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Abstract Harmony search (HS) is a derivative-free real parameter optimization algorithm. It

draws inspiration from the musical improvisation process of searching for a perfect state of har-

mony. The proposed opposition-based HS (OHS) of the present work employs opposition-based

learning for harmony memory initialization and also for generation jumping. The concept of oppo-

site number is utilized in OHS to improve the convergence rate of the HS algorithm. The potential

of the proposed algorithm is assessed by means of an extensive comparative study of the numerical

results on sixteen benchmark test functions. Additionally, the effectiveness of the proposed algo-

rithm is tested for reactive power compensation of an autonomous power system. For real-time

reactive power compensation of the studied model, Takagi Sugeno fuzzy logic (TSFL) is employed.

Time-domain simulation reveals that the proposed OHS-TSFL yields on-line, off-nominal model

parameters, resulting in real-time incremental change in terminal voltage response profile.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

The researchers, over the globe, are being inspired by the nat-
ure-inspired meta-heuristics [1] on a regular basis to meet the
demands of the real-world optimization problems. The compu-
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tational costs of the algorithms are being, dramatically, re-

duced in the recent past.
Being inspired by this tradition, Geem et al. [2] proposed

harmony search (HS) in 2001. It is a new variant of deriva-

tive-free meta-heuristic algorithm inspired by the natural mu-
sical performance process that occurs when a musician
searches for a better state of harmony. In the HS algorithm,

the solution vector is analogous to the harmony in music
and the local and global search schemes are analogous to the
musician’s improvisations.

In comparison with other meta-heuristics reported in the

literature, the HS algorithm imposes fewer mathematical
requirements and may be easily adopted for solving various
kinds of engineering optimization problems. Furthermore,

numerical comparisons demonstrated that the evolution in
in Shams University.
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HS algorithm is faster than genetic algorithms [3]. Therefore,
the HS algorithm has captured much attention and has been,
successfully, applied to solve a wide range of practical optimi-

zation problems, such as structural optimization [4], parameter
estimation of the nonlinear Muskingum model [5], pipe net-
work design [6], vehicle routing [7], design of water distribution

networks [8], and scheduling of a multiple dam system [9].
The HS algorithm is good at identifying the high perfor-

mance regions of solution space within a reasonable time. A

few modified variants of HS were proposed in the literature
for enhancing the solution accuracy and the convergence rate.
Mahdavi et al. [3] presented an improved HS (IHS) algorithm,
by introducing a strategy to dynamically tune the key param-

eters. Omran and Mahdavi [10] proposed a global best HS
(GHS) algorithm, by borrowing the concept from the swarm
intelligence. Pan et al. in [11] proposed a self-adaptive global

best HS (SGHS) algorithm for solving continuous optimiza-
tion problems.

Tizhoosh introduced the concept of opposition-based learn-

ing (OBL) in [12]. This notion has been applied to accelerate
the reinforcement learning [13,14] and the back propagation
learning [15] in neural networks. The main idea behind OBL

is the simultaneous consideration of an estimate and its corre-
sponding opposite estimate (i.e., guess and opposite guess) in
order to achieve a better approximation for the current candi-
date solution. In the recent literature, the concept of opposite

numbers has been utilized to speed up the convergence rate of
an optimization algorithm, e.g., opposition-based differential
evolution (ODE) [16]. This idea of opposite number may be

incorporated during the harmony memory (HM) initialization
and also for generating the new harmony vectors during the
process of HS. In this paper, OBL has been utilized to

accelerate the convergence rate of the HS algorithm. Hence,
the proposed approach of this paper has been called as
opposition-based HS (OHS). OHS uses opposite numbers

during HM initialization and also for generating the new
HM during the evolutionary process of HS.

The goals of this paper are fourfold.

(a) First, a general presentation of the proposed OHS is
given. This has been accomplished by studying the basic
HS algorithm including its variants reported in the

recent literature.
(b) Second, the proposed OHS algorithm has been tested on

a suite of 16 benchmark test functions and the obtained

optimal results are compared to other variants of HS
reported in the literature like basic HS [2], IHS [3],
GHS [10], and SGHS [11]. The comparative convergence
profiles of the fitness function values for a few selected

benchmark test functions are also presented.
(c) Third, the efficacy of the proposed OHS algorithm has

been applied on a real-world power system optimization

problem like reactive power compensation of an auton-
omous hybrid power system model to track its incremen-
tal change in terminal voltage real-time under any sort

of input perturbation.
(d) And, finally, a statistical analysis is carried out to con-

clude about the robustness of the comparative algo-

rithms for this power system optimization application.

The rest of the paper is organized as follows. A brief
description of HS algorithm is presented in Section 2. A
concept of opposition-based learning is presented in Section 3.
OHS algorithm is described in Section 4. Pertaining to func-
tional landscape, optimization results of a few benchmark test

functions are presented in Section 5. Pertaining to engineering
optimization task, reactive power compensation of an autono-
mous hybrid power system model is focused in Section 6. Fi-

nally, Section 7 concludes the present work.

2. A brief description of HS algorithm

2.1. Basic HS algorithm

In the basic HS algorithm, each solution is called a harmony. It
is represented by an n-dimension real vector. An initial ran-
domly generated population of harmony vectors is stored in

an HM. Then, a new candidate harmony is generated from
all of the solutions in the HM by adopting a memory consid-
eration rule, a pitch adjustment rule and a random re-initiali-
zation. Finally, the HM is updated by comparing the new

candidate harmony vector and the worst harmony vector in
the HM. The worst harmony vector is replaced by the new can-
didate vector if it is better than the worst harmony vector in

the HM. The above process is repeated until a certain termina-
tion criterion is met. Thus, the basic HS algorithm consists of
three basic phases. These are initialization, improvisation of a

harmony vector, and updating the HM. Sequentially, these
phases are described below.

2.1.1. Initialization of the problem and the parameters of the HS
algorithm

In general, a global optimization problem can be enumerated

as follows: min f(x) s.t. xj 2 paramin
j ; paramax

j

h i
, j ¼ 1; 2; . . . ; n

where f(x) is the objective function, X ¼ ½x1; x2; . . . ; xn� is the
set of design variables; n is the number of design variables.

Here, paramin
j , and paramax

j are the lower and upper bounds

for the design variable xj, respectively. The parameters of the
HS algorithm are the harmony memory size (HMS) (the num-
ber of solution vectors in HM), the harmony memory consid-

eration rate (HMCR), the pitch adjusting rate (PAR), the
distance bandwidth (BW), and the number of improvisations
(NI). The NI is the same as the total number of fitness function

evaluations (NFFEs). It may be set as a stopping criterion
also.

2.1.2. Initialization of the HM

The HM consists of HMS harmony vectors. Let
Xj ¼ ½xj

1; x
j
2; . . . . . . ; xj

n� represent the jth harmony vector, which
is randomly generated within the parameter limits [paramin

j ,

paramax
j ]. Then, the HMmatrix is filled with theHMS harmony

vectors as in (1).

HM ¼

x1
1 x1

2 . . . . . . x1
n

x2
1 x2

2 . . . . . . x2
n

. . .

xHMS
1 xHMS

2 . . . . . . xHMS
n

2
6664

3
7775 ð1Þ
2.1.3. Improvisation of a new harmony

A new harmony vector Xnew ¼ ðxnew
1 ; xnew

2 . . . . . . xnew
n Þ is gener-

ated (called improvisation) by applying three rules viz. (a) a
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memory consideration, (b) a pitch adjustment, and (c) a ran-
dom selection. First of all, a uniform random number r1 is gen-
erated in the range [0,1]. If r1 is less than HMCR, the decision

variable xnew
j is generated by the memory consideration;

otherwise, xnew
j is obtained by a random selection (i.e., random

re-initialization between the search bounds). In the memory

consideration, xnew
j is selected from any harmony vector i in

½1; 2; ldots;HMS�. Secondly, each decision variable xnew
j will

undergo a pitch adjustment with a probability of PAR if it is

updated by the memory consideration. The pitch adjustment
rule is given by (2)

xnew
j ¼ xnew

j � r3 � BW ð2Þ

where r3 is a uniform random number between 0 and 1.

