+1 

1 
qxq 

0 
* g = rank 

L1 

,[ 1 

m-q 0 0 La, 

g-m 
LbI Lb2 L 

I 
m-q+1 g-m-l 

1 
qxq 

0 0 

0 g=rank 

m-q. 

1 

0 0 

L2 \ 
g-m 0 

Lb, L 
I, 

ti g - 9 = rank 
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Since this last matrix has to be of full row rank, it is necessary that La2 be of 
full row rank, which can only be so if it has at least as many columns as rows, 
i.e., g - m - 12 m - q or g > N - q. (Note that this argument only estab- 
lishes that if deg y mi” #q, then necessarily deg ymi” > N - q; it does not 
show that deg ymi” = N - q.) 

3. STATE-VARIABLE REALIZATIONS AND BLOCK 
LOEWNER MATRICES 

In the previous section, we reviewed a number of results on Loewner 
matrices associated with the interpolation of scalar transfer functions. In this 
section, we shall establish new results applicable to the interpolation of real 
rational matrix transfer functions. We shall begin with the supposition that 
such a matrix transfer function exists, and derive properties of the associated 
(block) Loewner matrix. In the next section, we shall reverse the procedure, 
by showing how we can start with a (block) Loewner matrix possessing 
various properties, and construct therefrom a state-variable realization of an 
interpolating matrix transfer function. 

The repeated-point versions of the results given in this section are 
collected in Section 3R. This is done in order to avoid clouding the main 
issues with unnecessary complications. 

Suppose there is given a real rational transfer-function matrix Y(s) of 
dimensions (Y X p, proper, and possessing a minimal state-variable realiza- 
tion {A, B, C, D), i.e. 

Y(s) = D+C’(sZ-A)-% (24) 

Now observe that 

Y(r) -Y(t) C+-Z-A)-lB-C’(tZ-A)-lB 
= 

r-t r-t 

C’(rZ-A)-‘[(tl-A)-(rl-A)](tZ-A)-’B 
= 

r-t 

= -C’(rZ-A)-‘(tl-A)-‘B. (25) 
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Now let us define a block Loewner matrix L associated with the 
transfer-function matrix Y(s), using the obvious generalizations of (10) and 
(15),(16). Suppose the row set is 

R={r,,r,,...,r,) (26) 

with ri z rj for i # j, and the column set is 

T={tl,tz,...,t,) (27) 

with ti # tj for i # j; and allow the possibility that R n T ~0. Then (25) 
implies that 

-L= 

C’( r,Z - A)-’ 

C’(r,Z-A)-’ 

C’(r,Z - A)-’ 

k t,Z-A)-‘B,(t,Z-A)-r&.&Z-A)-%]. 

(28) 

[The generalization of (16) to the matrix case with k = 2 = 0 is needed in case 
ri = tj.] 

The matrices appearing on the right side of (28) can be thought of as 
generalized controllability and observability matrices. The key property of 
such matrices is as follows: 

LEMMA 3.1. Let (A, B) be a controllable pair with A of dimension q X q. 
Let ti, i = l,..., 6, be distinct points with 6 2 q. none of which is an 
eigenvalue of A. Then 

rank (t,Z - A)-‘B . * * (t,Z - A)-‘B] = q. [ C-29) 

The proof of this result is provided in Section 3R following the statement 
of the multiple-point version. 

An immediate consequence of the lemma and the decomposition of (28) 
and the later (28R) is the following theorem, which is almost the same in 
statement for the nonrepeated- and repeated-point cases. 
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THEOREM 3.1. Let Y(s) be a proper transfer-function matrix with mini- 
mal state-variable realization {A, B, C, D}, and A of dimension q X q. Suppose 
interpolation data P:={s~;Y(s~),Y’(s~),...Y”~-~(s~), i=l,...,e} are given. 
Make an arbitrary partition of the si into row sets R and T as in (26), (26R) 

and in (27), (27R), and let the generalized block Loewner matrix be con- 
structed using (10) and (15), (16). Assume that 1 RI > q, IT I> q. Then 
rank L = q. Zf ITI > q + 1, and if the last element of the column set is 
reassigned as the last element of the row set and a new Loewner matrix L* is 
constructed, then rank L* = q. Further, any generalized block Loewner ma- 
trix which is a submatrix of L or L* with at least q block columns and q block 
rows also has rank q. 

