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In the lattice of subalgebras of a Boolean algebra D call B a complement of A if 
A A B  ={0, 1} and A U B  generates D. B is called a quasicomplement of A if it is maximal 
w.r.t, the property A A B  = {0, 1}. We characterize those countable subalgebras of P(to) which 
have a complement, and, assuming Martin's Axiom, describe the isomorphism types of some 
quasicornplements of the tinite-cofmite subalgebra of P(to). 

Darts le treiUis des sous-alg~bres d'une alg~bre bool6enne D, la sous-alg~bre B est un compl6- 
ment de A si A G B = {0, 1} et si D est engendr6e par A U B. La sous-alg~bre B e s t  un 
quasicompl6ment de A si B e s t  maximale parmi les alg~bres C satisfaisant A n C = {0, 1}. On 
caract6rise les sous-alg~bres d6nombrables de P(to) qui poss&lent un compl6ment et, en 
admettant l'axiome de Martin, on decrit les types d'isomorphisme de quelques 
quasicompl6ments de FC(to), la sous-alg~bre de P(to) des parties fmies et cofmies de to. 

1. Introduction 

For a Boolean algebra D, the set Sub(D) of subalgebras of D is a complete 
lattice under set inclusion with least dement 2 = {t3, 1} and greatest element D;  we 
write A <~ D, if A is a subalgebra of D. For A, B ~< D, the infimum of A and B in 
Sub(D) is just A GB, and their supremum A v B is the subalgebra of D 
generated by A U B. Call B 

(i) a complement of A, if A n B = 2 and A v B = D; 
(ii) a quasicomplement of A, if B is maximal w.r.t, the property A n B = 2. 

An arbitrary A ~<D need not have a complement, but, by Zorn's Lernma it 
certainly has a quasicomplement; neither complements nor quasicomplements 
are, in general, uniquely determined. 

Quasicomplements have been considered by Remmel [4], where they are called 
complements. The question for which algebras D the lattice Sub(D) is com- 
plemented has been studied first by Rao and Rao [3] and later by Todor~evig [8]; 
the following are the general facts known about this problem: 

Fact L If D is a subalgebra of an interval algebra, then Sub(D) is complemented 
(cf. [6] and [8]). 
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Fact 2. I f  Sub(D) is complemented, then D is refractive inf the terminology of [5], 

cf. also [3]. 

Rubin proved in [6] that each subalgebra of an interval algebra is retractive; 
exactly the same proof gives Fact 1. A special case of Fact 1, namely that Sub(D) 
is complemented for countable D, was proved by Remmel [4] and later by Jech 
[1]. 

For the example D constructed under ~ in [6] of a retractive algebra which is 
not embeddable into an interval algebra, Sub(D) is not complemented, so the 
converse of Fact 2 does not hold. It is not known whether the converse of Fact 1 
holds. 

The proof of Fact 2 given in [3] shows that, in particular, FC(to), the algebra of 
finite or cofinite subsets of to does not have a complement in P(to), the power set 
algebra of the set to of non-negative integers - in fact, such a complement must be 
isomorphic to P(to) modulo the ideal of finite sets, but this algebra, having an 
uncountable disjoint subset, is not embeddable into P(to). Nevertheless, it will 
turn out that many countable subalgebras of P(to) have complements; whether 
such an A has a complement depends solely on the way A is embedded into 
P(to), and not on the isomorphism type of A. 

We shall deal with quasicomplements- mostly in Sub(P(to))- in Section 2, and 
with complements in Sub(P(to)) in Section 3. Moreover, a problem raised in [4, p. 
62] is solved at the end of thi.¢ section. The example given also shows that any 
Boolean algebra which is embeddable into P(to) can be embedded into P(to) so 
that it has a complement. 

We shall use the following notation: fIX], resp. [-x[X], is the image, resp. the 
preimage of a set X under a function f. The fmitary operations of a Boolean 
algebra A are denoted by +, -, - ,  0, 1; we shaU also use this notation for 
A ~ P ( t o ) .  Infinitary joins are denoted by 2L a=al - i - . . . - i -a ,  means that a =  
a l + "  • "+a"  and the a~ are pairwise disjoint. A + is A\{0A}, and At(A)  is the set 
of atoms of A. For a e A, A ~ a is the relative algebra {x e A I x ~ a}. [M] denotes 
the subalgebra of A generated by M. Let A<-D, and u eD.  Then A ( u ) =  
[A t.J{u}] is called a simple extension of A. The elements of A(u)  can be written 
in the form 

a l -  u q - a  2 . - l g ,  

where a l, a2 £ A, or in the form 

a l "  u-i- az -  -u-i-  a3 

for some quadruple (al, •. •, a4) of elements of A satisfying a l  -i- o.2-i- a3-i- aa = 1. u 
is independent of A if, for a e A +, a .  u and a . - u  are nonzero. For the 
terminology on partial orders and Martin's Axiom, see [7]: if (P, <~) is a partially 
ordered set, call D ~ P dense for each p e P there is some q e D such that p ~ q. If 
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is a family of dense subsets of P, G _  P is said to be generic for ~ i f  