2.1.4. Updating of HM

After a new harmony vector Xnew
j is generated, the HM will be

updated by the survival of the fitter vector between Xnew and
the worst harmony vector Xworst in the HM. That is, Xnew will

replace Xworst and become a new member of the HM if the fit-
ness value of Xnew is better than the fitness value of Xworst .

2.1.5. Process of computation

The computational procedure of the basic HS algorithm may
be summarized as follows [2]:

HS Algorithm

1. Set the parameters HMS, HMCR, PAR, BW, NI, and n.

2. Initialize the HM and calculate the objective function value

for each harmony vector.

3. Improvise the HM filled with new harmony Xnew vectors as

follows:

for ðj ¼ 0; j < n; jþþÞ
if ðr1 < HMCRÞ then

xnewj ¼ xaj // a 2 ð1; 2; . . . ::;HMSÞ
if ðr2 < PARÞ then

xnewj ¼ xnewj � r3 � BW // r1; r2; r3 2 ½0; 1�
end if

else

xnewj ¼ paramin
j þ r� ðparamax

j � paramin
j Þ// r 2 ½0; 1�

end if

end for

4. Update the HM as Xworst ¼ Xnew if fðXnewÞ < fðXworstÞ.
5. If NI is completed, return the best harmony vector Xbest in the

HM; otherwise go back to Step 3.
2.2. IHS, GHS, and SGHS algorithms

The basic HS algorithm uses fixed values for PAR and BW

parameters. The IHS algorithm, proposed by Mahdavi et al.
[3], applies the same memory consideration, pitch adjustment
and random selection as the basic HS algorithm but, dynami-
cally, updates the values of PAR and BW as in (3) and (4),

respectively.

PARðgnÞ ¼ PARmin þ PARmax � PARmin

NI
� gn ð3Þ

BWðgnÞ ¼ BWmax � e

ln BWmin

BWmax

� �
NI �gn

� �
ð4Þ
In (3), PAR(gn) is the pitch adjustment rate in the current
generation (gn) and PARmin and PARmax are the minimum
and the maximum adjustment rate, respectively. In (4), BW(gn)

is the distance bandwidth at generation (gn) and BWmin and
BWmax are the minimum and the maximum bandwidths,
respectively. The details about GHS and SGHS may be found

in [10,11].

3. Opposition-based learning: a concept

Evolutionary optimization methods start with some initial
solutions (initial population) and try to improve them toward
some optimal solution(s). The process of searching terminates

when some predefined criteria are satisfied. In the absence of
a priori information about the solution, we, usually, start
with random guesses. The computation time, among others,

is related to the distance of these initial guesses from the
optimal solution. We may improve our chance of starting
with a closer (fitter) solution by simultaneously checking
the opposite solution [12]. By doing this, the fitter one (guess

or opposite guess) can be chosen as an initial solution. In
fact, according to the theory of probability, 50% of the time
a guess is further from the solution than its opposite guess

[13]. Therefore, starting with the closer of the two guesses
(as judged by its fitness) has the potential to accelerate con-
vergence. The same approach may be applied not only to ini-

tial solutions but also continuously to each solution in the
current population [13].

3.1. Definition of opposite number

Let x 2 ½lb; ub� be a real number. The opposite number is de-
fined as in (5).

x
^ ¼ lbþ ub� x ð5Þ

Similarly, this definition can be extended to higher dimen-

sions [12] as stated in the next sub-section.

3.2. Definition of opposite point

Let X ¼ ðx1; x2; . . . . . . ; xnÞ be a point in n-dimensional space,
where ðx1; x2; . . . . . . ; xnÞ 2 R and xi 2 ½ubi; lbi� 8i 2 f1;
2; . . . . . . ; ng. The opposite point x

^ ¼ ðx^1; x
^

2 . . . . . . ; x
^

nÞ is

completely defined by its components as in (6).

x
^

i ¼ lbi þ ubi � xi ð6Þ

Now, by employing the opposite point definition, the oppo-
sition-based optimization is defined in the following sub-

section.

3.3. Opposition-based optimization

Let X ¼ ðx1; x2; . . . . . . ; xnÞ be a point in n-dimensional space

(i.e., a candidate solution). Assume f ¼ ð�Þ is a fitness function
which is used to measure the candidate’s fitness. According to
the definition of the opposite point, x

^ ¼ ðx^1; x
^

2; . . . . . . ; x
^
nÞ is

the opposite of X ¼ ðx1; x2; . . . . . . ; xnÞ.
Now, if fðx^Þ 6 fðXÞ, then point X can be replaced with x

^
;

otherwise, we continue with X. Hence, the point and its
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opposite point are evaluated simultaneously in order to con-
tinue with the fitter one.

4. OHS algorithm

Similar to all population-based optimization algorithms, two
main steps are distinguishable for HS algorithm. These are

HM initialization and producing new HM by adopting the
principle of HS. In the present work, the strategy of OBL
[12] is incorporated in two steps. The original HS is chosen

as the parent algorithm and opposition-based ideas are embed-
ded in it with an intention to exhibit accelerated convergence
profile. Corresponding pseudo code for the proposed OHS ap-

proach may be summarized as follows:

OHS Algorithm

1. Set the parameters HMS, HMCR, PARmin, PARmax,

BWmin, BWmax, and NI.

2. Initialize the HM with X0i;j .

3. Opposition-based HM initialization.

for (i ¼ 0; i < HMS; iþþÞ
for (j ¼ 0; j < n; jþþÞ
OX0i; j ¼ paramin

j

þparamax
j � X0i;j

// OX0: Opposite of initial X0

end for

end for

// End of opposition-based HM initialization.

Select HMS fittest individuals from set of fX0i;j ; OX0i;jg as
initial HM; HM being the matrix of fittest X vectors

4. Improvise a new harmony Xnew as follows:

Update PARðgnÞ by (3) and BWðgnÞ by (4).

for (i ¼ 0; i < HMS; iþþÞ
for ðj ¼ 0; j < n; jþþÞ)

if ðr1 < HMCRÞ then
Xnew

i;j ¼ Xa
i;j // a 2 ð1; 2; . . . ::;HMSÞ

if ðr2 < PARðgnÞÞ then
Xnew

i;j ¼ Xnew
i;j � r3

�BWðgnÞ
// r1; r2; r3 2 ½0; 1�

end if

else

Xnew
i;j ¼ paramin

i;j þ r

� paramax
i;j � paramin

i;j

� � // r 2 ½0; 1�

end if

end for

end for

5. Update the HM as Xworst ¼ Xnew if fðXnewÞ < fðXworstÞ
6. Opposition-based generation jumping

if ðrand2 < JrÞ // rand22½0;1�; Jr: Jumping rate

for (i ¼ 0; i < HMS; iþþÞ
for (j ¼ 0; j < n; jþþÞ

OXi;j ¼ mingnj þmaxgnj � Xi;j

// mingnj :minimum value of the jth variable in the current generation (gn)

// maxgnj :maximum value of the jth variable in the current

generation (gn)

end for

end for

end if

Select HMS fittest HM from the set of fXi; j;OXi;jg as current HM.

// End of opposition-based generation jumping.