In this section, we have worked with Loewner matrices derived from 

proper Y(s). As a result of the properness, the Loewner matrix inherits a 
further property. It is tied to the property given in the last section, to the 
effect that the sum of the entries of a right null vector of the Loewner matrix 

must be nonzero, but is far richer in its statement. 
We shall state and prove the next lemma (which establishes the property) 

first for the case when there are no repeated points. Partition the generalized 

controllability matrix 

N=[(t,Z-A)-‘B&Z-A)-‘B,...,(t,Z-A)-’B] (36) 

as 

N=[Nl N,] 

with 

Nl = (t,Z - A) -‘B. 

Define also 

N=N,-[N,,N,,...,N,] 

(31) 

(32) 

-1 _I . . . -1 

I 0 ... 0 

(33) 
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ti=~,diag[taZ,taZ ,..., t,Z]-t,[N,,N, ,..., N,] 

- t,z -t,z a** - t,z 

bZ 0 . . . 0 

=N 0 t,Z ... 0 . (34) 

0 0 . .: t,Z 

LEMMA 3.2. Using the above notation, and assuming that 6 > 9. N has 
rank 9, and 

AN=ti’. (35) 

Proof. Observe that 

Hence 

N=(t,Z-A)-‘[(t,Z-A)-‘B,...,(t,l-A)-’B] 

Xdiag[(t,-t,)Z,...,(ti-t,)Z]. 

The first and last matrices in the product on the right are nonsingular, while 
the middle matrix has rank 9, by Lemma 3.1. This proves the first claim of 
the lemma. For the second claim, observe using the past equality above that 

fi= -(t,Z- A)#+ t,N 

=-N,diag[(t,-t,)Z,...,(t,-t,)Z]+t,N,-t,[N,,N,,...,N,] 

=N,diag[t,Z ,..., t,Z]-t,[N,,N, ,..., N,] 

= iif* n 

The formulae (28) and (28R) relate L to N through premultiplication by a 
generalized observability matrix, of full column rank in case the row set is 
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big enough. It is accordingly immediate to translate the conclusions of 
Lemma 3.2 to block Loewner matrices and generalized block Loewner 
matrices. 

For this purpose we define 

L=[h L,], (36) 

where L, is the first block column of L and define 

Q=L,-[L,,L,,...,L,l=L], (37) 

where 

J= (38) 

and 

R=L,diag[t,Z,t,Z ,..., tsZ]-_t,[L,,~, ,..., L,]=LI,, (39) 

where 

(40) 

THEOREM 3.2. Adopt the same hypotheses as Theorem 3.1, save that 
vi = 1 for all i, with the notation introduced above, and assume that 6 > q. 
Then Q has rank q, and Qx = 0 fw some x # 0 implies Rx = 0. 
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Proof. Let M denote the generalized observability matrix 

(41) 

which has rank 9. Then Q = M#, R = Mfi. Because M, 3 have full column 
and row rank respectively, viz. 9, we have rank Q = 9. Also M'M is nonsin- 
gular. Hence Qx = 0 implies (M’M)-‘M’Qx = 0, or %X = 0. The rest is 
trivial. n 

Let us observe a certain connection between Theorem 3.2 and the 
condition, applicable in the scalar-transfer-function case, that the interpolat- 
ing function is proper. In case S = 9 + 1, the matrix Q is 9 X 9. The theorem 
states that under certain hypotheses, including properness of the underlying 
transfer function, Q has rank 9. Violation of this would imply that 

Q[&>&,...> p,, l]r = 0 for some pi, which in the light of (37) would imply 

9+1 

L [i 1 - c pi ,&>P3 7...) Pq+l ‘=o, 
i=2 1 

and this is a violation of (9) and (22). Conversely, if Lc = 0 with XT:,’ ci = 0, 

there follows Q[c,, ca, . . . c9+ i ]‘= 0, which shows that rank Q = 9 is false. 
Of course, Theorem 3.2 encompwses much more that the properness 

issue. Through its tie with Lemma 3.2, it will prove the basis for solving the 
construction problem in the next section. 

