COMPLEMENTS AND QUASICOMPLEMENTS IN THE LATTICE OF SUBALGEBRAS OF P($\boldsymbol{\omega}$)

Ivo DÜNTSCH
Department of Mathematics, Bayero University, Kano, Nigeria

Sabine KOPPELBERG

2. Mathematisches Institut der FU Berlin, 1000 Berlin 33, Fed. Rep. Germany

Abstract

In the lattice of subalgebras of a Boolean algebra D call B a complement of A if $A \cap B=\{0,1\}$ and $A \cup B$ generates $D . B$ is called a quasicomplement of A if it is maximal w.r.t. the property $A \cap B=\{0,1\}$. We characterize those countable subalgebras of $P(\omega)$ which have a complement, and, assuming Martin's Axiom, describe the isomorphism types of some quasicomplements of the finite-cofinite subalgebra of $P(\omega)$.

Dans le treillis des sous-algèbres d'une algèbre booléenne D, la sous-algèbre B est un complément de A si $A \cap B=\{0,1\}$ et si D est engendrée par $A \cup B$. La sous-algèbre B est un quasicomplément de A si B est maximale parmi les algèbres C satisfaisant $A \cap C=\{0,1\}$. On caractérise les sous-algèbres dénombrables de $P(\omega)$ qui possèdent un complément et, en admettant l'axiome de Martin, on decrit les types d'isomorphisme de quelques quasicompléments de $F C(\omega)$, la sous-algèbre de $P(\omega)$ des parties finies et cofinies de ω.

1. Introduction

For a Boolean algebra D, the set $\operatorname{Sub}(D)$ of subalgebras of D is a complete lattice under set inclusion with least element $2=\{0,1\}$ and greatest element D; we write $A \leqslant D$, if A is a subalgebra of D. For $A, B \leqslant D$, the infimum of A and B in $\operatorname{Sub}(D)$ is just $A \cap B$, and their supremum $A \vee B$ is the subalgebra of D generated by $A \cup B$. Call B
(i) a complement of A, if $A \cap B=2$ and $A \vee B=D$;
(ii) a quasicomplement of A, if B is maximal w.r.t. the property $A \cap B=2$. An arbitrary $A \leqslant D$ need not have a complement, but, by Zorn's Lemma it certainly has a quasicomplement; neither complements nor quasicomplements are, in general, uniquely determined.

Quasicomplements have been considered by Remmel [4], where they are called complements. The question for which algebras D the lattice $\operatorname{Sub}(D)$ is complemented has been studied first by Rao and Rao [3] and later by Todorčević [8]; the following are the general facts known about this problem:

Fact 1. If D is a subalgebra of an interval algebra, then $\operatorname{Sub}(D)$ is complemented (cf. [6] and [8]).

Fact 2. If $\operatorname{Sub}(D)$ is complemented, then D is retractive in the terminology of [5], cf. also [3].

Rubin proved in [6] that each subalgebra of an interval algebra is retractive; exactly the same proof gives Fact 1. A special case of Fact 1, namely that $\operatorname{Sub}(D)$ is complemented for countable D, was proved by Remmel [4] and later by Jech [1].

For the example D constructed under \diamond in [6] of a retractive algebra which is not embeddable into an interval algebra, $\operatorname{Sub}(D)$ is not complemented, so the converse of Fact 2 does not hold. It is not known whether the converse of Fact 1 holds.

The proof of Fact 2 given in [3] shows that, in particular, $F C(\omega)$, the algebra of finite or cofinite subsets of ω does not have a complement in $P(\omega)$, the power set algebra of the set ω of non-negative integers - in fact, such a complement must be isomorphic to $P(\omega)$ modulo the ideal of finite sets, but this algebra, having an uncountable disjoint subset, is not embeddable into $P(\omega)$. Nevertheless, it will turn out that many countable subalgebras of $P(\omega)$ have complements; whether such an A has a complement depends solely on the way A is embedded into $P(\omega)$, and not on the isomorphism type of A.

We shall deal with quasicomplements - mostly in $\operatorname{Sub}(P(\omega))$ - in Section 2, and with complements in $\operatorname{Sub}(P(\omega))$ in Section 3. Moreover, a problem raised in [4, p. 62] is solved at the end of this section. The example given also shows that any Boolean algebra which is embeddable into $P(\omega)$ can be embedded into $P(\omega)$ so that it has a complement.

We shall use the following notation: $f[X]$, resp. $f^{-1}[X]$, is the image, resp. the preimage of a set X under a function f. The finitary operations of a Boolean algebra A are denoted by $+, \cdot,-, 0,1$; we shall also use this notation for $A \leqslant P(\omega)$. Infinitary joins are denoted by $\Sigma . a=a_{1} \dot{+} \cdots \dot{+} a_{n}$ means that $a=$ $a_{1}+\cdots+a_{n}$ and the a_{i} are pairwise disjoint. A^{+}is $A \backslash\left\{0_{A}\right\}$, and $\operatorname{At}(A)$ is the set of atoms of A. For $a \in A, A \mid a$ is the relative algebra $\{x \in A \mid x \leqslant a\}$. [M] denotes the subalgebra of A generated by M. Let $A \leqslant D$, and $u \in D$. Then $A(u)=$ [$A \cup\{u\}$] is called a simple extension of A. The elements of $A(u)$ can be written in the form

$$
a_{1} \cdot u+a_{2} \cdot-u
$$

where $a_{1}, a_{2} \in A$, or in the form

$$
a_{1} \cdot u \dot{+} a_{2} \cdot-u \dot{+} a_{3}
$$

for some quadruple (a_{1}, \ldots, a_{4}) of elements of A satisfying $a_{1} \dot{+} a_{2} \dot{+} a_{3} \dot{+} a_{4}=1$. u is independent of A if, for $a \in A^{+}, a \cdot u$ and $a \cdot-u$ are nonzero. For the terminology on partial orders and Martin's Axiom, see [7]: if (P, \leqslant) is a partially ordered set, call $D \subseteq P$ dense for each $p \in P$ there is some $q \in D$ such that $p \leqslant q$. If
\mathfrak{T} is a family of dense subsets of $P, G \subseteq P$ is said to be generic for \mathfrak{W} if
(1) $p \in G, q \in P, q \leqslant p$ implies $q \in G$;
(2) for $p, q \in G$ there exists $r \in G$ such that $p, q \leqslant r$;
(3) $G \cap D \neq \emptyset$ for every $D \in \mathfrak{D}$.
$p, q \in P$ are compatible if $p, q \leqslant r$ for some $r \in P$, otherwise incompatible; (P, \leqslant) satisfies the countable chain condition (ccc) if each set of pairwise incompatible elements of P is countable. We denote by $\left(\mathrm{MA}_{\kappa}\right)$ the assertion that for each family \mathfrak{D}) of dense subsets of a ccc partial order (P, \leqslant) satisfying $|\mathfrak{D}| \leqslant \kappa$, there exists a subset G of P which is generic for the family \mathfrak{D}. (MA) is the assertion that $\left(\mathrm{MA}_{\kappa}\right)$ for each $\kappa<2^{\omega}$. Note that $\left(\mathrm{MA}_{\omega}\right)$ is a theorem of ZFC , thus, all our theorems are provable within $\mathrm{ZFC}+\mathrm{CH}$. Routine details in applications of Martin's Axiom are sometimes omitted.

2. Quasicomplements

First we consider the question whether in a 'large' algebra D there can be 'small' subalgebras A, B such that B is a quasicomplement of A. We then concentrate on $D=P(\omega)$. There is a general answer to the question:

Proposition 1. If B is a quasicomplement of A in $\operatorname{Sub}(D)$, then $A \vee B$ is dense in D. Hence $|D| \leqslant 2^{\max (|A|,|B|)}$.