7. If NI is completed, return the best harmony vector Xbest in the

HM; otherwise go back to Step 4.
5. Optimization of benchmark test function (pertaining to

functional landscape)

5.1. Benchmark test function

A suite of sixteen global optimization problems are used to test

the performance of the proposed OHS algorithm. A detail of
each benchmark test function is presented in Appendix Sec-
tion (Table A.1). Among these sixteen benchmark problems,

Sphere function, Schwefel’s problem 2.22, Step function, Ro-
tated hyper-ellipsoid function, Shifted Sphere function and
Shifted Schwefel’s problem 1.2 are unimodal. Step function
is discontinuous. Rosenbrock function, Schwefel’s problem

2.26, Rastrigin function, Ackley function, Griewank function,
Shifted Rosenbrock function, Shifted Rastrigin function,
Shifted Rotated Griewank’s Function, and Shifted Rotated

Rastrigin function are difficult multimodal problems where
the number of local optima increases with the problem dimen-
sion. Six-hump Camel-back function is a low-dimensional

function with only a few local optima.

5.2. Parameter setting

The best chosen variables for the proposed OHS are Jr = 0.8,
HMCR= 0.9, PARmin = 0.45, PARmax = 0.98, BWmin =
1.00e - 06, BWmax = 1/20(paramax � paramin).

5.3. Discussion on benchmark function optimization

Each benchmark test function is run for 25 independent times.
The average and standard deviations over these 25 runs for 30

and 100 dimensions (except for the two-dimensional six-hump
Camel-back function) are presented in Tables 1 and 2, respec-
tively. The statistical significant best solutions have been

shown in bold face.
It may be observed that the OHS algorithm generates nine

best results out of sixteen functions, and for five test functions,
OHS and SGHS yield the same results (for dimension size of

30). For two functions like Shifted Rosenbrock function and
Shifted rotated Griewank’s function, SGHS yields better re-
sults than OHS. It may also be noted from Table 2 that with

the increase in dimensionality of the benchmark test functions,
OHS offers significantly better results than the compared algo-
rithms. Thus, as the dimension, thereby, the complexity of the

benchmark test functions increases, OHS offers superior
results.

The convergence profiles of the fitness function value

(n = 30) for (a) Sphere function and (b) Schwefel’s problem
2.22 against the NFFEs are presented in Fig. 1a and b, respec-
tively. The HS-, IHS-, GHS-, SGHS-, and OHS-based com-
parative convergence profiles of the fitness function values

(n = 100) for 30D Shifted Rastrigin function against NFFEs
are presented in Fig. 2. It may be observed from these figures
that the convergence profiles of the proposed OHS-based opti-

mum value for these selected test function descend much faster
than the other compared algorithms. It points out the fact that
the proposed OHS-based results for these benchmark test

functions are superior to the other compared methods.



Table 1 Mean and standard deviation (±SD) of the benchmark function optimization results (n= 30).

Function Global optimum HS [2] IHS [3] GHS [10] SGHS [11] OHS

f1 0 0.000187 ± 0.000032 0.000712 ± 0.000644 0.000010 ± 0.000022 0.000000 ± 0.000000 0.000000 ± 0.000000

f2 0 0.171524 ± 0.072851 1.097325 ± 0.181253 0.072815 ± 0.114464 0.000102 ± 0.000017 0.000101 ± 0.000013

f3 0 340.297100 ± 266.691353 624.323216 ± 559.847363 49.669203 ± 59.161192 150.929754 ± 131.054916 47.36718 ± 130.17368

f4 0 4.233333 ± 3.029668 3.333333 ± 2.195956 0 ± 0 0.000000± 0.000000 0.000000 ± 0.0000000

f5 0 4297.816457 ± 1362.148438 4313.653320 ± 1062.106222 5146.176259 ± 6348.792556 11.796490 ± 7.454435 10.371876 ± 6.394781

f6 0 30.262214 ± 11.960017 34.531375 ± 10.400177 0.041657 ± 0.050361 0.004015 ± 0.006237 0.003145 ± 0.005372

f7 0 1.390625 ± 0.824244 3.499144 ± 1.182907 0.008629 ± 0.015277 0.017737 ± 0.067494 0.001376 ± 0.001387

f8 0 1.130004 ± 0.407044 1.893394 ± 0.314610 0.020909 ± 0.021686 0.484445 ± 0.356729 0.0031678 ± 0.000136

f9 0 1.119266 ± 0.041207 1.120992 ± 0.040887 0.102407 ± 0.175640 0.050467 ± 0.035419 0.037451 ± 0.032175

f10 �1.0316285 �1.031628± 0.000000 �1.031628± 0.000000 �1.031600 ± 0.000018 �1.031628± 0.000000 �1.031628 ± 0.000000

f11 �450 �443.553193 ± 2.777075 �438.815459 ± 3.703810 1353.211035 ± 361.763223 �450.000000± 0.000000 �450.000000 ± 0.000000

f12 �450 3888.178656 ± 1115.259221 3316.602220 ± 1519.408280 18440.504168 ± 4537.943604 �431.095663 ± 17.251617 �441.367184 ± 16.310728

f13 390 3790.700528 ± 3271.573964 5752.122700 ± 3762.543380 35046942.785443 ± 22136432.286008 2511.678953± 3966.480932 2817.638432 ± 3841.420371

f14 �330 �329.128972 ± 0.808682 �328.056701 ± 0.667483 �263.271951 ± 9.356208 �329.860811± 0.349908 �329.860867 ± 0.349908

f15 �180 547.868607 ± 0.500873 494.756015 ± 6.717343 546.625388547 ± 8686070.613099 �47.188943± 13.313494 �58.312701 ± 12.513207

f16 �330 �274.687463 ± 12.863299 �270.694907 ± 16.223212 �192.095804 ± 18.645826 �232.136195 ± 30.033504 �280.413671 ± 11.218671

Table 2 Mean and standard deviation (±SD) of the benchmark function optimization results (n= 100).

Function Global

optimum

HS [2] IHS [3] GHS [10] SGHS [11] OHS

f1 0 8.683062 ± 0.775134 8.840449 ± 0.762496 2.230721 ± 0.565271 0.000002± 0.000003 0.000001 ± 0.000002

f2 0 82.926284 ± 6.717904 82.548978 ± 6.341707 19.020813 ± 5.093733 0.017581 ± 0.021205 0.015438 ± 0.020179

f3 0 16675172.184717 ± 3182464.488466 17277654.059718 ± 2945544.275052 2598652.617273 ± 915937.797217 621.749360 ± 583.889593 619.753628 ± 581.334539

f4 0 20280.200000 ± 2003.829956 20827.733333 ± 2175.284501 5219.933333 ± 1134.876027 0.100000 ± 0.305129 0.091036 ± 0.300141

f5 0 215052.904398 ± 28276.375538 213812.584732 ± 28305.249583 321780.353575 ± 39589.041160 37282.096600 ± 5913.489066 37173.001346 ± 5910.331444

f6 0 7960.925495 ± 572.390489 8301.390783 ± 731.191869 1270.944476 ± 395.457330 35.675398 ± 86.000104 33.413687 ± 85.100030

f7 0 343.497796 ± 27.245380 343.232044 ± 25.149464 80.657677 ± 30.368471 12.353767 ± 2.63560 11.100003 ± 2.543010

f8 0 13.857189 ± 0.284945 13.801383 ± 0.530388 8.767846 ± 0.880066 �0.000000 ± 0.000000 �0.000000 ± 0.000000

f9 0 195.592577 ± 24.808359 204.291518 ± 19.157177 54.252289 ± 18.600195 0.027932 ± 0.009209 0.021349 ± 0.008312

f11 �450 22241.554607 ± 2550.746480 23026.241628 ± 2304.787587 88835.245672 ± 9065.418923 �449.999980 ± 0.000093 �450.000000 ± 0.000072

f12 �450 272495.060293 ± 38504.505752 274439.336302 ± 37300.950900 496668.916387 ± 51929.415486 63251.604588 ± 12430.053431 63248.112343 ± 12428.04301

f13 390 2242245818.867268 ± 380621042.775803 2211121263.779596 ± 358676387.353021 27910012932.716747 ± 3941689420.106002 781.510290 ± 293.228166 776.423648 ± 285.210031

f14 �330 36.164513 ± 25.576559 36.685585 ± 25.311496 509.066964 ± 45.183819 �317.225748 ± 2.732871 �319.201033 ± 2.436781

f15 �180 1885.100054 ± 12.499888 1883.499365 ± 15.485959 1829.669549 ± 33.504803 1006.117891 ± 35.307793 1004.231340 ± 34.172839

f16 �330 341.676241 ± 48.372925 334.747556 ± 54.693700 763.818874 ± 43.613654 66.915779 ± 55.375297 46.310278 ± 53.112855

A
n
o
p
p
o
sitio

n
-b
a
sed

h
a
rm

o
n
y
sea

rch
a
lg
o
rith

m
fo
r
en
g
in
eerin

g
o
p
tim

iza
tio

n
p
ro
b
lem

s
8
9



Figure 1 Comparative convergence profiles of the fitness function values for the 30D. (a) Sphere function. (b) Schwefel’s problem 2.22.