3R. STATE-VARIABLE REALIZATIONS AND BLOCK LOEWNER 
MATRICES: THE REPEATED-POINT CASE 

In this section, for the sake of clarity of exposition, we collect the 
repeated-point versions of the results of Section 3. 

The first is concerned with (25): 

@*” Y(r) -Y(t) 
r t 1 r-t ) 

=-(-l)k(--l)‘k!Z!~r(~~-~)-(k+l)(tZ-~)-(z+l)B (25aR) 
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k!Z! 

(k +Z+l)! 
Djk+l+l)y(t)=(-l)k+z+1k!l!C’(tz_A)-(k+l+2)B. 

(25bR) 

The row and column sets are 

R= ( rl ,..., rl,r2 ,..., r2 ,..., ry ,..., ry _J , (26R) 
-- 

A, times A, times A, times 

T= 
( 

t, )...) t,,t, )...) t, )...) t,,...,t, 

-V - 1 
. (27~) 

IL, times p2 times pt times 

The formula (28) is varied if one or more of the Ai, pi exceed 1; we have a 

generalized block Loewner matrix: 

C’(r,Z-A)-’ 

-C’(r,Z-A)-2 

_L= (-l)“l-l(hr-l;!Cf(rrZ-A)-A1 

C’(r,Z-A)-’ 

x[(t,Z-A)-%,... ,(-1)PL’-1(~l-1)!(tlZ-A)-P1Z3,..., 

(-1)“q~a-l)!(t,Z-A)‘6B]. (28~) 

Note that, in contrast to the formulation of Section 2, (28) and (28R) do not 
change in case ri = tj for some i, j pair. Furthermore we have 

LEMMA 3.1R. Let [A, B] be a controllable pair with A of dimension 
q X q. L.et ti f3r i = 1,2,. . . , S be distinct points none of which is an eigen- 
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value of A, and let pi fm i=l,%..., 6 be positive integers with Cpi > q. 

Then 

(tlZ-A)-?,..., (t,Z-A)-‘%] =q. (29R) 

Proof. Suppose (29R) fails. Then there is a nonzero row vector w’ in the 
left nullspace of the generalized controllability matrix. It follows that the 
transfer-function matrix (actually a row vector of transfer functions) 
o’(sZ - A)-‘B has pI zeros at t,, p2 at t,,.. ., pg at t,. In particular, each 
of the transfer functions w’(sZ - A)- ‘Bej, j = 1,. . . , p, with ej a unit vector, 
has Cpi > q = dim A zeros. The numerator of w’( sZ - A)- ‘Be. has degree at 
most q - 1, and so must be identically zero. Thus w’(sZ - A)-‘Z3ej E 0 for all 
j, i.e. w’(sZ-A)-‘B=O, or W’eAf B = 0. This violates the requirement that 
[A, B] is controllable. 

REMARK. It is trivial to extend the above lemma to cope with matrices 
such as occur as the right member in the product of (28R), differing from the 
matrix in (29R) by inessential column scaling. Extension is also trivial to 
matrices 

[ B,AB,..., A’O-1B,(tlZ-A)-‘B,...,(tsZ-A)-‘6B], 

where /.Q+P~+ *** + pg > q. Such matrices arise when we mix finite 
interpolating points and Markov-parameter data, which is akin to having data 
at the interpolating point s = 03. 