Proof. Assume that $A \vee B$ is not dense in D. Then there exists a $z \in D^{+}$such that for no $c \in A \vee B, 0<c \leqslant z$; in particular, $z \notin B$. We prove that $A \cap B(z)=2$, contradicting the maximality of B. Let $a \in A \cap B(z)$, e.g.,

$$
\begin{equation*}
a=b_{1} \cdot z+b_{2} \cdot-z+b_{3} \tag{1}
\end{equation*}
$$

where $b_{1} \dot{+} b_{2} \dot{+} b_{3} \dot{+} b_{4}=1$. Now, $b_{1} \cdot a=b_{1} \cdot z \leqslant z$. Since $b_{1} \cdot a \in A \vee B$ and by our assumption, $b_{1} \cdot a=0$. By

$$
-a=b_{2} \cdot z+b_{1} \cdot-z+b_{4}
$$

we get $b_{2} \cdot-a=0$, hence $b_{2} \leqslant a$ by the same reasoning. By (1) again, $b_{2} \cdot a=$ $b_{2} \cdot-z$; thus $a=b_{2} \cdot a+b_{3}=b_{2}+b_{3} \in B$. This implies $a \in \mathbf{2}$. For the rest note that, if C is a dense subalgebra of D, then each element of D is the join of all elements of C below it.

Example 1 (MA). There is a Boolean algebra D of power 2^{ω} and $A, B \leqslant D$ such that $|A|=|B|=\omega$ and A, B are quasicomplements of each other.

Proof. Construct a chain $\left(D_{\alpha}\right)_{\alpha<2^{\omega}}$ of atomless Boolean algebras and $A, B \leqslant D_{\alpha}$, s.t.
(1) $D_{\lambda}=\bigcup\left\{D_{\alpha} \mid \alpha<\lambda\right\}$ for limit ordinals $\lambda<2^{\omega}$.
(2) $D_{\alpha+1}$ is a simple extension of D_{α}, constructed by the following Lemma 1.
(3) $|A|=|B|=\omega, A$ and B are quasicomplements of each other in D_{0}, and A, B are dense in every D_{α}.
Then set $D=\bigcup\left\{D_{\alpha} \mid \alpha<2^{\omega}\right\}$.

Let D_{0} be the interval algebra of the set \mathbb{Q} of rationals. We sketch how to find A and B : Let M be a subset of \mathbb{Q} such that both M and $\mathbb{Q} \backslash M$ are dense in \mathbb{Q}. Let $A_{0}\left(B_{0}\right)$ be the set of elements of D_{0} having endpoints only in $M(\mathbb{Q} \backslash M)$. Since $A_{0} \cap B_{0}=2$, we may then find A and B by enlarging A_{0} and B_{0}.

Lemma $1\left(\mathrm{MA}_{\kappa}\right)$. Let E be an atomless Boolean algebra and $A, B \leqslant E$ such that $|E| \leqslant \kappa,|A|=|B|=\omega, A$ and B are quasicomplements of each other, and A and B are both dense in E. Then there is a simple extension $E(u)$ of E such that E (and hence A and B) is dense in $E(u)$, and A and B are quasicomplements of each other in $E(u)$.

Proof. We are going to construct u in the completion of E. Put $C=A \vee B$, and let

$$
P=\{(x, y) \in C \times C \mid x \cdot y=0 \text { and } x+y<1\} .
$$

For $(x, y),\left(x^{\prime}, y^{\prime}\right) \in P$ let $(x, y) \leqslant\left(x^{\prime}, y^{\prime}\right)$ iff $x \leqslant x^{\prime}$ and $y \leqslant y^{\prime}$. Since C is countable, so is P, and thus trivially satisfies the ccc.

For $e \in E$,

$$
D_{e}=\left\{\left(x^{\prime}, y^{\prime}\right) \in P \mid x^{\prime} \cdot-e \neq 0 \text { or } y^{\prime} \cdot e \neq 0\right\}
$$

is dense in P.
Motivated by the representation of elements in $E(u)$ given in Section 1, we define Qu_{E} to be the set of quadruples $\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in E^{4}$ such that $e_{1} \dot{+} e_{2} \dot{+} e_{3} \dot{+} e_{4}=1 ; \mathrm{Qu}_{\mathrm{A}}$ and Qu_{B} are defined similarly. For $x, y \in E$ and $\bar{e}=$ $\left(e_{1}, \ldots, e_{4}\right) \in \mathrm{Qu}_{\mathrm{E}}$, let

$$
f_{\bar{e}}(x, y)=e_{1} x+e_{2} y+e_{3}
$$

for x, y, \bar{e} as above and $\bar{a}=\left(a_{1}, \ldots, a_{4}\right) \in \mathrm{Qu}_{\mathrm{A}}$, let

$$
f_{\bar{e} \bar{a}}(x, y)=\left(a_{1} e_{1}+a_{2} e_{2}\right) x+\left(a_{1} e_{2}+a_{2} e_{1}\right) y+\left(a_{1} e_{3}+a_{2} e_{4}\right)+a_{3} .
$$

We claim that for $\bar{e} \in \mathrm{Qu}_{E}$,

$$
\begin{gathered}
D_{\bar{e}}^{\mathrm{A}}=\left\{\left(x^{\prime}, y^{\prime}\right) \in P \mid e_{1}+e_{2} \leqslant x^{\prime}+y^{\prime} \text { or there is some } \bar{a} \in \mathrm{Qu}_{\mathrm{A}}\right. \text { such that } \\
\left.\qquad a_{1}+a_{2} \leqslant x^{\prime}+y^{\prime} \text { and } f_{\bar{e} \bar{a}}\left(x^{\prime}, y^{\prime}\right) \notin \mathrm{A}\right\}
\end{gathered}
$$

is a dense subset of P : let $(x, y) \in P$ be given. If $e_{1}+e_{2} \leqslant x+y$, put $\left(x^{\prime}, y^{\prime}\right)=(x, y)$.

So, let $e_{1}+e_{2} \leqslant x+y$. Since A is atomless and dense in E, there is some $a \in A$ such that

$$
0<a \leqslant e_{1}+e_{2}, \quad a \cdot(x+y)=0, \quad a+x+y<1
$$

Let w.l.o.g. $0<a \leqslant e_{1}$, otherwise, we may assume $a \leqslant e_{2}$. Pick $a_{1}, a_{2} \in A^{+}$such that $a=a_{1} \dot{+} a_{2}$. Since B is dense in E, pick $\beta, \delta \in B^{+}$such that $a_{1}=\beta \dot{+} \gamma, a_{2}=\delta \dot{+} \varepsilon$ for some $\gamma, \varepsilon \in C^{+}$. Then define

$$
\begin{array}{ll}
s=\beta+\delta, & t=\gamma+\varepsilon \\
x^{\prime}=x+s, & y^{\prime}=y+t
\end{array}
$$

We shall see that $\left(x^{\prime}, y^{\prime}\right) \in D_{\bar{e}}^{A}$. Note that $\delta, \beta, \gamma, \varepsilon, s, t$ and hence x^{\prime} and y^{\prime} are elements of C. Moreover,

$$
x^{\prime}+y^{\prime}=x+s+y+t=x+y+a<1,
$$

and $x^{\prime} \cdot y^{\prime}=0$ since $(x+y) \cdot a=0$ and $\beta, \gamma, \delta, \varepsilon$ are in $C \upharpoonright a$ and pairwise disjoint. Let $\bar{a}=\left(a_{1}, a_{2}, 0,-a\right) \in \mathrm{Qu}_{\mathrm{A}}$, so $a_{1}+a_{2} \leqslant x^{\prime}+y^{\prime}$. Also,

$$
\begin{aligned}
f_{\overline{\mathrm{e}} \overline{\bar{a}}}\left(x^{\prime}, y^{\prime}\right) & =\left(a_{1}+0\right) \cdot x^{\prime}+\left(0+a_{2}\right) \cdot y^{\prime}+(0+0)+0 \\
& =a_{1} x^{\prime}+a_{2} y^{\prime} \\
& =a_{1}(x+s)+a_{2}(y+t)=\beta+\varepsilon \notin A
\end{aligned}
$$

since otherwise $a_{1} \cdot f_{\bar{\varepsilon} \bar{a}}\left(x^{\prime}, y^{\prime}\right)=\beta \in A$, but $\beta \in B \backslash 2$ and $A \cap B=\mathbf{2}$.
For $\bar{e} \in \mathrm{Qu}_{\mathrm{E}}$, we may define a dense subset $D_{\bar{e}}^{B}$ of P w.r.t. B instead of A in a similar way.