(1) p e G ,  q ~ P ,  q<<-p implies q ~ G ;  

(2) for p, q E G there exists r ~ G such that p, q ~< r; 
(3) G fq D ¢ ~ for every D e ~ .  

p, q e P are compatible if p, q ~< r for some r ~ P, otherwise incompatible; (P, ~ )  
satisfies the countable chain condition (tee) if each set of pairwise incompatible 
elements of P is countable. W e  denote by (MAK) the assertion that for each 
family ~ of dense subsets of a tee partial order (P, ~<) satisfying [~1 ~< K, there 
exists a subset G of P which is generic for the family ~ .  (MA) is the assertion that 
(MAK) for each K < 2  '°. Note that (MA~) is a theorem of ZFC, thus, all our 

theorems are provable within Z F C + C H .  Routine details in applications of 
Martin 's  Axiom are sometimes omitted. 

2. Qnasicomplements 

First we consider the question Whether in a 'large' algebra D there can be 
'small '  subalgebras A, B such that B is a quasicomplement of A. We then 
concentrate on D = P(to). There is a general answer to the question: 

Proposition L I[  B is a quasicomplement of A in Sub(D), then A v B is dense in 
D. Hence  [D[ <~ 2 max(IAl" 1/31). 

Proof. Assume that A v B is not dense in D. Then there exists a z ~ D + such that 
for no c ~ A v B ,  O<c<---z; in particular, z ~ B .  We prove that A N B ( z ) = 2 ,  

contradicting the maximality of B. L e t  a ~ A N B ( z ) ,  e.g., 

a = bl" z+b2" - z + b 3 ,  (1) 

where bzSr b2"i- baSr b4 = 1. Now, bt " a = bt " z <~ z. Since bl " a ~ A v B and by our 
assumption, b~- a = 0. By 

- a  = b2 " z + bl • - z  + b4 

we get b 2 " - a = 0 ,  hence b2<~a by the same reasoning. By (1) again, b2" a =  
b2 " -- Z ; thus a = b2 " a + b3 = bE + ba E B .  This  implies a E2. For the rest note that, 
if C is a dense subalgebra of D, then each e lemem of D is the join of all elements 
of C below it. [ ]  

F_ammple 1 ( M A ) .  There is a Boolean  algebra D of  power 2 °" and A ,  B <~ D such 

that IAI = [B[ = to and A ,  B are quasicomplements  o f  each other. 
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ProoL Construct a chain (D~)~<2° of atomless Boolean algebras and A,  B <~ D,~, 
S.t. 

(1) Dx = U {D~ [et <)t} for limit ordinals )t < 2 ~. 
(2) D~+x is a simple extension of D~, constructed by the following Lemma 1. 
(3) IAI= IBI = o,, A and B are quasicomplements of each other in Do, and A, B 

are dense in every D~. 

Then set D = I.J {D~ I ct < 2~}. []  

Let Do be the interval algebra of the set Q of rationals. We sketch how to find 
A and B: Let M be a subset of Q such that both M and Q \ M  are dense in Q. Let 
Ao(Bo) be the set of elements of Do having endpoints only in M(Q\M) .  Since 
A0 N B0 = 2, we may then find A and B by enlarging A0 and B0. 

1 (MAK). Let E be an atomless Boolean algebra and A,  B ~ E  such that 
IEl~<r, IA[= IBl= to, A and B are quasicomplements o[ each other, and A and B 
are both dense in 17,. Then there is a simple extension E(u) of E such that E (and 
hence A and B) is dense in E(u),  and A and B are quasicomplements of each other 
in E(u). 

Proof. We are going to construct u in the completion of E. Put C =  A v B, and let 

P={(x ,  y ) e C x C l x ,  y = 0  and x + y < l } .  

For (x, y), (x', y') ~ P let (x, y) ~< (x', y') iff x <~ x' and y ~< y'. Since C is countable, 
so is P, and thus trivially satisfies the etc. 

For e a E ,  

D , = { ( x ' , y ' ) e P l x ' . - e ~ O  or y ' -  e~0} 

is dense in P. 
Motivated by the representation of elements in E(u) given in Section 1, we 

define Qu~ to be the set of quadruples (ex, e2, e3, e4)~E 4 such that 
el-i-e2-i-ea-i-e4=l; QuA and Qua are defined similarly. For x , y ~ E  and ~=  
(el, • . . ,  e4) ~ QuE, let 

f~(x, y) = etx + e2y + e3, 

for x, y, ~ as above and t~ = ( a l , . . . ,  a4)~ QuA, let 

f~a (x, y) = (ale1 + a2e2)x + (ale2 + a2el)y + (a~e3 + a2e4) + a3. 