Figure 3 Single-line diagram of the studied isolated wind–diesel

power system.

Figure 2 Comparative convergence profiles of the fitness func-

tion values for the shifted 30D Rastrigin function.
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6. Reactive power compensation of an autonomous hybrid power

system model (pertaining to engineering optimization

application)

6.1. General

The main advantages of using renewable energy sources are
that these are clean in nature, sustainable, and eco-friendly.
In modern power system, there has been a continuous

enhancement of power generation from renewable energy
sources like solar energy, wind energy etc. Wind energy is
intermittent and fluctuating in nature. Thus, power generation

from wind is variable. To reduce the fluctuation of wind gen-
eration, wind power generations are, generally, designed to
operate in parallel with diesel generators [17]. This combina-

tion of diesel and wind energy system is known as wind–diesel
hybrid power system.

Thus, in general, there may be more than one type of

electrical generators in any hybrid energy system [18]. In such
circumstances, it is normal although not essential for diesel
engine-based generator(s), usually, to be synchronous generator
(SG) and wind-turbine-based generator(s) to be asynchronous
such as induction generator (IG). An IG offers many advanta-

ges over the conventional SG as a source of isolated power
supply. Reduction in unit cost, ruggedness, absence of brushes
(in squirrel cage construction), absence of separate DC source

for excitation, easy maintenance, self protection against severe
overloads and short circuits, etc. are the main advantages of an
IG [19] but it requires reactive power support for its operation.

Due to this mismatch between generation and consumption of
reactive powers, more voltage fluctuations occur at generator
terminal in an isolated system which reduces the stability and

quality of supply. The problem becomes more complicated in
hybrid system having both IGs and SGs. In the present investi-
gated hybrid power system model, SG and IG are chosen with
diesel generator and wind turbine, respectively.

Various flexible AC transmission system (FACTS) devices
are available which may supply fast and continuous reactive
power support [20]. For standalone applications, effective

capacitive VAR controller has become central to the success
of IG system. Switched capacitors, static VAR compensator
(SVC), and static synchronous compensator may provide the

requisite amount of reactive power support.
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6.2. Studied hybrid power system model

The studied hybrid wind–diesel power system comprises of the
SG coupled with a diesel engine, IG coupled with a wind tur-
bine, electrical loads and reactive power compensating device

such as SVC [20,21] and a control mechanism. Fig. 3 depicts
the single line diagram of the studied hybrid power system
model. It is to be noted here that both the SG and the IG fulfill
the active power demanded by the load, while the reactive

power requirement for the operation of the IG and that of
the load is provided by the SG and the SVC. The real and reac-
tive power demand equations for the studied power system
Figure 4 Transfer-function block diagram for reactive powe
model, in s-domain, may be modeled as in the following
equation:

DPigðsÞ þ DPsgðsÞ � DPloadðsÞ ¼ 0 ð7Þ

DQsgðsÞ þ DQscðsÞ � DQloadðsÞ � DQigðsÞ ¼ 0 ð8Þ

Any sort of disturbance in the reactive power demanded by
the load (DQload) may lead to the system voltage change which,
in turn, results in incremental change in reactive power de-

mand of the other components. The left hand side of (8) rep-
resents the net incremental reactive power surplus and this
surplus in reactive power demand will have its immediate effect
r control of the studied wind–diesel hybrid power system.
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on the change in system voltage. But as per the recommenda-
tion of the grid, the voltage change should be within its permis-
sible limit. This necessitates that the terminal voltage profile

should be maintained properly.
Fig. 4 depicts the transfer-function block diagram for the

reactive power control of the studied wind–diesel hybrid power

system model. From this figure, the governing transfer func-
tion equation for the incremental change in load voltage
(DV) may be written, in s-domain, as in the following equation:

DVðsÞ ¼ K

1þ sT

� �
½DQsgðsÞ þ DQscðsÞ � DQloadðsÞ

� DQigðsÞ� ð9Þ
6.2.1. Modeling of the SG (Block C, Fig. 4)

The incremental change in reactive power of the SG may be gi-

ven by the following equation:

DQsgðsÞ ¼ K1DEqðsÞ þ K2DVðsÞ ð10Þ

where

K1 ¼
V cos d
X0d

ð11Þ

K2 ¼
ðE0 cos d� 2VÞ

X0d
ð12Þ

It is to be noted here that DEqðsÞ is proportional to the

change in the direct axis field flux under steady state condition
and is given below for the small perturbation by solving the
equation of flux linkages as stated in (13)

DEqðsÞ ¼
1

1þ sTg

� �
½K3DEsgðsÞ þ K4DVðsÞ� ð13Þ

where K3 ¼
X0d
Xd

ð14Þ

K4 ¼
Xd � X0d
� �

cos d
� 	

X0d
ð15Þ

and Tg ¼ T0d0
X0d
Xd

ð16Þ
Table 3 Range of SVC parameters.

SVC parameters Minimum value Maximum value

Ksvc 10.0 100.0

Kssvc 10.0 100.0

Twsvc 0.005 0.05

T1svc 0.005 0.05

T2svc 0.005 0.05

T3svc 0.005 0.05

T4svc 0.005 0.05

Tssvc 0.005 0.05
6.2.2. Modeling of the IG (Block B, Fig. 4)

The reactive power requirement of an IG under constant slip
condition (S) in terms of generator terminal voltage and gen-
erator parameters is given by the following equation:

DQigðsÞ ¼ K5DVðsÞ ð17Þ

where

K5 ¼
2VXeq

R2
Y þ X2

eq

� � ð18Þ

RY ¼ Rp þ Req ð19Þ

Rp ¼
r02
S
ð1� SÞ ð20Þ

Req ¼ r1 þ r02 ð21Þ
Xeq ¼ x1 þ x02 ð22Þ

where r1, x1, r
0
2 and x02 are the parameters of the IG.

6.2.3. Modeling of SVC (Block A, Fig. 4)

In wind–diesel hybrid power system, IG draws reactive power.
Apart from that, the most of the loads are inductive in nature
and the inductive loads also draw reactive power from the line.

So, there is always a chance of deficit of reactive power in the
studied model. In the present work, SVC is used to control the
generator terminal voltage of the wind–diesel hybrid power
system model by compensating the mismatch between reactive

power generation and demand [20,21]. The block diagram of
SVC, as adopted in the present work, is shown in Block A of
Fig. 4.

6.3. Mathematical problem formulation

6.3.1. Measure of performance

Two performance indices like integral absolute error (IAE),
and integral square error (ISE) are considered in the present

work and the definitions of these two are as follows in (23)
and (24), respectively.

IAE ¼
Z /

0

jVtðtÞjdt ð23Þ

ISE ¼
Z /

0

V2
t ðtÞdt ð24Þ
6.3.2. Design of figure of demerit

The objective of the present work is to achieve the minimal
incremental change in terminal voltage (DVt (p.u.)) response

profile following any sort of power system disturbances. This
may be achieved when minimized overshoot (Mp), minimized
settling time (ts), lesser rising time (tr), and lesser steady state

error (Ess) of the transient response profile are achieved. Thus,
a time-domain performance index, called as figure of demerit
(FOD), is designed as in (25) [22].