By (MA_{κ}) and $|E| \leqslant \kappa$, there is a subset G of P generic for these families of dense sets.

Let, in the completion \bar{E} of E,

$$
u=\Sigma^{\bar{E}}\{x \mid(x, y) \in G \text { for some } y \in C\}
$$

and note that, for $(x, y) \in G, x \leqslant u$ and $y \leqslant-u$. We have $E \leqslant E(u) \leqslant \bar{E}$, hence E is dense in $E(u)$. To prove that A is a quasicomplement of B in $\operatorname{Sub}(E(u))$, take $t \in E(u) \backslash A$. We show that $A(t) \cap B \neq 2$. There is some $\bar{e} \in Q u_{E}$ such that $t=$ $f_{\bar{e}}(u,-u)$; pick $\left(x^{\prime}, y^{\prime}\right) \in G \cap D_{\bar{e}}^{A} ;$ so $x^{\prime} \leqslant u$ and $y^{\prime} \leqslant-u$.

If $e_{1}+e_{2} \leqslant x^{\prime}+y^{\prime}$, then $e_{1} \cdot u=e_{1} \cdot x^{\prime}$ and $e_{2} \cdot-u=e_{2} y^{\prime}$, so $t=e_{1} x^{\prime}+e_{2} y^{\prime}+e_{3} \in$ $E \backslash A$, since $x^{\prime}, y^{\prime} \in C, e_{1}, e_{2}, e_{3} \in E$; since A is a quasicomplement of B in $\operatorname{Sub}(E), A(t) \cap B \neq 2$. If $e_{1}+e_{2} \neq x^{\prime}+y^{\prime}$, then by definition of $D_{\tilde{e}}^{A}$, there is some $\bar{a} \in \mathrm{Qu}_{\mathrm{A}}$ such that $a_{1}+a_{2} \leqslant x^{\prime}+y^{\prime}$ and $f_{\bar{e} \bar{a}}\left(x^{\prime}, y^{\prime}\right) \notin A$. By $a_{1}+a_{2} \leqslant x^{\prime}+y^{\prime}$, we have $a_{1} \cdot u=a_{1} \cdot x^{\prime}, a_{2} \cdot u=a_{2} x^{\prime}, a_{1} \cdot-u=a_{1} y^{\prime}$ and $a_{2} \cdot-u=a_{2} y^{\prime}$. Put $s=f_{\bar{a}}(t,-t)$; then

$$
\begin{aligned}
s & =f_{\bar{a}}\left(f_{\bar{e}}(u,-u),-f_{\bar{e}}(u,-u)\right) \\
& =f_{\bar{e} \bar{a}}(u,-u) \\
& =\left(a_{1} e_{1}+a_{2} e_{2}\right) \cdot u+\left(a_{1} e_{2}+a_{2} e_{1}\right) \cdot-u+\left(a_{1} e_{3}+a_{2} e_{4}\right)+a_{3} \\
& =\left(a_{1} e_{1}+a_{2} e_{2}\right) \cdot x^{\prime}+\left(a_{1} e_{2}+a_{2} e_{1}\right) \cdot y^{\prime}+\left(a_{1} e_{3}+a_{2} e_{4}\right)+a_{3} \\
& =f_{\bar{e}(}\left(x^{\prime}, y^{\prime}\right) \in E \backslash A .
\end{aligned}
$$

Since A is a quasicomplement of B in $E, A(s) \cap B \neq 2$; but $s \in A(t)$ by our definition of s, so $A(s) \leqslant A(t)$ and $A(t) \cap B \neq 2$.

The situation described in Example 1 cannot occur for $D=P(\omega)$:
Proposition $2\left(\mathrm{MA}_{\kappa}\right)$. Let $A, B \leqslant P(\omega)$ such that $|A|,|B| \leqslant \kappa$ and $A \cap B=2$. Then B is not a quasicomplement of A.

Proof. Let

$$
\begin{gathered}
P=\{p: \omega \rightarrow 2 \mid \operatorname{dom}(p) \text { finite and }|p[b]| \leqslant 1 \text { for each finite } \\
\text { atom } b \text { of } B\}
\end{gathered}
$$

be partially ordered by set inclusion. The following subsets of P are dense in P :
(1) $D_{n}=\{q \in P \mid n \in \operatorname{dom}(q)\}$ for $n \in \omega$.
(2) $D_{a b}=\{q \in P \mid$ for some $n \in \operatorname{dom}(q) \cap b, n \in a$ iff $q(n)=1\}$ for each $a \in A$ and each infinite $b \in B$: if $p \in P$, choose $n \in b \backslash\left(\operatorname{dom}(p) \cup \bigcup\left\{b_{0} \in \operatorname{At}(B) \mid b_{0}\right.\right.$ finite, $\left.b_{0} \cap \operatorname{dom}(p) \neq \emptyset\right\}$), and define $q=p \cup\{(n, \varepsilon)\}$, where $\varepsilon=1$ iff $n \in a$. Then $q \in D_{a b}$ and $p \leqslant q$.
(3) $D_{b}=\{q \in P \mid$ for some $n \in \operatorname{dom}(q), q(n)=1$ iff $n \in b\}$ for $b \in B$. This is seen as in (2), since b or $-b$ is infinite.

By (MA_{κ}) and $|A|,|B| \leqslant \kappa$, there is some $G \subseteq P$ generic for the union of these families of dense sets. By $G \cap D_{n} \neq \emptyset$ for $n \in \omega, f=\bigcup G$ is a function from ω to 2 ; let $u=f^{-1}(0)$. Since $G \cap D_{b} \neq \emptyset$ for $b \in B, u \notin B$. We prove $A \cap B(u)=2$ by assuming there is some $a \in A \cap B(u), a \neq 0,1$.

Choose b_{1}, \ldots, b_{4} in B such that $b_{1} \dot{+} b_{2} \dot{+} b_{3} \dot{+} b_{4}=1$ and

$$
a=b_{1} \cdot u+b_{2} \cdot-u+b_{3} .
$$

Now, b_{1} is finite, for otherwise, pick $q \in G \cap D_{a b_{1}}$. There is some $n \in b_{1} \cap \operatorname{dom}(a)$ such that $n \in a$ iff $q(n)=1$, hence, $n \in a$ iff $n \notin u$, and $b_{1} \cdot a \neq b_{1} \cdot u$, contradicting the definition of $D_{a b_{1}}$. The same argument shows that b_{2} is finite by considering $-a=b_{2} u+b_{1} \cdot-u+b_{4}$.

If b is a finite atom of B, then by definition of $P, b \leqslant u$ or $b \leqslant-u$, hence $b \cdot u=b \in B$ or $b \cdot u=0 \in B$ and also $b \cdot-u \in B$. Now, b_{1} and b_{2} are finite unions of finite atoms of B, so $b_{1} \cdot u, b_{2} \cdot-u \in B$. This gives $a \in B$, a contradiction to $a \in A \backslash 2$.

For the rest of this section we try to describe the structure of quasicomplements of $F C(\omega)$ in $P(\omega)$; note that Proposition 3(a), without assuming (MA) as in Proposition 2, guarantees that these quasicomplements have power 2^{ω}.

Lemma $2\left(\mathrm{MA}_{\kappa}\right)$. Let $B \leqslant P(\omega)$ such that $|B| \leqslant \kappa$ and each $b \in B^{+}$is infinite. Then there is some $u \subseteq \omega$ such that $b \cdot u$ and $b \cdot-u$ are infinite for each $b \in B^{+}$. In particular, u is independent from B.