We claim that for ~ ~ QuE, 

D ~  = {(x', Y ' )~P [ el+e2<~x '+ y'  or there is some ti eQuA such that 

a~+a2<~x'+y ' and fu(x' ,  y ' ) d A }  

is a dense subset of P: let (x, y ) e P  be given. If e~ +e2<~x + y, put (x', y') = (x, y). 
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So, let el + e2<~x q-Y. Since A is atomless and dense in E, there is some a e A 

such that 

O < a < ~ e l + e 2 ,  a • ( x + y )  = 0, a + x + y  < 1 .  

Let  w.l.o.g. 0 < a ~< el, otherwise, we may assume a ~< e 2. Pick al ,  a 2 E A + such 

that  a = ax+ a2. Since B is dense in E, pick/3, 6 e B + such that a l  = /3+  % a2 = 8q- e 
for some % e e C +. Then define 

s = / 3 + 8 ,  t = ' g + e ,  

x '  = x + s ,  y ' = y + t .  

We shall see that (x', y ' ) e  D~ .  Note that  8, /3, V, e, s, t and hence x'  and y' are 

elements of C. Moreover,  

x ' + y '  = x + s + y + t = x + y + a < l ,  

and x ' -  y' = 0 since (x + y ) .  a = 0 and/3,  V, 8, e are in C ~ a and pairwise disjoint. 

L e t  ~t = ( a l ,  a2, 0 , - - a ) e Q U A ,  so al  + a2 <~x' + y '. Also, 

f~a (x', Y') = (a l  + 0)-  x'  + (0 + a2)" Y'+ (0 + O) + 0 

= a l  x '  + a2y '  

= a l ( x  + s) + a2(y + t) =/3 + e d A, 

since otherwise a l "  [~a(x', y') =/3 c A ,  but  /3 ~ B \ 2  and A N B  = 2 .  
For  ~ ~ Qua,  we may define a dense subset D~  of P w.r.t. B instead of A in a 

similar way. 
By (MAK) and [El <~K, there is a subset G of P generic for these families of 

dense sets. 

Let,  in the comple t ion/~  of E, 

u = ,E~{x [ (x, y) ~ G for some y ~ C} 

and note that,  for (x, y )~  G, x<~u and y ~<-u.  We have E<~E(u)<~P. ,  hence E is 

dense in E ( u ) .  To prove that  A is a quasicomplement of B in Sub(E(u)) ,  take 
t ~ E ( u ) \ A .  We show that A ( t ) f q B #  2. There  is some g e QuE such that t = 
f ~ ( u , - u ) ;  pick (x', y ' ) ~ G f q D ~ ;  so x ' ~ u  and  y ' < - - u .  

X ! • • • If  e l + e 2 ~  < + y ' ,  then el u = e x  x '  a n d  e2 - u = e 2 y ' ,  so t = e x x ' + e 2 y ' + e 3 ~  

E \ A ,  since x ' , y ' ~ C ,  ex, e2, e a ~ E ;  since A is a quasicomplement of B in 
Sub(E) ,  A ( t ) f 3 B # 2 .  I f  e l + e 2 ~ x ' + y ' ,  then by definition of D~ ,  there is some 

ti ~QuA such that a ~ + a 2 < - x ' + y  ' and/~a(x ' ,  y ' )¢  A. By a l + a 2 < ~ x ' + y  ', we have 
• f a l  u = a l  " x , a2 " u = a2x' ,  a l  . - u  = a l y '  and  a2 . - u  = a2y'.  Pu t  s = [~(t, - t ) ;  

then 

s = -u), -u)) 

= (ale1 + a2e2) • u + (ale2 + a2el )"  - -u  + (ale3 + a2e4) + as 

= (ale1 + aEe2) • x '  -l- (a le2  + a2el) • Y' q- (ale3 + a2e4) q- a3 

=/~a(x' ,  y ' ) e  E \ A .  
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Since A is a quasicomplement of B in E , A ( s ) A B ~ 2 ;  but s e A ( t )  by our 

definition of s, so A(s)<~A(t )  and A ( t ) A B ¢  2. [] 

The  situation described in Example 1 cannot occur for D = P(~o): 

Proposit ion 2 (MAK). Let A ,  B ~P(¢o) such that [A[, IBI~<K and A A B  = 2 .  Then 

B is not a quasicomplement of A .  