FOD ¼ ð1� e�cÞðMp þ EssÞ þ e�cðts � trÞ ð25Þ

In the present work, the value of c is set as 1.0 [22].

6.3.3. Constraints of the problem

The constrained optimization problem for the tuning of the
parameters of the studied isolated hybrid power system model
is subject to the limits of the different tunable parameters as

presented in Table 3.
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6.3.4. Formulation of mathematical optimization problem

The optimization task of the present work is taken as minimi-

zation of a performance index, integral square time error
(ISTE) [22] as stated as in the following equation:

Min Pindex ¼Min ½ISTE� ¼Min

Z /

0

t� V2
t ðtÞdt


 �
ð26Þ

The optimal values of the tunable parameters of the studied
isolated hybrid power system model are obtained by minimiz-

ing the value of Pindex given in (26) with the help of any of the
optimizing techniques with due regard to the constraints of the
model. And, subsequently, the values of IAE, ISE, and FOD
are obtained with the help of (23)–(25), in sequence, by utiliz-

ing the optimal controller parameters as yielded by any of the
adopted optimization algorithm.

6.4. Review of Takagi Sugeno fuzzy logic (TSFL) for on-line
tuning of controller gains

The whole process of TSFL [23] involves three steps as:

(a) Fuzzification: The first step is fuzzification of input operat-

ing conditions as load voltage (V) and equivalent reactance
(Xeq), in terms of fuzzy subsets (Low (L), Medium (M),
High (H)). These are associated with overlapping triangu-

lar membership functions. TSFL rule base table is formed,
each composed of two nominal inputs and corresponding
nominal optimal SVC parameters as output determined
by any of the optimizing techniques dealt with. The respec-

tive nominal central values of the input subsets of V are
(0.5, 0.8, 1.1), while those for X eq are (0.4752, 0.77, 1.08),
respectively, at which membership values are unity

(Fig. 5). These are nominal input conditions also. Sugeno
fuzzy rule base table consists of 32ð¼ 9Þ logical input con-
ditions or sets (TSFL tables calculated for the SVC struc-

tures investigated), each composed of two nominal
inputs. Each logical input set corresponds to nominal opti-
mal SVC parameters as output.

(b) Sugeno fuzzy inference: For on-line imprecise values of

input parameters, firstly their subsets in which the values
lie are determined with the help of ‘‘IF’’, ‘‘THEN’’ logic
and corresponding membership values are determined

from the membership functions of the subsets. From
Sugeno fuzzy rule base table, corresponding input sets
and nominal SVC parameters are determined. Now,
Figure 5 Fuzzification of input operating conditions (V and

Xeq).
for each input set being satisfied, two membership values

like lV and lX eq and their minimum lmin are computed.
For the input logical sets, which are not satisfied because
parameters do not lie in the corresponding fuzzy subsets,

lmin will be zero. For the non-zero lmin values only,
nominal SVC parameters corresponding to fuzzy sets
being satisfied are taken from the Sugeno fuzzy rule base
table.

(c) Sugeno defuzzification: It yields the defuzzified, crisp
output for each parameter of SVC. Final crisp SVC
parameter output is given by the following equation:

Kcrisp ¼
P

il
ðiÞ
min � KiP
il
ðiÞ
min

ð27Þ

where i corresponds to input logical sets being satisfied among
9 input logical sets and Ki is corresponding nominal SVC

parameter. Kcrisp is crisp SVC parameter. lðiÞmin is the minimum
membership value corresponding to ith input logical set being
satisfied.

6.5. Simulation results and discussions

The values for the different constants of the studied hybrid

power system model are presented in Appendix Section.

6.5.1. Test cases considered

The state differential equations in standard from may be writ-

ten as in the following equation:

DX
�
¼ ADXþ BDUþ CDP ð28Þ

where DX, DU and DP are the state, control and disturbance
vectors, respectively, while A, B and C are the system, control
and disturbance matrices, respectively. Based on Fig. 4, the fol-

lowing two test cases are considered in the present work.

� Case I: Only model (i.e., SVC block is absent in Fig. 4).

The different vector components of the standard state dif-
ferential equations for this test case as expressed in (27) are gi-
ven by the following equation:

DX ¼ ½Dxr Dd DEfd DEq DVt DV �T ð29Þ

DU ¼ ½DVref DTm �T ð30Þ

DP ¼ ½DQref� ð31Þ

There are no as such tunable parameters for this test case.

� Case II: Model + SVC (i.e., the SVC block is present in

Fig. 4).

The different vector components of the standard state

differential equations for this test case as expressed in (27)
are given by the following equation:

DX¼ Dxr Dd DEfd DEq DVt DV Dx1 Dx2 Dx3 DBsc½ �T

ð32Þ



Table 4 Sample Takagi–Sugeno fuzzy rule base table for Case II (Model + SVC).

Input operating

condition V, Xeq

(both are in p.u.)

Algorithm Optimal model parameters (Ksvc, Kssvc, Twsvc, T1svc, T2svc, T3svc, T4svc, Tssvc) IAE ISE Pindex