Proof. Consider (\mathbf{P}, \subseteq), where

$$
P=\{p: \omega \rightarrow 2 \mid \operatorname{dom}(p) \text { is finite }\},
$$

and let for $n \in \omega D_{n} \subseteq P$ be as in the proof of Proposition 2, and for $k \in \omega$ and $b \in B^{+}$,

$$
\begin{aligned}
& D_{b k}=\{q \in P \mid \text { there are } e, f \subseteq \operatorname{dom}(q) \cap b \text { such that } \\
& |e|=|f|=k \text { and } q(n)=0 \text { for } n \in e, q(n)=1 \\
& \text { for } n \in f\} .
\end{aligned}
$$

Every $D_{b k}$ is dense, since each b is infinite. If $G \subseteq P$ is generic for these dense subsets of P, let $f=\bigcup G$; then $u=f^{-1}(0)$ has the desired properties.

For a Boolean algebra B, let $\pi(B)$ the least possible cardinal of some dense subset of B.

Proposition 3. Let B be a quasicomplement of $F C(\omega)$ in $P(\omega)$.
(a) B is an atomless complete Boolean algebra.
(b) $\left(\mathrm{MA}_{\kappa}\right) . \pi(B)>\kappa$.

Proof. (a) Assume b is an atom of B; since b is infinite, pick infinite subsets b_{1}, b_{2} of b such that $b_{1} \dot{+} b_{2}=b$. Clearly, B is a proper subalgebra of $B\left(b_{1}\right)$ and each $c \in B\left(b_{1}\right)^{+}$is infinite. Next assume that B is not complete, hence a proper subalgebra of its completion $\overline{\boldsymbol{B}}$. By the Sikorski extension theorem, there is a homomorphism $e: \bar{B} \rightarrow P(\omega)$ extending the identity map on B. Since B is dense in \bar{B}, e is one-to-one, so w.l.o.g. assume $B \leqslant \bar{B} \leqslant P(\omega)$. Again by density of B in \bar{B}, each $c \in \bar{B}^{+}$is infinite.
(b) Assume that B_{0} is a dense subalgebra of B of power at most κ. For B_{0}, choose $u \subseteq \omega$ as in Lemma 2. B_{0} is dense in B, thus, $b \cdot u$ and $b \cdot-u$ are infinite for all $b \in B^{+}$. So, $B(u)$ is a proper extension of B, and each $c \in B(u)^{+}$, having the form $b \cdot u+b^{\prime} \cdot-u$ for some $b, b^{\prime} \in B$, is infinite.

Example 2 will be based on the following improvement of Lemma 2. Call $u \subseteq \omega$ compatible with $B \leqslant P(\omega)$, if each $c \in B(u)^{+}$is infinite, otherwise incompatible.

Lemma $3\left(\mathrm{MA}_{\kappa}\right)$. Let $B \leqslant P(\omega)$ such that B is complete, $\pi(B) \leqslant \kappa$, and each $c \in B^{+}$is infinite; let $x \in P(\omega) \backslash B$. Then there is some $u \subseteq \omega$ such that u is compatible with B, independent from B, and x is incompatible with $B(u)$.

Proof. If x is incompatible with B, choose u as in the proof of Proposition 3(b), so assume that x is compatible with B. Put

$$
\begin{aligned}
I & =\{b \in B \mid b \leqslant x\}, & & J=\{b \in B \mid b \leqslant-x\}, \\
\alpha & =\Sigma^{B} I, & & \beta=\Sigma^{B} J,
\end{aligned}
$$

so $\alpha \cdot \beta=0$. It is impossible that both $x \leqslant \alpha$ and $-x \leqslant \beta$ since this would imply $x=\alpha \in B$, so assume $x \neq \alpha$ and choose some $n_{0} \in x \cdot-\alpha$.

Let

$$
\begin{aligned}
& P=\left\{p: \omega \rightarrow 2 \mid \operatorname{dom}(p) \text { finite, } n_{0} \in \operatorname{dom} p, \text { and } p\left(n_{0}\right)=0,\right. \\
&\left.p(n)=1 \text { for every } n \in(\operatorname{dom} p \cap x) \backslash\left(\alpha \cup\left\{n_{0}\right\}\right)\right\} .
\end{aligned}
$$

Let B_{0} be a fixed dense subalgebra of B of power at most κ. Define the subsets D_{n} for $n \in \omega$ and $D_{b k}$ for $b \in B_{0}^{+}, k \in \omega$ as in the proof of Lemma 2. We check that $D_{b k}$ is still dense in P. This follows easily if we know that $e=b \backslash(x \backslash \alpha)$ is infinite. Assume e is finite. Now x is compatible with B and $e \in B(x)$; so $e=0, b \leqslant$ $x \cdot-\alpha \leqslant x, b \in I$ and $b \leqslant-\alpha$, a contradiction.

Let G, f, u be as in the proof of Lemma 2. x is incompatible with $B(u)$, since

$$
(u \cap x) \backslash \alpha=\left\{n_{0}\right\}:
$$

$n_{0} \in x \backslash \alpha$ by our choice of n_{0}, and $n_{0} \in u$ by our choice of P. If $n \in x \backslash \alpha$ such that $n \neq n_{0}$, then $n \notin u$ follows from the definition of P.

Example 2 (MA). $F C(\omega)$ has a quasicomplement B in $\operatorname{Sub}(P(\omega))$ which is the completion of the free Boolean algebra on 2^{ω} generators.

Proof. For a cardinal μ denote by F_{μ} the free Boolean algebra on μ generators. Let $\left\{x_{\alpha} \mid \alpha<2^{\omega}\right\}$ be an enumeration of $P(\omega)$.

Construct by induction a chain $\left(B_{\alpha}\right)_{\alpha<2^{\omega}}$ of subalgebras of $P(\omega)$ such that $F C(\omega) \cap B_{\alpha}=2$ and $B_{\alpha} \cong \overline{F_{\mid \alpha}}$: let $B_{0}=2$; for a limit ordinal $\lambda<2^{\omega}$, let B_{λ} be the completion of $\bigcup_{\alpha<\lambda} B_{\alpha}$, embedded in $P(\omega)$ over $\bigcup_{\alpha<\lambda} B_{\alpha}$ as in the proof of Proposition 3(a). If B_{α} has been constructed, let $B_{\alpha+1}=B_{\alpha}\left(u_{\alpha}\right)$ where u_{α} is chosen by Lemma 3 such that $x_{\alpha} \in B_{\alpha}$ or x_{α} is incompatible with $B_{\alpha}\left(u_{\alpha}\right)$; this is possible by $\pi\left(B_{\alpha}\right)=\pi\left(\overline{F_{|\alpha|}}\right)=|\alpha|<2^{\omega}$.

Put $B=\bigcup_{\alpha<2^{\omega}} B_{\alpha}$, so $F C(\omega) \cap B=2$ and $B \cong \overline{F_{2^{\omega}}} . B$ is a quasicomplement of $F C(\omega)$: if $x \in P(\omega) \backslash B$, w.l.o.g. $x=x_{\alpha}$; then by construction of $B_{\alpha+1}$ and $x \notin B_{\alpha}, x_{\alpha}$ is incompatible with $B_{\alpha+1}$, hence with B. \square

We need some preparation for the construction of a quasicomplement of $F C(\omega)$ in $\operatorname{Sub}(P(\omega))$ very different from Example 2. Recall that $C \leqslant B$ is a regular subalgebra of B if the inclusion map from C to B preserves all meets and joins existing in C. If I is an ideal in a Boolean algebra A, let $I^{*}=\{a \in A \mid a \cdot i=0$ for all $i \in I\} . I^{*}$ is the pseudocomplement of I in the lattice of ideals of A; clearly, $I \subseteq I^{* *}$. Call I regular if $I=I^{* *}$ - this means that the open subset corresponding to I in the Stone space $\operatorname{St}(A)$ of A is regular open. So, a proper dense ideal of A is never regular.

If $A \leqslant B$ call $u \in B$ regular over A if the ideal $\{x \in A \mid x \leqslant u\}$ of A is regular. If A is a dense subalgebra of C, then each $u \in C$ is regular over A, since u is essentially an element of the completion \bar{A} of A, and elements of \bar{A} correspond
to regular open subsets of $\operatorname{St}(A)$. If $A \leqslant C \leqslant B$ where A is dense in C and C is a complete regular subalgebra of B, then each $u \in B$ is regular over A, since $\{x \in A \mid x \leqslant u\}=\{x \in A \mid x \leqslant c\}$ where $c=\Sigma^{C}\{y \in C \mid y \leqslant u\}$.