Proof.  Let  
P = {p : co --* 2 ] dom(p) finite and Ip[b]l ~< 1 for each finite 

atom b of B} 

be partially ordered by set inclusion. The following subsets of P are dense in P: 
(1) D~ = { q e P [  nedom(q)}  for n~to. 
(2) D ~  = {q ~ P [ for some n ~ dora(q) n b, n ~ a iff q(n) = 1} for each a e A and 

each infinite b e B: if p ~ P, choose n ~ b\(dom(p)  U U {bo ~ At(B) [ b0 finite, 
b0 Adorn(p) ~- ¢}), and define q = p U{(n, e)}, where e = I i t t  n ~ a. Then q ~ Do~ 
and p <~q. 

(3) Db = {q ~ P [ for some n e dora(q), q(n) = 1 iff n ~ b} for b ~ B. This is seen as 
in (2), since b or - b  is infinite. 

By (MAx) and IA[, [B[<~K, there is some G _ _ P  generic for the union of these 
families of dense sets. By G A D ~  ¢ for n ~ oJ, [ =  U G is a function from co to 2; 
let u = f - t ( 0 ) .  Since G A D b ~ O  for b ~ B , u ~ B .  We prove A A B ( u ) = 2  by 
assuming there is some a e A  r iB(u) ,  a ¢  0, 1. 

Choose bl, . . . ,  b4 in B s u c h  t h a t  b l  Ar b2-i- ba'i- b4 = 1 a n d  

a = bt . u + b2 " - u  + b3. 

Now, bl is finite, for otherwise, pick q ~  G O D ~  1. There is some n e bl Adorn(a) 
such that n ~ a itt q(n) = 1, hence, n e a itt n ¢  u, and bl"  a ~  b l -  u, contradicting 
the definition of D o~c The same argument shows that b2 is finite by considering 

- - a  --'-- b2u + b 1 • - u  + b 4. 

If b is a finite atom of B, then by definition of P, b<~u or b ~ - u ,  hence 
b .  u = b ~ B  or b • u = O e B  and also b .  - u e B .  Now, b~ and b2 are finite unions 
of fro_ire atoms of B, so b~ .u ,  b 2 " - u  ~B.  This gives a e B, a contradiction to 
a ~ A \ 2 .  [] 

For the rest of this section we try to describe the structure of quasicomplements 
of FC(oJ) in P(oJ); note that Proposition 3(a), without assuming (MA) as in 
Proposition 2, guarantees that these quasicomplements have power 2 '°. 

Lemmm 2 (MAx) .  Let  B ~ P(~o) such that IBI ~ K and each b ~ B + is infinite. Then 
there is some u ~_co such that b .  u and b . - u  are infinite for each b ~ B  +. In 
particular, u is independent from B. 
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Proo£ Consider (P, ~_), where 

P = {p :to ---> 2 1 dom(p) is finite}, 

and let for n ~ to D , _  P be as in the proof of Proposition 2, and for k ~ to and 

b e B  +, 

Dbk = {q e P [ there are e, f _  dom(q) f3 b such that 

lel--Ill-- k and  q ( . )  = 0 for n ~ e, q(n) = 1 

for n~ /~ .  

Every Dbk is dense, since each b is infinite. If G ~_ P is generic for these dense 

subsets of P, let f =  [_J G;  then u = f-x(0) has the desired properties. []  

For a Boolean algebra B, let ~r(B) the least possible cardinal of some dense 
subset of B. 

Proposition 3. Let B be a quasicomplement of FC(to) in P(to). 

(a) B is an atomless complete Boolean algebra. 
(b) (MA~). "rr(B) > r. 

Proot. (a) Assume b is an atom of B;  since b is infinite, pick infinite subsets 

bl, bE Of b such that blSrb2  = b. Clearly, B is a proper  subalgebra of B(bl)  and 
each c ~ B(bl)  + is infinite. Next assume that B is not complete, hence a proper 
subalgebra of its completion /~. By the Sikorski extension theorem, there is a 
homomorphism e :/~ --~ P(to) extending the identity map  on B. Since B is dense in 

/~, e is one-to-one, so w.l.o.g, assume B <~/~---<P(to). Again by density of B in/3,  
each c ~/~+ is infinite. 

(b) Assume that B0 is a dense subalgebra of B of power at most r. For B0, 
choose u _  to as in Lemma 2. B0 is dense in B, thus, b • u and b • - u  are infinite 
for all b ~ B +. So, B(u)  is a proper extension of B, and each c ~ B(u)  +, having the 
form b • u + b ' -  - u  for some b, b' ~ B, is  infinite. [ ]  

Example  2 will be based on the following improvement  of Lernma 2. Call u c_ to 
compatible with B---<P(to), if each c ~ B ( u )  + is infinite, otherwise incompatible. 