1.01, 0.93 BGA 27.92, 10.70, 0.0101, 0.0430, 0.0438, 0.0087, 0.0447, 0.0080 221.2256 5.2601 0.7948

IHS 17.63, 11.35, 0.0250, 0.0061, 0.0291, 0.0093, 0.0388, 0.0054 220.7069 5.0631 0.7878

HS 15.31, 10.11, 0.0210, 0.0051, 0.0271, 0.0064, 0.0410, 0.0048 220.1001 5.0510 0.7800

OHS 13.45, 11.03, 0.0280, 0.0050, 0.0497, 0.0050, 0.0493, 0.0052 219.5233 5.0164 0.7783

1.01, 1.08 BGA 25.82, 11.05, 0.0055, 0.0059, 0.0474, 0.0071, 0.0154, 0.0050 216.7345 5.4978 0.7795

HS 16.20, 11.13, 0.0316, 0.0078, 0.0500, 0.0050, 0.0389, 0.0089 215.1551 5.3210 0.7731

IHS 19.15, 10.47, 0.0245, 0.0054, 0.0416, 0.0041, 0.02156, 0.0049 213.1400 5.3012 0.7612

OHS 26.06, 10.64, 0.0500, 0.0050, 0.0500, 0.0050, 0.0500, 0.0050 212.6082 5.2612 0.7566

1.01, 0.4752 BGA 10.70, 10.00, 0.0062, 0.0196, 0.0363, 0.0052, 0.0479, 0.0094 253.5136 4.9910 0.8801

HS 15.67, 11.72, 0.0429, 0.0138, 0.0402, 0.0050, 0.0086, 0.0146 254.2652 4.8946 0.8624

IHS 14.17, 10.49, 0.0521, 0.0061, 0.0514, 0.0049, 0.0074, 0.0064 251.4569 4.8712 0.8512

OHS 30.63, 10.00, 0.0474, 0.0052, 0.0500, 0.0063, 0.0480, 0.0054 248.7237 4.8078 0.8308

1.0, 0.93 BGA 19.49, 11.75, 0.0252, 0.0057, 0.0484, 0.0119, 0.0495, 0.0099 227.6804 5.2115 0.7896

HS 20.37, 12.04, 0.0070, 0.0489, 0.0285, 0.0169, 0.0397, 0.0055 217.0124 5.0171 0.7763

IHS 24.10, 10.89, 0.0045, 0.0047, 0.0512, 0.0078, 0.0415, 0.0061 216.1409 5.0101 0.7612

OHS 23.16, 10.00, 0.0500, 0.0050, 0.0496, 0.0050, 0.0494, 0.0050 215.4302 5.0010 0.7516

1.0, 1.08 BGA 18.43, 11.40, 0.0057, 0.0208, 0.0488, 0.0099, 0.0294, 0.0117 214.0409 5.4708 0.7813

HS 20.52, 11.41, 0.0050, 0.0220, 0.0210, 0.0261, 0.0432, 0.0053 211.7528 5.2054 0.7735

IHS 21.14, 10.91, 0.0046, 0.0198, 0.0239, 0.0289, 0.0501, 0.0067 211.0001 5.1749 0.7612

OHS 23.06, 10.00, 0.0433, 0.0051, 0.0500, 0.0050, 0.0483, 0.0052 210.6177 5.1156 0.7472

1.0, 0.4752 BGA 24.41, 11.40, 0.0150, 0.0080, 0.0391, 0.0073, 0.0484, 0.0057 248.0023 4.9470 0.8474

HS 13.91, 11.43, 0.0362, 0.0140, 0.0352, 0.0118, 0.0500, 0.0050 247.4704 4.8274 0.8441

IHS 19.45, 12.46, 0.0456, 0.0096, 0.0465, 0.0236, 0.0519, 0.0041 246.1987 4.8012 0.8312

OHS 25.66, 10.00, 0.0500, 0.0076, 0.0500, 0.0056, 0.0500, 0.0050 245.7970 4.7143 0.8158

0.99, 0.93 BGA 42.34, 12.81, 0.0131, 0.0148, 0.0489, 0.0106, 0.0440, 0.0071 209.3613 5.3039 0.7645

HS 43.04, 12.09, 0.0051, 0.0050, 0.0319, 0.0298, 0.0453, 0.0050 207.3805 5.1216 0.7512

IHS 13.19, 13.18, 0.0415, 0.0049, 0.0418, 0.0196, 0.0346, 0.0089 206.0007 5.1002 0.7319

OHS 17.51, 10.07, 0.0442, 0.0083, 0.0500, 0.0051, 0.0500, 0.0050 206.9720 5.0342 0.7252

0.99, 1.08 BGA 17.38, 10.00, 0.0205, 0.0171, 0.0496, 0.0148, 0.0280, 0.0057 204.0092 5.6309 0.7381

HS 18.57, 10.05, 0.0436, 0.0169, 0.0500, 0.0050, 0.0376, 0.0064 202.6559 5.4365 0.7286

IHS 17.46, 11.19, 0.0085, 0.0094, 0.0614, 0.0078, 0.0417, 0.0049 201.1800 5.4102 0.7277

OHS 13.98, 13.38, 0.0467, 0.0050, 0.0499, 0.0051, 0.0414, 0.0051 200.2607 5.0175 0.7244

0.99, 0.4752 BGA 24.06, 13.16, 0.0110, 0.0052, 0.0444, 0.0365, 0.0386, 0.0117 240.2984 4.9295 0.8336

HS 11.72, 10.05, 0.0050, 0.0316, 0.0481, 0.0073, 0.0440, 0.0056 238.9619 4.8996 0.8025

IHS 18.20, 12.14, 0.0146, 0.0469, 0.0358, 0.0039, 0.0555, 0.0114 237.1984 4.8146 0.7948

OHS 19.85, 10.04, 0.0500 0.0070, 0.0499, 0.0051, 0.0499, 0.0050 236.4079 4.7859 0.7761
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DU ¼ ½DVref DTm �T ð33Þ

DP ¼ ½DQref� ð34Þ

The tunable parameters for this test case are Ksvc, Kssvc,
Twsvc, T1svc, T2svc, T3svc, T4svc, and Tssvc.

6.5.2. Parameter setting

(a) For BGA: Number of parameters depends on the model
under study (viz. Case I and Case II)1, number of
bits = (number of parameters) · 8 (for binary coded

BGA, as considered in the present work), population
size = 60, number of the fitness function evaluations
(NFFEs) = 500, mutation probability = 0.001, cross-
over rate = 80%.
1 There is no as such tunable parameter in Case I.
(b) For HS, IHS and OHS: The best chosen variables for
the proposed OHS are HMS= 60; HMCR = 0.9;
PARmin = 0.45; PARmax = 0.98; BWmin = 0.00005;
BWmax = 50; NI= 500 and n (number of parameters

to be optimized); jumping rate, Jr = 0.8; NFFEs = 500.
(c) For the studied power system model: The values for the

different constants of the studied hybrid power system

model are presented in Appendix Section.

6.5.3. Discussion on results

The simulation is carried out based on varying load voltage (V,
in p.u.) and equivalent reactance (Xeq, in p.u.). For time-
domain plots of the DVt (in p.u.) in MATLAB-SIMULINK,

input step perturbation of 0.01 p.u. is applied either in
incremental change in reference voltage (DVref) or in incremen-
tal change in mechanical torque (DTm). All the simulations of

the present work are carried out based on the same number
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NFFEs. The results of interest bold faced in the respective ta-
bles. The major observations of the present work are presented
below.

(a) Performance analysis based on Pindex: Table 4 includes
nine different sets of nominal input conditions on sam-

ple basis (for test Case II) of the investigated power sys-
tem model. This table presents the optimal parameter
values for these nine sets of nominal input conditions

(for test Case II). It may be noted here that for test Case
I, there is no as such tunable parameters. The value of
Pindex for test Case I is recorded as 1.0852. All the con-
tents of this table for test Case II form the Takagi–

Sugeno rule base table on sample basis. From Table 4,
it may be observed that the value of Pindex is less for test
Case II as compared to test Case I. It is due to the reac-

tive power compensation yielded by the SVC block and,
thus, minimized incremental change in terminal voltage
is noted. From this table, it may also be noted that the
Table 5 Comparative performance analysis of the comparative alg

Input operating condition V, Xeq (both are in p.u.) Algorithm Rise

1.01, 0.93 BGA 0.096

HS 0.096

IHS 0.096

OHS 0.096

1.01, 1.08 BGA 0.093

HS 0.093

IHS 0.093

OHS 0.093

1.01, 0.4752 BGA 0.109

HS 0.109

IHS 0.109

OHS 0.110

1.0, 0.93 BGA 0.095

HS 0.095

IHS 0.095

OHS 0.095

1.0, 1.08 BGA 0.092

HS 0.093

IHS 0.093

OHS 0.093

1.0, 0.4752 BGA 0.109

HS 0.110

IHS 0.110

OHS 0.110

0.97, 0.93 BGA 0.094

HS 0.094

IHS 0.094

OHS 0.094

0.97, 1.08 BGA 0.092

HS 0.092

IHS 0.092

OHS 0.091

0.97, 0.4752 BGA 0.107

HS 0.107

IHS 0.107

OHS 0.107
proposed OHS-based optimization technique offers les-

ser value of Pindex as compared to either HS-, or IHS-,
or BGA-based technique for test Case II. It is observed
that the value of Pindex is the least one for the proposed

OHS-based approach, establishing the optimization per-
formance of OHS-based approach to be the best one
among the others for this power system application.