Lemma $4\left(\mathrm{MA}_{\kappa}\right)$. Let $A \leqslant B \leqslant P(\omega)$ where A is atomless, $B \cap F C(\omega)=2$ and $|B| \leqslant \kappa$. Then there is $a u \subseteq \omega$ such that u is compatible with B, and $\{x \in A \mid x \leqslant u\}$ is a proper dense ideal of A. So, u is not regular over A.

Proof. Let

$$
P=\{(p, i) \mid p: \omega \rightarrow 2, \operatorname{dom}(p) \text { finite }, i \in A, i<1, p[i] \subseteq\{0\}\},
$$

and $(p, i) \leqslant(q, j)$ if $p \subseteq q$ and $i \leqslant j$. We check that (P, \leqslant) satisfies the ccc: (p, i) and $(q, j) \in P$ are compatible in P iff $p \cup q$ is a function, $i+j<1$, and $p[j] \cup q[i] \subseteq\{0\}$. Let $\left(p_{\alpha}, i_{\alpha}\right) \in P$ for $\alpha<\omega_{1}$; w.l.o.g. let $p_{\alpha}=p$ for each $\alpha<\omega_{1}$. So,

$$
p_{\alpha}\left[i_{\beta}\right] \cup p_{\beta}\left[i_{\alpha}\right]=p_{\alpha}\left[i_{\alpha}\right] \cup p_{\beta}\left[i_{\beta}\right] \subseteq\{0\} \quad \text { for } \alpha, \beta<\omega_{1} .
$$

Also, since A satisfies the ccc, there are $\alpha<\beta<\omega_{1}$ such that $i_{\alpha}+i_{\beta}<1$.
The following subsets of P are dense in P :
(1) $D_{n}=\{(q, j) \in P \mid n \in \operatorname{dom}(q)\}$ for $n \in \omega$.
(2) $D_{k b}^{+}=\{(q, j) \in P \mid$ there is $e \subseteq b \cap \operatorname{dom}(q)$ such that $|e|=k$ and $p[e] \subseteq\{0\}\}$ for $k \in \omega, b \in B^{+}$.
(3) $D_{k b}^{-}=\{(q, j) \in P \mid b \leqslant j$ or there is $e \subseteq b \cap \operatorname{dom}(q)$ such that $|e|=k$ and $q[e] \subseteq\{1\}\}$ for $k \in \omega, b \in B^{+}$: let $(p, i) \in P$, if $b \leqslant i$, then put $(q, j)=(p, i)$; otherwise, $b \backslash i$ is infinite, being an element of B^{+}; choose $e \subseteq b \backslash(i \cup \operatorname{dom}(p))$ such that $|e|=k$ and set $j=i$, and $q=p \cup\{(n, 1) \mid n \in e\}$.
(4) $D_{a}=\{(q, j) \in P \mid a \cdot j>0\}$ for $a \in A^{+}$: let $(p, i) \in P$; if $a \leqslant i$, put $(q, j)=(p, i)$. Otherwise, since A is atomless, choose $c \in A^{+}$such that $0<c<a \cdot-i$ and $c \cap \operatorname{dom} p=\emptyset$; then set $(q, j)=(p, i+c)$.

Again for some $G \subseteq P$ generic for these dense sets, let $f=\bigcup G$ and $u=f^{-1}(0)$, then

$$
I=\{i \in A \mid i \leqslant j \text { for some }(p, j) \in G\}
$$

clearly is an ideal of A; it will turn out that $I=\{x \in A \mid x \leqslant u\}$. Let J be the ideal of B generated by I.

First, I is a proper ideal of A, and $i \in I$ implies $i \leqslant u$ by definition of G. By $G \cap D_{a} \neq \emptyset$ for $a \in A^{+}, I$ is a dense ideal. For $b \in B^{+}, b \cdot u$ and $b \cdot-u$ are infinite or empty, so $B(u) \cap F C(\omega)=2: b \cdot u$ is infinite by $G \cap D_{b k}^{+} \neq \emptyset$. For $b \in J$, we have $b \leqslant u$ by definition of f, so $b \cdot-u=0$. If $b \notin J, b \cdot-u$ is infinite (which also establishes $\{x \in A \mid x \leqslant u\} \subseteq I)$: for $k \in \omega$ choose $(q, j) \in G \cap D_{b k}^{-}$. So, $j \in I$, and since $b \notin J, b \neq j$, and therefore $|b \cap-u| \geqslant k$.

Example 3 (MA). $F C(\omega)$ has a quasicomplement B in $\operatorname{Sub}(P(\omega))$ such that if
$C \leqslant B$ is a complete regular subalgebra of B, then $\pi(C)=2^{\omega}$. In particular, no $\overline{F_{\kappa}}$ is a regular subalgebra of B for $\kappa \leqslant 2^{\omega}$.

Proof. Let $\left\{x_{\alpha} \mid \alpha<2^{\omega}\right\}$ be an enumeration of $P(\omega)$, and, since (MA) implies that $2^{\kappa}=2^{\omega}$ for $\kappa<2^{\omega},\left\{A_{\alpha} \mid \alpha<2^{\omega}\right\}$ be an enumeration of

$$
\mathfrak{A}=\left\{A \leqslant P(\omega) \mid A \text { is atomless and }|A|<2^{\omega}\right\} .
$$

We may assume that each $A \in \mathfrak{A}$ is listed 2^{ω} times in this enumeration.
We construct a chain $\left(B_{\alpha}\right)_{\alpha<2^{\omega}}$ of subalgebras of $P(\omega)$ such that $B_{\alpha} \cap F C(\omega)=2$, and $\left|B_{\alpha}\right|<2^{\omega}$. Then we set $B=\bigcup_{\alpha<2^{\omega}} B_{\alpha}$. Let $B_{0}=2$ and $B_{\lambda}=\bigcup_{\alpha<\lambda} B_{\alpha}$ for limit ordinals. If B_{α} has been constructed, let $B_{\alpha}^{\prime}=B_{\alpha}\left(x_{\alpha}\right)$ if x_{α} is compatible with B_{α}, and $B_{\alpha}^{\prime}=B_{\alpha}$ otherwise. If $A_{\alpha} \leqslant B_{\alpha}^{\prime}$, let $B_{\alpha+1}=B_{\alpha}^{\prime}\left(u_{\alpha}\right)$, where u_{α} is chosen by Lemma 4 to be compatible with B_{α}^{\prime}, and u_{α} is not regular over A_{α}; otherwise set $B_{\alpha+1}=B_{\alpha}^{\prime}$.

Clearly B is a quasicomplement of $F C(\omega)$. Suppose that C is a complete atomless regular subalgebra of B, and $\pi(C)<2^{\omega}$. Let A be a dense subalgebra of C such that $|A|<2^{\omega} ; A$ also is atomless; pick $\alpha<2^{\omega}$ such that $A=A_{\alpha} \leqslant B_{\alpha}$. Then u_{α} is an element of B which is not regular over A, contradicting the remark preceding Lemma 4.

3. Complements in $\operatorname{Sub}(\boldsymbol{P}(\omega))$

To abbreviate the statement and proof of the following theorem, we give some definitions. Let $A \leqslant P(X)$ (X will be a subset of ω later on). If α is a finite atom of A, call α a proper atom if $|\alpha|>1$, and an improper atom if $|\alpha|=1$. Let for $b \in A$

$$
d(b)=b \backslash \bigcup \operatorname{At}(A)
$$

be the 'defect of b '. Note that for $b \leqslant c$ in $A, d(b)=d(c) \cap b$. Call $a \in A$ bad (w.r.t. A) if $A \upharpoonright a$ is atomic, $d(a)$ is finite, each atom of $A \upharpoonleft a$ is finite, and only finitely many atoms of $A \mid a$ are proper. So in particular a is bad, if $F C(a) \leqslant$ $A \upharpoonright a$. Call a good if it is not bad. The set of bad elements of A is an ideal Bd of A containing each finite element of A.