Following we shall state, without proof, the version of the Lemma 3.2 
applying with repeated points. The proof is of course similar to the case 
when there are no repeated points, but involves much more algebraic 
manipulation. Even the lemma statement is much more involved. For the 
case when there are repeated points, we define 

N= [(t,Z-A)-‘8 ,..., (-l)p”‘-l(pI-l)!(tlZ-A)-pLIB ,..., 

(-1)‘6-1(ps-1)!(t,Z-A)-“8B]. (30R) 
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Recall that 

N=[% N2] (31) 

with Nr as in (32). Define 

k-1 &Z-l &Q--l 

O~,Nl,O~,Nl,O ,..., O,N,Ox , 
1 

(33R) 

where each zero block is q X p (the same dimensions as a block column of 
N). Define also 

# = - [N with block column pr missing]Z + t,N, ( 34R) 

where 

Z=diag[Z,,Z,,...,Zs] 

and 

Z,=diag[-I,-2Z,..., -(pr-l)Z], 

4/-h-l)Z (t,-t,)z 

Z s,. . . , Z, being constructed similarly to Z,. 

LEMMA 3.2R. Assume that Cpi > q. Then fl has rank q, and 

AR=ti. (35) 

We remark that, as for Lemma 3.2, the second claim of the lemma is 
established by a straightforward algebraic verification. 
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The corresponding result for repeated interpolation points is as follows: 

THEOREM 3.2R. Adopt the same hypotheses as Theorem 3.1 with also 

the assumption Cpi > q. Write L as in (361, and define 

1 = LJR, (37R) 

R = - [L with block column pi missing] 2 + tlQ = LJP, ( 39R) 

where Z, J”,Jp are appropriately defined. Then Q has rank q, and Qx = 0 

for some x # 0 implies Rx = 0. 

The proof parallels that of Theorem 3.2, using now of course Lemmas 
3.1R and 3.2R. 

4. CONSTRUCTION OF A STATE-VARIABLE REALIZATION 

In the last section, we have stated two theorems that describe the 
properties inherited by a Loewner matrix or generalized Loewner matrix 
obtained from a rational transfer-function matrix. In this section, we shall 
reverse these ideas, i.e., we shall take as the data a (generalized) Loewner 
matrix with certain properties, and from it, show how a minimal state-vari- 
able realization of a rational transfer-function matrix may be constructed. 

To keep the ideas simple, we shall assume when providing proofs that 
there are no repeated points in this section, However, we set out the 
construction procedure when there are repeated points. 

In this section, we make two key assumptions, motivated by the results 

of the last section. Interpolation data {si; Y(s,), T’(si), . . . , Yy*-i(si), i = 
1,2,..., 0) are given, with the si partitioned into row and column sets 
R = (r,, . . . , rl, t-a,. . . , r2,. . . , r,,, . . . , rrl and T = It,, . . . , t,, 
t,,...,t,,...,t&..., 
respectively. 

tJ, there being hi and pj occurrences of ri and tj 
There holds ri z ri for i + j and ti + tj for i z j. The associ- 

ated generalized Loewner matrix contains p = Cy, 1 A i block rows and T = 
CT= 1 ~~ block columns. 

Assumption 4.1. If 

rankL=q, (42) 
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then 9 < p, 9 < 7. Further, all 9 x q block submatrices of L, L* (the latter 
being constructed as defined in Section 2 by reassignment of the last 
column-set element as the last row-set element) also have rank 9. 

For the second assumption, we partition 

L=[L, L,], 

where L, is the first block column of L. Recall the definition of J,J, given in 
(381, (40) for the non-repeated-point case and the definition of JR and 1: in 
Theorem 3.2R for the repeated-point case as set out in Theorem 3.2R. 

We define 

Q=LP-[L1,Ll ,..., L,]=LJ (44) 

and 

R=L,diag[t,Z,t,Z ,..., t,Z]-t,[L,,L, ,..., L,]=LJ, (45) 

for the non-repeated-point case, with the obvious modification in the re- 
peated-point case as set out in Theorem 3.2R. 

Assumption 4.2. One has rank Q = rank L = 9, and Qx = 0 implies Rx 
= 0 for x + 0. 