L e m m a  3 (MA,~). Let B<~P(to) such that B is complete, 1r(B)~<r, and each 
c ~ B + is infinite; let x ~ P(to)\B. Then there is some u c_ to such that u is compatible 
with B, independent from B, and x is incompatible with B(u) .  

l~roo|. If x is incompatible with B, choose u as in the proof of Proposition 3(b), 
so assume that x is compatible with B. Put 

I = { b ~ B I b ~ x } ,  J = { b e B I b < ~ - x } ,  

a = BL /3 = Bj, 
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so a •/3 = 0. It  is impossible that both x ~<a and - x  ~</3 since this would imply 

x = t~ e B, so assume x ~ a  and choose some n0~ x • -c~. 
Let 

P = {p : to --~ 2 [ dom(p) finite, no ~ dom p, and p(no) = 0, 

p(n) = 1 for every n ~ (dom p n x ) \ ( a  tJ {no})}. 

Let B0 be a fixed dense subalgebra of B of power at most K. Define the subsets 

D ,  for n ~ to and Dbk for b ~ B~, k ~ to as in the proof of Lemma 2. We check that 
Dbk is still dense in P. This follows easily if we know that e = b \ (x \a )  is infinite. 

Assume e is finite. Now x is compatible with B and e~B(x) ;  so e = 0 ,  b ~  
x • - a  ~< x, b ~ I and b ~<-a ,  a contradiction. 

Let G, f, u be as in the proof of L e m m a  2. x is incompatible with B(u) ,  since 

(u nx) \o ,  = {no}: 

no ~ x \ a  by our  choice of no, and no ~ u by our choice of P. If n ~ x \ a  such that 
n ~ no, then n~  u follows from the definition of P. [ ]  

Example 2 (MA).  FC(to) has a quasicomplement B in Sub(P(to)) which is the 
completion of the free Boolean algebra on 2" generators. 

Proof.  For  a cardinal/~ denote by F ,  the free Boolean algebra on ix generators. 
Let  {x~ [ a < 2 °'} be an enumerat ion of P(to). 

Construct by induction a chain (B~)~<2- of subalgebras of P(to) such that 
FC(to)fqB,~ = 2  and B~ ~F-~I~I: let B 0 = 2 ;  for a limit ordinal X < 2 " ,  let Bx be the 
completion of U~<xB~, embedded in P(to) over I_l~<xB~ as in the proof of 

Proposition 3(a). If B,~ has been constructed, let B,~+l=B~(ua) where u~ is 
chosen by L e m m a  3 such that x~ e B .  or x~ is incompatible with B~(u~); this is 
possible by ~r(B~)= ~r(Fl~l)=lal<2 ~. 

Put B = I..J.<2- B~, so FC(to)AB = 2  and B=F2. .  B is a quasicomplement of 
FC(to): if x ~ P(to)\B, w.l.o.g, x = x~; then by construction of B..+I and x~ B~, x~ 
is incompatible with B~+x, hence with B. [ ]  

We need some preparat ion for the construction of a quasicomplement of FC(to) 
in Sub(P(to)) very different from Example 2. Recall that C<~B is a regular 

subalgebra of B if the inclusion map from C to B preserves all meets  and joins 
existing in C. If  I is an ideal in a Boolean algebra A,  l e t / ' *  = {a e A [ a • i = 0 for 

all i e /} .  /'* is the pseudoeomplement  of I in the lattice of ideals of A ;  clearly, 
I ~_/**. Call I regular if I = / * * - t h i s  means that the open subset corresponding 
to I in the Stone space St(A) of A is regular open. So, a proper  dense ideal of A 
is never regular.  

If A ~< B call u ~ B regular over A if the ideal {x ~ A [ x ~< u} of A is regular. If 
A is a dense subalgebra of C, then each u ~ C is regular over A, since u is 
essentially an element  of the completion 2~ of A,  and elements of .A correspond 
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to regular  open  subsets  of St(A). If A ~ C ~< B where  A is dense  in C and C is a 
complete  regular  suba lgebra  of B, t hen  each u e B is regular  over A, since 
{xeAIx~u}={xeAIx~c} where  c = ~C{y ~ C i y~<u}. 

Lemma 4 (MAK). Let  A<~B<~P(to) where A is atomless, B A F C ( t o ) = 2  and 
IBI <~ K. Then there is a u ~_ to such that u is compatible with B, and {x e A I x ~ u} 
is a proper dense ideal of  A .  So, u is not regular over A .  