The proof of the theorem will split into five cases which are handled in Lemmas $6,8,9,10,12$. Note that every finite subalgebra of $P(\omega)$ has a complement, hence, we shall concentrate on the case of countable $A \leqslant P(\omega)$, which means $|A|=\omega$. There are four 'positive' cases (Lemmas 8,9,10,12) in which A has a complement; the proofs of these cases can also be carried out for $|A|=\kappa<2^{\omega}$, assuming (MA_{κ}). The only negative case (Lemma 6) relies on Lemma 5(a) which has a partial analogue under (MA_{κ}) in Lemma 5(b); we have, however, not been able to prove Lemma 6 assuming $|A|=\kappa<2^{\omega}$ and $\left(M A_{\kappa}\right)$.

Theorem 1. Let A be a countable subalgebra of $P(\omega)$. A does not have a complement in $\operatorname{Sub}(P(\omega))$ iff
(1) A is atomic.
(2) Each atom of A is finite.
(3) $|A / B d| \leqslant 2$.

In particular, A does not have a complement if $F C(\omega) \leqslant A$ or $A \leqslant F C(\omega)$.

Proof. If A satisfies (1), (2) and (3), then A has no complement by Lemma 6. Thus, suppose A does not satisfy (1), (2) or (3). If A does not satisfy (1) or (2), then there is some $a \in A^{+}$such that each $b \in(A \mid a)^{+}$is infinite; then A has a complement by Lemma 8 . So let A satisfy (1) and (2), and suppose there are $a_{1}, \ldots, a_{n} \in A$ such that $\left|a_{i}\right|=\omega, a_{1} \dot{+} \cdots \dot{+} a_{n}=1$ and w.l.o.g. a_{1} and a_{2} are good. Then $a_{2}+\cdots+a_{n}$ is also good, so assume $n=2$ and $a_{1}=a, a_{2}=-a$ are both good. Now, $d(a)$ is infinite or $A \upharpoonright a$ has infinitely many proper atoms and the same holds for $-a$. Then A has a complement by Lemmas $9,10,12$.

Lemma 5. Let $A \leqslant P(\omega)$ and B a complement of A in $\operatorname{Sub}(P(\omega))$.
(a) If $|A|=\omega$ then A has a finite subalgebra A^{\prime} such that $A^{\prime} \vee B=P(\omega)$.
(b) $\left(\mathrm{MA}_{\kappa}\right)$. If $\omega \leqslant|A|=\kappa<2^{\omega}$, then A has a proper subalgebra A^{\prime} such that $A^{\prime} \vee B=P(\omega)$.

Proof. Both assertions follow from the fact that cf $A=\omega$ in the terminology of [2], i.e. that $A=\bigcup_{n \in \omega} A_{n}$ for a strictly ascending chain $\left(A_{n}\right)_{n \in \omega}$ of subalgebras of A; if $|A|=\omega$, each A_{n} can be chosen to be finite. For $\omega \leqslant|A|=\kappa<2^{\omega}, \operatorname{cf}(A)=\omega$ is proved in [2, Proposition 5]; in fact, the proof given there and the remark following it show that A has a homomorphic image isomorphic to $F C(\omega)$. If $A \vee B=P(\omega)$, then $P(\omega)=\bigcup_{n \in \omega} D_{n}$ where $D_{n}=A_{n} \vee B$. Since it is shown in [2] that $\operatorname{cf}(P(\omega))=\omega_{1}, P(\omega)=D_{n}$ for some $n<\omega$.

Lemma 6. If a countable subalgebra A of $P(\omega)$ satisfies (1) to (3) of Theorem 1 , then A has no complement.

Proof. Assume that B is a complement of A. By Lemma 5(a), there are finitely many elements of A, say $e_{1}, \ldots, e_{k}, a_{1}, \ldots, a_{n}, a$ such that

$$
P(\omega)=B\left(e_{1}, \ldots, e_{k}, a_{1}, \ldots, a_{n}, a\right)
$$

We may assume that $e_{1} \dot{+} \cdots \dot{+} e_{k} \dot{+} a_{1} \dot{+} \cdots \dot{+} a_{n} \dot{+} a=1$, the e_{j} are finite, the a_{i} are infinite and bad, and that a is infinite and good or bad. It is possible that $n=0$, but if $n \geqslant 1$, by increasing the number of e_{j} 's we may assume that each atom of each $A \upharpoonright a_{i}$ is improper. Each $u \in P(\omega)$ can be written as

$$
u=\beta_{1} e_{1} \dot{+} \cdots \dot{+} \beta_{k} e_{k} \dot{+} b_{1} a_{1} \dot{+} \cdots \dot{+} b_{n} a_{n} \dot{+} b a,
$$

where $\beta_{1}, \ldots, b_{1}, \ldots, b \in B$. So we have epimorphisms

$$
p_{i}: B \rightarrow P\left(a_{i}\right), \quad p: B \rightarrow P(a),
$$

with $p_{i}(b)=b \cdot a_{i}, p(b)=b \cdot a$.
Call $b \in B$ selective if $|b \cap a| \leqslant 1$ and $\left|b \cap a_{i}\right| \leqslant 1$ for each i. The selective elements of B form a dense subset of B : let $b \in \boldsymbol{B}^{+}$, and by induction construct $b \geqslant b_{a} \geqslant b_{1} \geqslant \cdots \geqslant b_{n}$ in B^{+}such that $\left|b_{a} \cap a\right| \leqslant 1,\left|b_{1} \cap a_{1}\right| \leqslant 1, \ldots,\left|b_{n} \cap a_{n}\right| \leqslant 1$; b_{n} will then be selective. Construct b_{a} as follows: if $b \cap a=\emptyset, b_{a}=b$; otherwise, pick some $x \in b \cap a$ and choose $b_{a} \leqslant b$ such that $p\left(b_{a}\right)=\{x\}$ - this is possible since p is an epimorphism. By the same argument, choose $b_{1} \leqslant b_{a}$ such that $b_{1}>0$ and $\left|b_{1} \cap a_{1}\right| \leqslant 1$, etc.
Put

$$
e=e_{1} \cup \cdots \cup e_{k} \cup d\left(a_{1}\right) \cup \cdots \cup d\left(a_{n}\right) .
$$

Since a_{1}, \ldots, a_{n} are bad, e is finite. For $x \in a$, pick $b_{x} \in B$ such that $p\left(b_{x}\right)=$ $\{x\}$. Since p is homomorphism and $|a|=\omega$, the b_{x} may be chosen pairwise disjoint. Since e is finite, there is some $M \subseteq a$ such that $a \backslash M$ is finite and $b_{x} \cap e=\emptyset$ for $x \in M$. There is an atom α of $A \upharpoonright a$ such that $\alpha \subseteq M$, for the atoms of a are finite. For $x \in \alpha$, let $b_{x}^{\prime} \in B$ be selective and $0<b_{x}^{\prime} \leqslant b_{x}$. If $x \notin b_{x}^{\prime}$ for some $x \in \alpha$, then b_{x}^{\prime} is a non-empty selective subset of $\left(a_{1} \backslash d\left(a_{1}\right)\right) \cup \cdots \cup\left(a_{n} \backslash d\left(a_{n}\right)\right)$. By definition of $e, b_{x}^{\prime} \cap a_{i}$ is an atom of A for each i; otherwise, $b_{x}^{\prime} \cap d\left(a_{i}\right) \neq \emptyset$ and thus $b_{x}^{\prime} \cap e \neq \emptyset$. This establishes $b_{x}^{\prime} \in A \cap B$, a contradiction.
If $x \in b_{x}^{\prime}$ for every $x \in \alpha$, the same argument shows that $b_{x}^{\prime} \backslash\{x\} \in A$ for each $x \in \alpha$. Then $\bigcup_{x \in \alpha} b_{x}^{\prime}=\alpha \cup \bigcup_{x \in \alpha}\left(b_{x}^{\prime} \backslash\{x\}\right)$ is an element of $(A \cap B) \backslash 2$.