Assumption 4.1 guarantees that the underlying rational function has 
McMillan degree 9. In other words, the realization constructed will necessar- 
ily be controllable and observable. 

If our data do not satisfy this condition, we need to add interpolation data 

until the condition becomes satisfied. In the scalar case, dealt with in [4] and 
summarized in Section 2, the way this can be done is set out, and is rather 
complicated. For the matrix case, some developments can be found in [8], 
and the situation is even more complicated. Of course, the added data will 
necessarily drive up the degree of the interpolating transfer-function matrix; 
that data can be found so that the increase in degree is finite is a nontrivial 
fact, and was proved for the scalar case in [4], where the admissible degrees 
of solutions to the interpolation problem are identified. (In effect, [8] gives 
the theory behind the determination of the minimal McMillan degree and all 
admissible degrees, while this paper gives the theory behind the construc- 
tion, in state-space terms, of the solution of admissible degree.) The situation 
is actually very analogous to the matrix partial-realization problem; in partic- 
ular, one is faced with either having first enough data to generate a unique 
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transfer-function matrix consistent with the truncated series of Markov 
coefficients, or else having to add specially chosen but nonunique data to the 
given data to obtain a transfer-function matrix consistent with the originally 
given data and the added nonunique data. The degree of the transfer-hmc- 
tion matrix in this second case is finite, but driven up by the extra data. See 
[q] for a discussion. 

Assumption 4.2 is needed to secure properness of the interpolating 
function. As shown in Section 5, it can be eliminated by means of an 
appropriate bilinear transformation. 

Notice that the properties demanded by Assumptions 4.1, 4.2 necessarily 
hold if Y(s) is defined by a causal transfer-function matrix with minimal 
state-variable dimension 9. This is a consequence of the results of Section 3, 
and justifies adoption of the assumptions. 

The first step in the constructive procedure is to factor L into a product 
of two matrices with column and row rank 9 respectively. Thus we shall 
assume that 

-L=MN, (46) 

where M has 9 columns, and N has 9 rows. Of course N is unique up to left 
multiplication by a nonsingular matrix T. As it turns out, two different 
factorizations M,N, and Mz Nz will give rise to two different state-variable 
realizations (Ai,Bi,Ci, Di) with i = 1,2 for Y(s). They are related by a 
nonsingular coordinate transformation, i.e. A, = TA,T-’ etc. 

REMARK. An equivalent way of expressing Assumption 4.2 in terms of 
the above factorization of L is the following: 

rankNJ=q. 

The main strategy now is to find A, B, C such that M, N are the 
generalized observability and controllability matrices associated with A, B, C; 

see (28) and (28R). Once A, B, C h ave been found, the identification of D is 
immediate from a single interpolation datum, viz. 

D=Y(s,)-C’(s,Z-A)-‘B. 

We shall describe first the construction of A, B, C; then we shall prove for 
the non-repeated-point case that this construction results in no ti or ri being 
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an eigenvalue of A and that 

N=[(~,z-A)-'B,(~,z-A)-'B,...,(~,z-A)-'~1, (47) 

(48) 

(Extensions to the case of repeated points would be messy, but straightfor- 
ward.) Finally, we shall show that with appropriate choice of D, the 
transfer-function matrix D + C(sZ - A)-‘B correctly interpolates the data. 
In the last two steps, we are evidently checking the validity of the construc- 
tion procedure. 

We summarize the result we are establishing as follows. 

THEOREM 4.1. Suppose interpolation data P = {si; Y(si), Y’(si), 
. ..) YV’-l(si), i = l)...) f?} are given, with the si partitioned into row and 
column sets 

It 

R = {r,, . . . , rl, r2, . . . , rz, . . . , ry, . . . , ry} and T = 
I,...) t,,t, )...) t, )...) t, ,..., tJ, there being hi and p.j occurrences of ri and 

tj respectively, and with ri z rj fm i # j and ti z tj f3r i z j. Let L be the 
associated generalized L.oewner matrix with p = CT==, yi block rows and 
z = CT=, pj block columns. Let Assumptions 4.1 and 4.2 hold fw the case of 
no repeated points, define 

a= NJ, (49) 

ti= Nl,, (50) 

and when there are repeated points, let J be replaced by JR and J, by JF (with 
definition as implied in the statement of Theorem 3.2 R). Define the matrix A 
as 