ProoL Let  

P =  {(p, i) lp  :to ~ 2, dom(p)  finite, i c A ,  i < 1 ,  p [ i ] ~  {0}}, 

and (p, i ) ~  (q, j) if p ~ q and  i<~j. W e  check that  (P, ~<) satisfies the ccc: (p, i) and  
(q, j) e P are compat ib le  in P iff p U q is a function, i + j < 1, and  p[j]  U q[i] c {0}. 
Let  (p~, i ~ ) ~ P  for a <tox; w.l.o.g, let  p ~ = p  for each  a < t o ~ .  So, 

po,[io]Upo[ia] = po,[io,]Upo[io]~ {O} for a , /3  <tot-  

Also, since A satisfies the  ccc, there  are  a </3  <~ol such that  i~ + i B < 1. 
The  following subsets of P are dense  in P:  

(1) D , ~ = { ( q , / ) e P I n e d o m ( q ) }  for  n e t o .  
(2) D ~ b = { ( q , j ) e P  I there  is ecc. b O d o m ( q )  such that  l e [ = k  and  p[e]c_{0}} for 

ke to ,  b e B  +. 
(3) D - ~ b = { ( q , ] ) e P l b ~ ] o r t h e r e i s e  ~_ b n d o m ( q ) s u c h t h a t [ e l  = kandq[e]~{1}}  

for ke to ,  b e B + :  let ( p , i ) e P ,  if b<~i, then  put  ( q , j ) = ( p , i ) ;  otherwise, b \ i  is 
infinite, be ing an e l emen t  of B+; choose e _~ b\( i  Udom(p) )  such that [el = k and  

set ] = i, and  q = p U {(n, 1) [ n e e}. 
(4) Da={(q, DePI  a" j>0} for a e A + :  let (p, i ) e P ;  if a<<.i, put  (q, j )=(p ,  i). 

Otherwise,  since A is atomless,  choose c e A + such that  0 < c < a • - i  and  
c n d o m  p = ¢; then  set  (q, j) = (p, i + c). 

Aga in  for some G c__ p generic for  these  dense  sets, let  f = U G and u = / -1 (0 ) ,  

then 

I = {i e A I i ~ ]  for  some (p, ]) e G} 

clearly is an ideal  of A ;  it will turn  out  that  I = {x e A I x ~< u}. Let  J be the ideal  

of B generated by L 
First, I is a p roper  ideal  of A, and  i e I implies  i ~< u by  definit ion of G. By 

GAD,,=/=¢ for a e A  +, I is a dense  ideal .  For  b e B + , b  • u and b . - u  are infinite 
or  empty,  so B ( u ) A F C ( o J ) = 2 :  b .  u is infinite by G n D ~ k ~ f J .  For be.I ,  we have  
b ~<u by defini t ion of f, so b . - u  = O. If  b d J, b . - u  is infinite (which also 
establishes {x e A [ x ~< u} ~_ D: for k e to choose (q, ]) e G N Dbk. So, j e I, and  
since bq~.l, b4~j, and  therefore  Ib n-ul> k. [] 

Example 3 (MA) .  FC(to) has a quasicomplement B in Sub(P(to)) such that if 
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C <<- B is a complete regular subalgebra of B, then 7r(C) = 2 ̀°. In particular, no FK is 
a regular subalgebra of B for K <~ 2`0. 

Proof. Let {x~ [ a < 2`0} be an enumerat ion of P(to), and, since (MA) implies that 
2 K = 2 ̀0 for K < 2`0, {A~ [ a < 2`0} be an enumerat ion of 

9A=(A<~P(to) I A is atomless and IA[<2`0}. 

We may assume that each A ~ 9A is listed 2`0 times in this enumeration.  

We construct a chain (B~)~<2- of subalgebras of P(to) such that B~ N FC(to) = 2, 

and IB 1<2`0. T h e n  we set B = U~<2-B~. Let B o = 2  and Bx = U~<xB~ for limit 
ordinals. If B~ has  been constructed, let B"  = B~(x..) if x~ is compatible with B~, 
and B ' = B , .  otherwise. If A ~ B ' ,  let B,,+I=B'(u~),  where  u~ is chosen by 
L e m m a  4 to be  compatible with B ' ,  and u~ is not regular over A~; otherwise set 
B,~+I=B ". 

Clearly B is a quasicomplement of FC(to). Suppose that C is a complete 
atomless regular subalgebra of B, and ~r(C)<2`0. Let A be a dense subalgebra of 
C such that [A1<2`0; A also is atomless; pick a<2`0  such that A = A ~  ~<B=. 
Then u~ is an d e m e n t  of B which is not regular over A, contradicting the remark 
preceding Lerama 4. []  

3. Complements in Sub(P((o)) 

To abbreviate the statement and proof of the following theorem, we give some 
definitions. Let  A ~< P(X) (X will be a subset of to later on). If a is a finite atom of 
A, call a a proper  atom if [ a l >  1, and an improper  atom if [a[ = 1. Let for b c A  

d ( b ) = b \ U  At(A)  

be the 'defect of b' .  Note that for b<~c in A , d ( b ) = d ( c ) n b .  Call a ~ A  bad 
(w.r.t. A)  if A ~ a is atomic, d(a) is finite, each atom of A ~ a is finite, and only 
finitely many atoms of A I a are proper. So in particular a is bad, if FC(a)<~ 
A ~ a. Call a good if it is not bad. The set of bad elements of A is an ideal Bd of 
A containing each  finite e lement  of A. 