Complements of $A \leqslant P(\omega)$ will be constructed in Lemmas $8,9,10,12$ by the following method:

Lemma 7. Let \boldsymbol{D} be an arbitrary Boolean algebra, $A \leqslant D$ and $a \in A$. Suppose φ is an epimorphism from $D \mid a$ onto $D \mid-a$. Then $B=\{x+\varphi(x)|x \in D| a\}$ is a subalgebra of D and $A \vee B=D$. Moreover, $A \cap B=2$ if $\varphi(\alpha) \notin A$ for each $\alpha \in$ $A \upharpoonright a$ satisfying $0<\alpha<a$.

Proof. Clearly, B is a subalgebra of D. $A \cup B$ generates D : let $d \in D$. Put $x=d \cdot a$, and choose $x^{\prime} \in D \upharpoonright a$ such that $\varphi\left(x^{\prime}\right)=d \cdot-a$. Then $b=x+\varphi(x)$ and $b^{\prime}=x^{\prime}+\varphi\left(x^{\prime}\right)$ are both in B, and

$$
d=d \cdot a+d \cdot-a=x+\varphi\left(x^{\prime}\right)=b \cdot a+b^{\prime} \cdot-a .
$$

Now suppose $b=x+\varphi(x) \in(A \cap B) \backslash 2$ where $x \in D \mid a$. If $x=0$, then $\varphi(x)=0$, hence $b=0$, a contradiction; similarly, $b=1$ if $x=a$, so $0<x<a$; furthermore, $x=b \cdot a$ and $\varphi(x)=b \cdot-a \in A$, which proves the rest of the lemma.

The epimorphism φ, or, later on, a certain function f defining φ, can be constructed in all cases by an induction argument since A is countable or by a
forcing argument; the latter also works for $|A|=\kappa<2^{\omega}$ under (MA \mathbf{M}_{κ}). We omit the details in the easier cases.

Lemma 8. Suppose $A \leqslant P(\omega)$ is countable, and there is some $a \in A^{+}$such that each $b \in(A \upharpoonleft a)^{+}$is infinite. Then A has a complement.

Proof. We may assume that $-a$ also is infinite: a is an atom of A, then $A \uparrow-a$, and hence $-a$, are infinite. Otherwise, pick $\alpha \in(A \mid a)^{+}$such that $0<\alpha<a$ and consider $\alpha,-\alpha$ instead of $a,-a$. Now construct a bijection $f: a \rightarrow-a$ such that the isomorphism $\varphi: P(\omega) \mid a \rightarrow P(\omega) \uparrow-a$ given by $\varphi(x)=f[x]$ satisfies the requirements of Lemma 7 .

Lemma 9. Suppose $A \leqslant P(\omega)$ is countable and atomic, that all atoms of A are finite, and that for some $a \in A$, both $d(a)$ and $d(-a)$ are infinite. Then A has a complement.

Proof. It follows from $|d(a)|=\omega$ that $a \backslash d(a)$ is infinite, too, since otherwise a is the supremum of a finite set of atoms in A and $d(a)=\emptyset$; similarly, $-a \backslash d(-a)$ is infinite. Now construct a bijection $f: a \rightarrow-a$ which maps $a \backslash d(a)$ onto $d(-a)$, and $d(a)$ onto $-a \backslash d(-a)$ such that φ given by $\varphi(x)=f[x]$ satisfies the requirements of Lemma 7.

Lemma 10. Suppose $A \leqslant P(\omega)$ is countable and atomic, that all atoms of A are finite, and that, for some $a \in A, d(a)$ is infinite and $-a$ contains infinitely many proper atoms. Then A has a complement.

Proof. Denote by PrAt the set of proper atoms of A contained in -a. Let $X \subseteq U$ prAt such that $|X \cap \alpha|=1$ for each $\alpha \in \operatorname{PrAt}$. Let $Y=-a \backslash X$. Let $T=d(a)$ and $S=a \backslash d(a)$. We construct a bijection $f: a \rightarrow-a$ such that $f[S]=X, f[T]=Y$, and such that φ given by $\varphi(x)=f[x]$ satisfies the requirements of Lemma 7. Let $P=\{p: a \rightarrow-a \mid \operatorname{dom} p$ is finite, p is one-one, $p[S] \subseteq X, p[T] \subseteq Y\}$ be partially ordered by set inclusion. The following subsets of P are dense in P :
(1) $D_{x}=\{q \in P \mid x \in \operatorname{dom} q\}$ for $x \in a$.
(2) $D_{y}=\{q \in P \mid y \in \operatorname{rge} q\}$ for $y \in-a$.
(3) $D_{\alpha \beta}=\{q \in P \mid$ there exists some $x \in \alpha \cap \operatorname{dom} q$ such that $q(x) \notin \beta\}$ for $\alpha, \beta \in$ A satisfying $0 \leqslant \alpha \leqslant a, 0 \leqslant \beta \leqslant-a$, and

$$
\omega=|d(\alpha)|=|a \backslash \alpha|=|\beta|=|-a \backslash \beta|:
$$

let $p \in P$ and put $q=p \cup\{(x, y)\}$ where x and y are chosen as follows. Since $d(\alpha)$ is infinite, pick $x \in d(\alpha) \backslash$ dom p. Put $\gamma=-a \cdot-\beta$ and pick $y \in(\gamma \cap Y) \backslash$ rge p. The choice of y is possible by the following argument: γ is an infinite element of $A \uparrow-a$; let δ be an atom of A such that $\delta \leqslant \gamma$ and $\delta \cap$ rge $p=\emptyset$. Let z be an
element of δ. If δ is an improper atom, then $z \notin X$, so, $z \in Y$ and we let $y=z$. If δ is a proper atom and $z \notin X$, again let $y=z$. Otherwise, let $y \in \delta$ such that $y \neq z$, so $y \in Y$.

Let $f=\bigcup G$ where $G \subseteq P$ is generic for the above family of dense sets. We check that for no $\alpha \in(A \backslash a) \backslash\{0, a\}, \beta=f[\alpha]$ is an element of A : assume the contrary; if α and hence β are finite, it follows that $d(\alpha)=\emptyset, \alpha \subseteq S$ and so $\beta \subseteq X$. Pick a proper atom δ such that $\delta \cap \beta \neq \emptyset$. Now δ, being an atom of A, is contained in β, contradicting $\beta \subseteq X$. The same argument applies if $a \backslash \alpha$ and hence $-a \backslash \beta$ are finite. In the remaining case, the following sets are infinite: $a, \alpha \cap S, \beta \cap X$ (apply $f!$), $\beta \cap Y$ (as in the previous case), $\alpha \cap T$ (apply $f^{-1}!$) $=d(\alpha)$. Thus $D_{\alpha \beta}$ is defined, and $D_{\alpha \beta} \cap G \neq \emptyset$ yields $f[\alpha] \neq \beta$. \square.

Lemma 11. Let X, Y be sets with partitions P, resp. Q, such that $|P|=|Q|=\omega$, all $p \in P, q \in Q$ are finite and at most one $r \in P \cup Q$ has cardinality 1. Let $x \sim_{x} x^{\prime}$ if x, x^{\prime} belong to the same element of P, and define $y \sim_{Y} y^{\prime}$ similarly. If $f: X \rightarrow Y$ is one-one, let \sim_{f} be the least equivalence relation on $X \cup Y$ including f. Then there exists an injective $f: X \rightarrow Y$ such that each subset of $X \cup Y$ is closed w.r.t. \sim_{X}, \sim_{Y}, and \sim_{f} is empty or equals $X \cup Y$.