A&@@)-’ (51) 
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(with the inverse existing because N has full row rank ). Define further 

(52) 

there being 8 block entries in the rightmost member of the product on the 
right side of (52), and 

c=[z,o,..., O]M( r,Z - A) (53) 

with the lefimost matrix on the right of (53) possessing y block entries. Then 
the matrices <tjZ - A), (r,Z - A) are nonsingular, and the formulae (47) and 
(48) hold. Further, the dejnition 

D=Y(r,)-C(r,Z-A)-‘B (54) 

ensures that the transfer-function matrix D + C( sZ - A)- ‘B interpolates the 
data, has least degree among interpolating transfer-function matrices, and is 
the only transfer-function matrix with this degree. 

The remainder of the section is devoted to proving this theorem. 

Verz$cation of (47), (48) 
Observe from (44), (46) and (49) that Q = MR, and from (45),(46) and 

(50) that R = MB. Because M has full row rank, and because Qx = 0 implies 
Rx = 0, it follows that fx = 0 implies i& = 0. Hence there exists a unique ~2 

such JZ?% = g. Since Q has rank y, g has full row rank, and so with A as in 

(511, we necessarily have A = &‘. Hence 

AlTi=ti. (55) 

Consider the jth block column on each side of (55) for j > 2, and let N,, Nj 
denote the first and jth block columns of N. Evidently, 

A( - N, + Nj) = (- t,N, + tjNj), 
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By (5% 

Z? = (tjZ - A)Nj, j 2 2. (56) 

Hence if tjZ - A is nonsingular for all j, then (47) is verified, by (52) and 

(56). 
We now demonstrate for j = 1,2,. . . , 6 that tjZ - A is nonsingular. Using 

(55) and the definitions (49),(5O) of E and N, we have 

_(t,-t,)z (t,-tj)z **. (t,-tj)z- 

( tj - te)z 

( tjZ - A)N = iV ctj - t3)z . (57) 

Ctj- tti)7 

The second matrix in the product on the right has one zero block row (the 

jth), so that provided that block columns 1,2,. . . , j - 1, j + 1,. . . ,6 of N (call 
this matrix J$> have rank q, the matrix on the right has rank q; however, 
the desired rank-q property is a consequence of Assumption 4.1, which states 
that any block q X q submatrix of L is of rank 4, and so in particular MT, 
which includes such a submatrix, has rank q. Now since the matrix on the 

right of (56) has rank 4, tjZ - A is nonsingular. 
In order to verify that our definitions lead to (48), we first require two 

lemmata: 

LEMMA 4.1. Let E,!L, LE, denote the ith block row and kth block 

column of L. (Thus EJ = [O,. . . ,O, I, 0,. . ,O] with 1 in the j th block entry.) 

Then 

(riEi-rjEj)L(Ek- E,)=(Ei-E,!)L(t,E,-tlE,) (58) 

forall l<i,j<y and l<k,l<s. 
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z+-oaf. Observe that 
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and 

Subtracting and using equalities such as (ri - t,)L,, = Y(ri)-- Y(t,) leads to 
the result. W 

Now let M,’ denote the jth block row of M, with Nj (as before) the jth 
block column of N. Then (58) implies 

(qM/ - rjMj)( Nk - N,) 

= (Ml - Mj)( tkNk - trNl) 

=(M(-M,!)[(t,l-A)N,-(t/Z-A)N,]+(M[-Mj’)A(N,-N,) 

= (MI - M,!)A( Nk - Nl) 

on using (56). It follows that 

Fixing k = 1 and letting I range from 2 to 6 yields 

and because N has full row rank, 

M[( r,I - A) - Mj’(rj’ - A) = 0. (59) 

By (531, C’ = M;(r ,I - A), and (48) is then immediate provided that rjl - A 
is nonsingular for all j. 