The proof of the theorem will split into five cases which are handled in Lemmas  

6, 8, 9, 10, 12. Note that every finite subalgebra of P((o) has a complement,  
hence, we shall  concentrate on the case of countable A <~P(to), which means  
[AI =to. There are  four 'positive' cases (Lemmas 8, 9, 10, 12) in which A has a 
complement;  t h e p r o o f s  of these cases can also be carried out for ]A[= K <2`0, 
assuming (MA~). The  only negative case (Lemma 6) relies on Lernma 5(a) which 
has a partial analogue under  (MA~) in L e m m a  5(b); we have, however, not been  
able to prove I_emma 6 assuming [AI = K <2`0 and (MA~). 



Complements in lattice of subalgebras 73 

l "neorem 1[. Le t  A be a countable subalgebra of  P(to). A does not have 

complement  in Sub(P(to))  iff 

(1) A is atomic. 

(2) E a c h  atom of  A is finite. 

(3) IA/Bdl 
In  particular, A does not have a complement  if FC(to)<~A or A <-FC(to). 

a 

Proo t .  If  A satisfies (1), (2) and  (3), then A has no complemen t  by L e m m a  6. 

Thus,  suppose  A does not  satisfy (1), (2) or  (3). If A does not  satisfy (1) or  (2), 

then there  is some a ~ A + such tha t  each b ~ (A ~ a)  + is infinite; then  A has a 
complemen t  by L e m m a  8. So let A satisfy (1) and  (2), and  suppose  there  are  

a l , . . . ,  a ,  e A  such tha t  [a~[ = to, at- i--  • • S a ,  = 1 and w.l.o.g, a t  and  a2 are good. 

Then  a 2 + " - + a ,  is also good,  so assume n = 2  and at  = a, a 2 = - a  are both  

good. Now,  d(a)  is infinite o r  A ~ a has infinitely many  p r o p e r  a toms  and the  

same holds for  - a .  Then  A has a complemen t  by Lemmas  9, 10, 12. [ ]  

Lamina  $. Le t  A ~ P(to) and  B a complement  o[ A in Sub(P(to)).  

(a) I f  I A l = t o  then A has a finite subalgebra A '  such that A ' v B  = P(to). 

(b) (MA.). If to ~<IAI = K < 2  ~, then A has a proper subalgebra A '  such that 
A ' v B  = P(to). 

l ~ m | .  Bo th  assert ions follow f rom the  fact  tha t  d A = to in the  te rminology of 

[2], i.e. tha t  A = I_1,~,o A ,  for  a strictly ascending chain ( A , ) , ~ ,  of subalgebras  of 

A ;  if [AI =to,  each A ,  can be  chosen to be finite. For  to ~<IAI = u < 2  ", d ( A ) =  to 

is p roved  in [2, Proposi t ion  5]; in fact,  the  p roof  given the re  and  the  r emark  
following it show that  A has  a homomorph ic  image isomorphic  to FC(to).  If  

A v B = P(to), then P ( t o ) =  U , ~ .  D ,  where  D ,  = A ,  v B. Since it is shown in [2] 
that  d(P(to))  = tot, P(to) = 1) ,  for  some  n < to. [ ]  

L e m m a  6. I f  a countable subalgebra A of  P(to) satisfies (1) to (3) of  Theorem 1, 

then A has no complement.  

l~rooI. Assume  that  B is a complemen t  of A.  By  L e m m a  5(a), there  are  finitely 
m a n y  e lements  of A ,  say e x , . . . ,  ek, a l , . . . ,  a , ,  a such that  

P(to) = B ( e l ,  . . . , ek, a l ,  . . . , a, ,  a). 

W e  m a y  assume tha t  el  -i-. • • -i- ek $ a l  -i-- • • -i- a,-i- a = 1, the  e i a re  finite, the  a~ are  
infinite and  bad,  and  tha t  a is infinite and  good or  bad.  It  is possible tha t  n = 0, 

bu t  ff n >~ 1, by increasing the  n u m b e r  of e~'s we m a y  assume tha t  each  a tom of 
each A ~ a~ is improper .  E a c h  u e P(to) can be wri t ten as 

u = [31el - i - ' "  -i- [3kek-i- b la l  - i - . . .  -i- b,a,-i- ba, 
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w h e r e / 3 1 , . . . ,  b l , . . . ,  b ~ B. So we have epimorphisms 

pi :B  --> P (a0 ,  p :B  ---> P (a ) ,  

with pi(b) = b .  a~, p(b) = b .  a. 