(b) Performance analysis based on FOD: The performance

of the incremental changes in terminal voltages (in terms
ofMp, Ess, ts, tr, etc.) of the studied hybrid power system
model for the adopted approaches are also calculated

and presented in Table 5. The value of FOD for test case
I is recorded as 0.9942. The value of FOD is less for test
Case II (for any of the adopted approaches) as com-

pared to test Case I which indicates improvement in
voltage profile has occurred. From this table, it may also
be noted that the value of the FOD is the minimum for
the OHS-based approach which indicates that the best

optimal voltage response profile is achieved for this
orithms for Case II (Model + SVC).

time tr (s) Over shoot Mp (%) Steady state error Ess FOD

0 0.0301 0.0085 0.3569

3 0.0295 0.0088 0.3567

3 0.0294 0.0086 0.3566

3 0.0294 0.0083 0.3563

7 0.0315 0.0082 0.3592

7 0.0321 0.0086 0.3586

6 0.0320 0.0087 0.3585

5 0.0319 0.0092 0.3581

5 0.0204 0.0077 0.3479

1 0.0213 0.0092 0.3470

0 0.0210 0.0090 0.3461

8 0.0206 0.0086 0.3456

1 0.0305 0.0087 0.3597

5 0.0300 0.0083 0.3589

5 0.0299 0.0082 0.3584

4 0.0300 0.0081 0.3575

4 0.0332 0.0081 0.3600

5 0.0322 0.0081 0.3590

4 0.0321 0.0080 0.3586

3 0.0320 0.0080 0.3581

6 0.0205 0.0205 0.3498

1 0.0205 0.0085 0.3487

0 0.0204 0.0085 0.3480

0 0.0203 0.0083 0.3458

3 0.0321 0.0093 0.3593

3 0.0318 0.0084 0.3586

2 0.0317 0.0083 0.3579

1 0.0316 0.0082 0.3561

0 0.0352 0.0084 0.3686

0 0.0353 0.0090 0.3670

0 0.0350 0.0089 0.3650

9 0.0336 0.0087 0.3610

2 0.0220 0.0085 0.3478

7 0.0215 0.0076 0.3467

6 0.0214 0.0075 0.3461

4 0.0213 0.0071 0.3449



Figure 6 Comparative time-domain simulation responses of the incremental change in terminal voltage (p.u.) for nominal input

conditions (V = 1.0 p.u., Xeq = 0.93 p.u.) based on the algorithms like (a) BGA, (b) HS, (c) IHS and (d) OHS.

Figure 7 Comparative time-domain simulation responses of the incremental change in terminal voltage (p.u.) for nominal input

conditions (V = 1.01 p.u., Xeq = 1.08 p.u.) based on the algorithms like (a) BGA, (b) HS, (c) IHS, and (d) OHS.
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Figure 9 Comparative BGA-, HS-, IHS-, and OHS-based time-domain simulation responses of the incremental change in terminal

voltage (p.u.) for test Case II and nominal input conditions like (a) V = 1.01 p.u., Xeq = 0.4752 p.u. and (b) V = 1.0 p.u., Xeq = 0.93 p.u.

Figure 8 Comparative time-domain simulation responses of the incremental change in terminal voltage (p.u.) for off-nominal input

conditions (V = 0.992 p.u., Xeq = 1.08 p.u.) based on the algorithms like (a) BGA-TSFL , (b) HS-TSFL , (c) IHS-TSFL, and (d) OHS-

TSFL.

Table 6 Takagi–Sugeno fuzzy-based off-nominal, on-line optimal controller gains and transient response characteristics of

incremental change in terminal voltage (using BGA/HS/OHS-based optimal gains of Table 4) for Case II viz. (Model + SVC).

Input operating condition

V, Xeq (both are p.u.)

Algorithm Optimal model parameters

(Ksvc, Kssvc, Twsvc, T1svc, T2svc, T3svc, T4svc, Tssvc)

FOD IAE ISE Pindex

0.992, 1.08 BGA-TSFL 12.10, 11.40, 0.0210, 0.0268, 0.0208, 0.0050, 0.0257, 0.0168 0.3620 213.8230 5.7912 0.7898

HS-TSFL 12.49, 10.97, 0.0269, 0.0079, 0.0453, 0.0071, 0.0305, 0.0050 0.3599 210.3729 5.6067 0.7526

IHS-TSFL 11.91, 10.01, 0.0291, 0.0071, 0.0431, 0.0069, 0.0051, 0.0051 0.3589 209.1458 5.5004 0.7511

OHS-TSFL 11.03, 10.00, 0.0500, 0.0050, 0.0498, 0.0054, 0.0495, 0.0054 0.3570 208.3964 5.4721 0.7410
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Figure 10 Comparative BGA-, HS-, IHS-, and OHS-based

convergence profiles of minimum Pindex values for Case II

(Model + SVC) for nominal input condition of V = 1.0 p.u.,

Xeq = 0.93 p.u.

Table 7 Statistical analysis of results of different optimization

techniques for the studied hybrid power system model for Case

II viz. (Model + SVC) for an input operating condition of

V = 1.0 p.u., Xeq = 1.08 p.u. over 30 independent trial runs.

Algorithms Best Worst Mean Std. t-Value

BGA 0.7813 0.9979 0.8803 0.1463 6.2301

RGA 0.7800 0.9904 0.8901 0.1937 5.0633

HS 0.7735 0.7901 0.8250 0.1107 4.7013

IHS 0.7715 0.7802 0.7799 0.0599 3.3643

GHS 0.7608 0.7701 0.7692 0.0419 3.0039

SGHS 0.7506 0.7700 0.7649 0.0409 2.3339

OHS 0.7472 0.7609 0.7514 0.000186 0

Figure 11 Dynamic performance evaluation: (a) applied sinu-

soidal load pattern and (b) OHS-TSFL-based time-domain

simulation response of incremental change in terminal voltage

(p.u.) for off-nominal input parameters like V = 1.01 p.u and

Xeq = 0.93 p.u.
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approach. Thus, the OHS-based optimization technique

yields optimal voltage response profile and, thus, its
optimization performance is found to be better than
either IHS-, or HS-, or BGA-based counterparts.

(c) Performance analysis based on performance indices: As a
measure of performances of the comparative algorithms
and the adopted test cases, the values of IAE and ISE as
defined in (23) and (24), respectively, are calculated for

all the input operating conditions at the end of the devel-
oped program and the results are analyzed. The values
of these two performance indices help us to conclude

the same inferences with regard to reactive power com-
pensation of the studied hybrid power system model.

(d) Analysis of time-domain responses: Fig. 6 is pertaining to

the comparative SIMULINK-based time-domain
response profiles of DVt (p.u.) for the studied test cases
and the comparative algorithms with 1% step change
in reference voltage for nominal input conditions like

V= 1.0 p.u. and Xeq = 0.93 p.u.. Fig. 7 depicts the
same for an another nominal input conditions like
V= 1.01 p.u. and Xeq = 1.08 p.u. From these two fig-

ures, it is prominent that among the two test cases
(viz. model and model + SVC), test Case II yields the
optimal voltage response profile for the given nominal

input operating condition and an adopted algorithm.
This has happened with the help of true reactive power
support from the SVC loop for test Case II which is

absent for test Case I.
(e) TSFL-based response: For on-line, off-nominal input

sets of parameters, TSFL model is utilized to get the
on-line, optimal controller parameters and these con-

troller parameters also yield the on-line incremental
change in terminal voltage response profile (Fig. 8).
Table 6 illustrates the Sugeno fuzzy-based off-nominal,

on-line optimal parameters and values of FOD, IAE,
ISE, and ISTE (using BGA-/HS-/OHS-based optimal
parameters of Table 4) for on-line, off-nominal input

sets of parameters. During real-time operation, the val-
ues of V and Xeq are determined from the system. For
these sets of V and Xeq values, the optimal system
parameters may be computed by using the fuzzy rule-

based table and the Takagi–Sugeno inference system.
Thus, the suitability of the proposed TSFL controller
during real-time operation of the studied hybrid power

system model is demonstrated.
(f) Comparison of the optimizing algorithms: Fig. 9 depicts

time-domain responses of DVt (p.u.) for the studied

algorithms with 1% step perturbation in reference volt-
age for nominal input conditions as laid down. This fig-
ure, basically, portrays the comparative incremental

change in terminal voltage as yielded by the different
optimization techniques viz. BGA HS and OHS for test
Case II. From this figure, it is clear that the OHS-based
optimization yields true optimal reactive power compen-

sation for the test Case II, i.e., model + SVC. Thus, the
adopted hybrid power system model is truly compen-
sated by the reactive power support for the proposed

OHS-based approach.
(g) Convergence profile: Based on the same NFFEs, Fig. 10

portrays the comparative convergence profiles of the

minimum P index values yielded by the different compara-
tive algorithms for a test Case II. From this figure, it



Table A.1 Test functions.