This nonsingularity is proved in the following way. Recall from Assump- 
tion 4.1 that if the last column-set element is reassigned to be the last row-set 
element, the new generalized Loewner matrix L* has all block q X q 
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(generalized) Loewner matrices of rank 4. If L has a factorization (46), then 
clearly 

with rY + 1 = t,, and (59) holds with 1~ i, j Q y + 1 and 1 Q k, 1 G 6 - I 
Now let us state 

LEMMA 4.2. With quantities defined as above, there holds for j = 
1,2,...,6-1 

(t*-tj)MS.+lNj=(r,-tj)lMr~j-(r,-t,)MiN,. 
(60) 

This is a consequence of identities such as (t, - tj)M; + , Nj = - Y(t,) + 
Y(tj). From it, we obtain 

M;+,(t,Z-A)N+4;+,(tjZ-A)y=M;(r,Z-A)(Nj- N,) 

-M;(tjZ-A)Nj+M;(t,Z-A)N,, 

or 

M;+l(tsZ - A)& - N,) = M&Z - A)@ - N,), (61) 

on using the fact that (t,Z - A>Nj = (t,Z - A)N,. By using the equality (61) 
for all j, we obtain 

and so (59) holds for i, j = I, 2,. . . , y + 1 when ry + 1 is identified with t,. 
Now suppose (to obtain a contradiction) that (riZ - A)x = 0 for some x z 0. 
Then (59) yields 

0 = M[(r,Z - A)x = Mj’(l;Z - A)% = (rj - ri)M,‘x. 

so 

M,!x = 0, j=1,2 ,..., i-l,i+l,..., y+l. (62) 
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Now L* with its ith block row eliminated, 
Since 
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call the result LT, has rank 9. 

,>Ns-,I> 

it follows that each of the matrices on the right side of (61) has rank 9. Then 
(62) with x # 0 is a contradiction. Consequently r,Z - A is nonsingular. 

Correct Interpolation of the Data 
Observe that for all j, 

Y(r,)-Y(tj)=(r,-tj)E;LEj 

= - (rl - tj)M;Nj 

whence, using (54) 

Y(tj) = D + C’(t,Z - A)-%. 

Similarly, we may prove that D + C’(sZ - A)-‘B interpolates correctly at 
r2.r3,. . ., ry. 

Minimality of Degree 

If there were an interpolating transfer-function matrix of degree 9’< 9, 
Theorem 3.1 would yield rank L = 9’. a contradiction. 

Uniqueness of Znterpolating Functions 
Let D, + C,(sZ - A)-‘B, and D, + C,(sZ - A,)-‘& be two interpolat- 

ing functions of McMillan degree 9. Then these generate two factorizations 
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L = M,N, = M, Nz, with Mi, Ni being defined by trivial variations on the 

formulae (47) and (48). Since rank N, = rank N_z = 9, there exists nonsingular 
square T with TN, = N2. Let matrices pi, Ni be formed from Ni in the 

standard way; see e.g. (49) and (SO). Th en TN, = E2, Tfi, = H_2. By Lemma 
3.2 (and 3.2R), we have A,G, = Nz and A,T-‘E, or TA,T-‘N, = fi2. Since 
Iv, has rank 9, TA,T-’ = A,. The rest of the argument is trivial. 

5. NONCAUSAL TRANSFER-FUNCTION MATRICES 

In Section 3, we described properties of a Loewner or generalized 
Loewner matrix associated with a proper transfer-function matrix, and in 
Section 4 we showed how a realization of an interpolating transfer function 
could be constructed from a Loewner matrix having these properties. In this 
section, our aim is to shed the properness assumption. We shall restrict 
attention to the problem with distinct interpolating points. 