Proof. Consider the case that each $p \in P$ and $q \in Q$ has at least two elements. Let

$$
P=\left\{p_{n} \mid n \in \mathbb{Z}\right\}
$$

and fix different elements $x_{n}, x_{n}^{\prime} \in p_{n}$; then put

$$
X^{\prime}=X \backslash\left(\left\{x_{n} \mid n \in \mathbb{Z}\right\} \cup\left\{x_{n}^{\prime} \mid n \in \mathbb{Z}\right\}\right)
$$

Choose $Q^{\prime} \subseteq Q$ such that $\left|Q^{\prime}\right|=\left|X^{\prime}\right|$ and $Q \backslash Q^{\prime}=\left\{q_{n} \mid n \in \mathbb{Z}\right\}$; fix different elements $y_{n}, y_{n}^{\prime} \in q_{n}$ and a bijection $g: X^{\prime} \rightarrow Q^{\prime}$. Then define $f: X \rightarrow Y$ by

$$
\begin{aligned}
& f\left(x_{n}\right)=y_{n-1}^{\prime}, \quad f\left(x_{n}^{\prime}\right)=y_{n} \\
& f(x)=\text { some element of } g(x) \quad \text { for } x \in X^{\prime}
\end{aligned}
$$

If $|p|=1$ for some $p \in P$, let $P=\left\{p_{n} \mid n \in \omega\right\}$ where $p_{0}=p$ and proceed as shown in the following diagram:

Lemma 12. Suppose $A \leqslant P(\omega)$ is countable and atomic, that all atoms of A are finite and that, for some $a \in A$, both a and -a contain infinitely many proper atoms. Then A has a complement.

Proof. Let

$$
\begin{aligned}
& S=\operatorname{At}(A \mid-a) \cup\{\{x\} \mid x \in d(-a)\}, \\
& T=\operatorname{At}(a \mid a) \cup\{\{y\} \mid y \in d(a)\}
\end{aligned}
$$

Then $S(T)$ partitions $-a(a)$. Construct a partition of $-a(a)$ into infinitely many sets $s_{n}\left(t_{n}\right), n \in \omega$, such that:
(1) Each $s_{n}\left(t_{n}\right)$ is the union of infinitely many elements of $S(T)$.
(2) $s_{0}, s_{2}, s_{4}, \ldots\left(t_{1}, t_{3}, t_{5}, \ldots\right)$ are unions of proper atoms of A.
(3) $s_{1}, s_{3}, s_{5}, \ldots\left(t_{0}, t_{2}, t_{4}, \ldots\right)$ contain at most one singleton from $S(T)$.
(4) If $c \in A \upharpoonright-a$ includes infinitely many proper atoms of A, then $c \cap s_{n} \neq \emptyset$ for every n.

For each n, let by (2), (3) and Lemma 11, $f_{n}: s_{n} \rightarrow t_{n}$ be a one-one function w.r.t. the partitions $\left\{s \in S \mid s \subseteq s_{n}\right\}$ and $\left\{t \in T \mid t \subseteq t_{n}\right\}$ of s_{n} and t_{n}. Then $f=\bigcup_{n \in \omega} f_{n}$ is a one-one function from $-a$ to a and $\varphi: P(a) \rightarrow P(-a)$ defined by $\varphi(\alpha)=$ $f^{-1}[\alpha]$ is an epimorphism. We check that φ satisfies the condition of Lemma 7: assume that $\alpha \in A \upharpoonleft a$ and $\varphi(\alpha)=f^{-1}[\alpha] \in A$. Then

$$
M=\alpha \cup f^{-1}[\alpha] \in A \cap B
$$

where B is defined by φ as in Lemma 7. For $n \in \omega$ let

$$
M_{n}=M \cap\left(s_{n} \cup t_{n}\right) .
$$

We claim that each M_{n} is empty or equals $s_{n} \cup t_{n}$. This follows from the choice of f_{n}, since M_{n} is closed w.r.t. $\sim_{s_{n}}, \sim_{t_{n}}, \sim_{f_{n}}$, defined as in Lemma 11: M is an element of A (resp. B) and the non-singleton equivalence classes of $\sim_{s_{n}}, \sim_{t_{n}}$ (resp. $\sim_{f_{n}}$) are atoms of A (resp. B).

If $M \neq \emptyset$ and $M \neq \omega$, there are $k, l \in \omega$ such that $s_{k} \cup t_{k} \subseteq M$ and $\left(s_{l} \cup t_{l}\right) \cap M=$ \emptyset. Now, $s_{k} \subseteq M \cap-a=c$, so c is an element of $A \uparrow-a$ containing infinitely many proper atoms. But then $c \cap s_{l} \neq \emptyset$, a contradiction.

The following example answers a question raised in [4, p. 62].

Example 4. There are subalgebras A, B of $P(\omega)$ such that B is both a complement and a quasicomplement of A, but A is not a quasicomplement of B.

Proof. Let $\left\{a_{n} \mid n \in \omega\right\}$ be a partition of ω such that $\left|a_{n}\right|=\omega$ for each n. Let A, resp. A^{*} be the subalgebra of $P(\omega)$ generated, resp. completely generated, by the a_{n}. Choose a partition $\left\{m_{i} \mid i \in \omega \backslash\{0\}\right\}$ of a_{0} such that $\left|m_{i}\right|=\omega$ for each $i \neq 0$. Put $b_{i}=m_{i} \cup a_{i}, i \neq 0$, and let B_{0} be the subalgebra of $P(\omega)$ completely generated by the b_{i}. Let e be a subset of ω intersecting each m_{i} and each $a_{i}, i \neq 0$, in exactly one point. Then let

$$
B_{1}=\left\{b \subseteq \omega \mid b \cap e=b_{0} \cap e \text { for some } b_{0} \in B_{0}\right\}
$$

Now, $B_{1}\left(a_{0}\right)=P(\omega)$ and $A^{*} \cap B_{1}=2$ as is easily checked. Since B_{1} is a complement of A^{*}, choose a quasicomplement B of A^{*} containing B_{1}. We claim that $A \cap B_{0}(a) \neq 2$ for $a \in A^{*} \backslash 2$: let $a=\bigcup_{i \in I} a_{i}$ be an element of $A^{*} \backslash 2$ where $I \subseteq \omega$. W.l.o.g. $0 \notin I$, otherwise consider $-a$. Thus, there exists $j \in I, j \neq 0$; now,

$$
\gamma=b_{j} \cdot a=b_{j} \cdot a_{j}=a_{i}
$$

is an element of $\left(A \cap B_{0}(a)\right) \backslash 2$.
B is a quasicomplement of A : let $B \leqslant B^{\prime} \leqslant P(\omega)$ and $B \neq B^{\prime}$. By maximality of B, let $a \in\left(A^{*} \cap B^{\prime}\right) \backslash 2$. By the above claim, $2 \neq A \cap B_{0}(a) \leqslant A \cap B^{\prime}$. Since $A^{*} \cap B=2$ and A is a proper subalgebra of A^{*}, A is not a quasicomplement of B.

Since $B_{1}\left(a_{0}\right)=P(\omega)$ and $A^{*} \cap B_{1}=2$, the example also shows that each Boolean algebra C having at least four elements and embeddable into $P(\omega)$ is embeddable into $P(\omega)$ such that it has a complement in $P(\omega)$-simply embed C into A^{*}.

References

[1] Th. Jech, A note on countable Boolean algebras, Algebra Universalis 14 (1982) 257-262.
[2] S. Koppelberg, Boolean algebras as unions of chains of subalgebras, Algebra Universalis 7 (1977) 195-203.
[3] K.P.S. Bhaskara Rao and M. Bhaskara Rao, On the lattice of subalgebras of a Boolean algebra, Czechoslovak Math. J. 29 (1979) 530-545.
[4] J.B. Remmel, Complementation in the lattice of subalgebras of a Boolean algebra, Algebra Universalis 10 (1980) 48-64.
[5] B. Rotman, Boolean algebras with ordered bases, Fund. Math. 75 (1972) 187-197.
[6] M. Rubin, A Boolean algebra with few subalgebras, interval algebras and retractiveness, preprint.
[7] J.R. Shoenfield, Martin's axiom, Amer. Math. Monthly 82 (1975) 610-617.
[8] St. Todorěvic, A remark on the lattice of subalgebras of a Boolean algebra, unpublished.