Sl. no. Name Test function n Domain Global optimum, x\ Function value, f(x\)

1 Sphere function f1ðxÞ ¼
Pn

i¼1x
2
i 30 [�100, 100]n [0]n 0

2 Schwefel’s problem 2.22 f2ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij 30 [�10, 10]n [0]n 0

3 Rosenbrock function f3ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� 30 [�30, 30]n [1]n 0

4 Step function f4ðxÞ ¼
Pn

i¼1ðjxi þ 0:5jÞ2 30 [�100, 100]n [0]n 0

5 Rotated hyper-ellipsoid function f5ðxÞ ¼
Pn

i¼1
Pi

j¼1xj
� �2

30 [�100, 100]n [0]n 0

6 Schwefel’s problem 2.26 f6ðxÞ ¼ 418:9829� n�
Pn

i¼1xi sin
ffiffiffiffiffiffiffi
jxij

p� �
30 [�500, 500]n [420.96]n 0

7 Rastrigin’s function f7ðxÞ ¼
Pn

i¼1½x2i � 10 cosð2pxiÞ þ 10� 30 [�5.12, 5.12]n [0]n 0

8 Ackley’s function f8ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q� �
� expð1n

Pn
i¼1 cosð2pxiÞÞ þ 20þ e 30 [�32, 32]n [0]n 0

9 Griewank function f9ðxÞ ¼ 1
4000

Pn
i¼1x

2
i �

Qn
i¼1 cos

xiffi
i
p
� �

þ 1 30 [�600, 600]n [0]n 0

10 Six-hump Camel-back function f10ðxÞ ¼ 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42 2 [�5, 5]n (0.08983, 0.7126) �1.0316285

11 Shifted Sphere function f11ðxÞ ¼
Pn

i¼1z
2
i þ fbias 1; z= x � o + 1, o= [o1, o2, . . .. . . , on]:

the shifted global optimum

30 [�100, 100]n o �450, fbias1 = �450

12 Shifted Schwefel’s problem 1.2
f12ðxÞ ¼

Pn
i¼1

Pi
j¼1zj

� �2
þ fbias 2; z = x - o + 1, o= [o1, o2, . . .. . . , on]:

the shifted global optimum

30 [�100, 100]n 0 �450, fbias2 = �450

13 Shifted Rosenbrock function f13ðxÞ ¼
Pn�1

i¼1 ½100ðz2i � ziþ1Þ
2 þ ðzi � 1Þ2� þ fbias 3; z= x - o+ 1, o= [o1, o2, . . .. . . , on]:

the shifted global optimum

30 [�100, 100]n o 390, fbias3 = 390

14 Shifted Rastrigin function f14ðxÞ ¼
Pn

i¼1½z2i � 10 cosð2pziÞ þ 10� þ fbias4; z = x - o+ 1, o= [o1, o2, . . .. . . , on]:
the shifted global optimum

30 [�5, 5]n o �330, fbias 4 ¼ �330

15 Shifted rotated Griewank’s function f15ðxÞ ¼ 1
4000

Pn
i¼1z

2
i �

Qn
i¼1 cos

ziffi
i
p
� �

þ 1þ fbias 5; z = (x � o) · M, o = [o1, o2, . . .. . . , on]:

the shifted global optimum, M is linear transformation matrix

30 [�100, 100]n o �180, fbias 5 ¼ �180

16 Shifted rotated Rastrigin function f16ðxÞ ¼
Pn

i¼1½z2i � 10 cosð2pziÞ þ 10� þ fbias 6; z= (x � o) · M, o= [o1, o2, . . .. . . , on]:
the shifted global optimum, M is linear transformation matrix

30 [�5, 5]n o �330, fbias 6 ¼ �330

Please refer to the website http://www3.ntu.edu.sg/home/EPNSugan/ for the details of these test functions.
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Table A.2 Data for the proposed hybrid power system model.

Synchronous generator Induction generator Load SVC

Psg = 0.4 p.u. kW Pig = 0.6 p.u. kW Pload = 1.0 p.u. kW Q= 0.841 p.u. kVAR

Qsg = 0.2 p.u. kVAR Qig = 0.291 p.u. kVAR Qload = 0.75 p.u. kVAR a = 138.80

Eq = 1.12418 p.u. Pin = 0.667 p.u. kW Power factor = 0.8

d = 17.24830 g = 90%

E0q ¼ 0:9804 p:u: Power factor = 0.9

V= 1.0 p.u. r1 ¼ r02 ¼ 0:19 p:u:

Xd = 1.0 p.u. x1 ¼ x02 ¼ 0:56 p:u:

X0d ¼ 0:15 p:u: S= �3.5%
T0do ¼ 5:0 s –
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may be noted that the proposed OHS-based meta-heu-
ristic offers faster convergence profile and also lesser
final value of ISTE as compared to either BGA- or

HS-based approach for this adopted test case. BGA
yields suboptimal higher values of Pindex.

(h) Performance evaluation with sinusoidal load pattern: The

performance evaluation of the studied isolated hybrid
power system model with sinusoidal load pattern and
OHS-based optimization technique for on-line, off-nom-
inal input sets of parameters is also carried out. The

expression for the sinusoidal load change containing
low sub-harmonic terms [24] is assumed as in (35) and
its variation with time (for 100 s) is plotted in Fig. 11a.

DPd ¼ 0:03 sinð4:36tÞ þ 0:05 sinð5:3tÞ � 0:1 sinð6tÞ ð35Þ

Under the on-line, off-nominal input sets of parameters

with sinusoidal load pattern, the TSFL extrapolates the nom-
inal optimal parameters intelligently and linearly in order to
determine the off-nominal optimal SVC controller parameters.

These controller parameters yield the optimal incremental
change in terminal voltage response profile as presented in
Fig. 11b. From this figure, it may be noted that with the appli-
cation of a continuously fluctuating load demand, smooth out-

put voltage response profile is obtained with the assistance of a
truly compensated reactive power support from the SVC loop.

(i) Statistical analysis: The t-values between the OHS and
the other optimization methods are presented in Table 7.
The t-value of all approaches is larger than 2.15 (degree

of freedom = 49), meaning that there is a significant dif-
ference between the OHS and other methods with a 98%
confidence level. BGA-based results yield suboptimal

results. Thus, from statistical analysis, it is clear that
the OHS-based optimization technique offers robust
and promising results.
7. Conclusion

In this paper, the concept of opposition-based learning has
been employed to accelerate the HS algorithm. The notion
of opposition-based learning has been utilized to introduce

opposition-based HM initialization and opposition-based gen-
eration jumping. By embedding these two steps within the HS,
an opposition-based HS algorithm is proposed in this paper.

The proposed algorithm is tested on sixteen benchmark test
functions. The simulation results demonstrate the effectiveness

and robustness of the proposed algorithm to solve the bench-
mark test functions. Moreover, the results of the proposed
algorithm have been compared to those surfaced in the recent
state-of-the-art literature. As an engineering optimization

application, reactive power control of an isolated hybrid power
system model is carried out with the help of the proposed OHS
algorithm. From the simulation study, it is revealed that the

proper tuning of the SVC yields the true optimal voltage re-
sponse profile for the studied hybrid power system model.
TSFL is applied to obtain the on-line output terminal voltage

response. The comparison of the numerical results and the
convergence profiles of the optimum objective function values
confirm the effectiveness and the superiority of the proposed

approach of the current article.
Appendix A

A.1. Description of benchmark test functions

Description of benchmark test functions is presented in

Table A.1.

A.2. Power system data

The values of the different constants used for the simulation
(Fig. 4) are Ka5 = 2V · Bsvc, Kv = 6.667, T ¼ 7:855� 10�4 s,
Tr = 0.02s, Ka = 200, Ta = 0.01 s, H= 1.0, D = 0.8,

x0 = 314.
The other data of the studied hybrid isolated power system

model are presented in Table A.2.
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