Let F(s) be a nonproper transfer-function matrix, and suppose, to begin, 
that ri ,..., ry and t, ,..., t, define distinct points at which interpolating 
values of F(s) are known. Suppose that the McMillan degree of F(s) is 9, 
and that 9 < y, 9 < 6. The i - j block entry of the associated Loewner 

matrix is 

CLF)ij= 

F(ri) - FCtj) 
ri-tj ’ 

Now observe that for almost all o,, o,, and cr3, the transfer-function matrix 

(63) 

is proper, with the same McMillan degree as F. Observe also that when 

uzs + u, 

s + ug 
= ri 

then 

u,r, - u1 
s= 

a,--ri ’ 
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Thus at the point (a,ri - a,)(~, - ri)-‘, which is finite for almost all 

a,,a,,u,> the transfer-function matrix G(s) assumes the value F(r,). Conse- 

quently, the i - j block entry of the Loewner matrix for G(s) is 

F(ri)P ‘(tj) 
CLG)ij= u3ri_u1 

a3tj - u1 
- 

a2 - ri a, - tj 

a, - ri 
= - 

u2u3 - Ul 

which implies that 

L, = u2ut_I diag[(a,-ri)l]L,diag[(u2-tj)l]. (64) 

For almost all choices of ul, a,, and a,, this implies that L, and L, have 
the property that submatrices composed of the same rows and columns have 
the same rank; in particular, L,, L, have the same rank. This is true when 

u2 Z ri, cr.2 + tj, u,u2 # u3. (65) 

When repeated points are allowed, the replacement for (64) is much 
more complicated. 

The theory of Section 4 shows how to construct a minimal state variable 

realization of G(s), say 

G(s)=D,+C&(sZ-A,)-‘&. (66) 

Because F(s) becomes infinite when s -+m, G(s) has a pole at s = - a,. It 
is straightforward to change the coordinate basis in (66) so that 

A, = A,, + A,, , (67) 

where all eigenvalues of A,, are at - u3 with A,, in Jordan form, and no 
eigenvalues of A,, are at - a,. Write, in obvious notation, 
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Let JA denote a certain Jordan form with A on the diagonal; J, denotes the 
same form I_L replacing A. Then 

= -CI;,[J-(,s+,,]-‘B,,+[D,+C;;,(sZ-A,,)-’B,,] 

with (J-,,,B,,,Co,J and {A,,, B,,,C,,, DG) both minimal. Now (63) im- 
plies and is implied by 

F(s) =G 

It is straightforward to deduce then that 

The first two terms define the nonstrictly proper part of F(s), and the last 
term a (minimal) state-variable realization of the strictly proper part of F(s). 

As far as construction is concerned, the initial data is organized into L,; 
one observes that L, fulfills Assumption 4.1, but not 4.2; one forms L, via 
(641, and checks that L, satisfies Assumption 4.2; then one constructs the 
state-variable realization of G(s) and then a generalized state-variable real- 
ization for F(s). 

The nonproper case is of course not of great interest; with repeated 
points, it is extremely complex. The inclusion of the parameter ai is a further 
complication. Accordingly, we refrain from presenting indigestible formulae 
to the reader. The whole point is simply to rely on the bilinear transforma- 
tion. 
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6. CONCLUSIONS 

In this paper, we have set out a theory paralleling that known for the 
so-called realization problem of linear system theory, which allows construc- 
tion of a minimal state-variable realization from interpolation data. Deficien- 
cies of the theory include the absence of a tidy parametrization of solutions 
when the original data have to be added to, in order to guarantee satisfaction 
of Assumptions 4.1 and 4.2 (the case deg y “lin = N - y in the scalar situation), 

and the absence of recursive formulae for allowing update of a realization 
when one more interpolation datum becomes available. 

We can also state that we have not addressed the tangent problem at all 
[where interpolation data are available at point si not for the whole matrix 
Y(si) but part of it, e.g., one has oi and pi for which Y(si)q = pi, and this is 
all one knows about Y(si)]. It would also be interesting to continue the 
development of connections between Nevanlinna-Pick and Loewner matri- 
ces, as set out for scalar functions in for example [7]. 
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