Call b e B selective if [b N al ~< 1 and [b N a~l ~< 1 for each i. The selective 

elements of B form a dense subset of B:  let b e B ÷, and by induction construct 

b>~ba>~bl>~ . .  .>~b,, in B + such that  I b a n a l ~ < l ,  I b l n a l l < - l , . . . , I b ,  na~l<~l;  

b, will then be selective. Construct  ba as follows: if b n a = O, b~ = b; otherwise, 

pick some x e b n a and choose ba <~ b such that p(b~) = {x} - this is possible since 

p is an epimorphism. By the same argument, choose bl <~ b~ such that bt > 0  and 

Ibl n all ~< 1, etc. 
Put 

e = e~ 0 .  • • U ek LI d (a l )  L I "  "U d(a~). 

Since a t , . . . ,  a~ are bad,  e is finite. For x ~ a ,  pick bx ~ B  such that p(bx)= 

{x}. Since p is homomorphism and lal =o,,  the b~ may be chosen pairwise dis- 
joint. Since e is finite, there is some Mc_ a such that a \ M  is finite and b~ n e  = 

for x ~ M. There is an a tom a of A ~ a such that a ~ M, for the atoms of a are 
finite. For  x ~ a,  let b ' e  B be selective and 0 < b ' ~  < b~. If x~ b" for some x ~ a,  

then b" is a non-empty selective subset of ( a l \ d ( a z ) ) U ' "  .U(a~ \d (a~) ) .  By 

definition of e, b ' n  a~ is an a tom of A for each i; otherwise, b ' O  d(a~)~ ~ and 

thus b" N e ~ ~. This establishes b" ~ A N B, a contradiction. 
If x ~ b" for every x ~ a ,  the same argument shows that b ' \ { x } ~  A for each 

x ~ a.  T h e n  U x ~  b x -  a LI U x ~  (b'\{x}) is an element of (A N B) \2 .  [ ]  

Complements  of A <~P(oJ) will be constructed in Lemmas 8, 9, 10, 12 by the 

following method:  

Lemmm 7. Le t  D be an arbitrary Boolean algebra, A ~ D and a ~ A .  Suppose q~ is 

an epimorphism from D r a onto D ~ - a .  Then B = {x + ~o(x) I x ~ D ~ a} is a 

subalgebra of  D and A v B = D .  Moreover, A N B = 2  i f  , p ( a ) d A  for each a ~ 

A ~ a satisfying 0 < a < a. 

Proof .  Clearly, B is a subalgebra of D. A LIB generates D :  let d ~ D .  Put  

x = d . a ,  and choose x ' ~ D  F a such that ~0(x')= d . - a .  Then b = x+q~(x)  and 

b ' =  x ' +  q~(x') are both in B, and 

d = d  • a + d  • - a = x + ~ ( x ' ) = b .  a + b ' . - a .  

Now suppose b = x + q ~ ( x ) e ( A  A B ) \ 2  where x ~ D  ~ a. I f  x = 0 ,  then ~0(x) = 0, 
hence b = 0 ,  a contradiction; similarly, b =  1 if x = a ,  so 0 < x < a ;  furthermore,  
x = b -  a and ~0(x)= b . - a  c A ,  which proves the rest of the lemma. [ ]  

The epimorphism ~0, or, later  on, a certain function f defining q~, earl be 
constructed in all eases by an induction argument  since A is countable or  by a 
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forcing argument;  the latter also works for IAI = K < 2 "  under  (MAK). We omit 

the details in the easier cases. 

Lemma 8. Suppose A <~P(to) is countable, and there is some a ~ A + Such that each 
b ~ (A ~ a) ÷ is infinite. Then A has a complement. 

l~r~mf. We may assume that  - a  also is infinite: a is an atom of A, then A t - a ,  

and hence - a ,  are infinite. Otherwise,  pick a e (A ~ a)  ÷ such that 0 < a  < a and 

consider c t , - a  instead of a , - a .  Now construct a bijection f :  a ~ - a  such that 
the isomorphism q~ :P(to) l a ~ P(to) l - a  given by q~(x)=f[x]  satisfies the re- 

quirements of Lemma 7. [ ]  

Lemma 9. Suppose A ~P(to)  is countable and atomic, that all atoms of A are 
finite, and that for some a ~ A,  both d(a) and d ( - a )  are infinite. Then A has a 
complement. 

lh~mf. It  follows from Id(a)l = ~ that  a \d (a )  is infinite, too, since otherwise a is 
the supremum of a finite set of atoms in A and d(a )  = O; similarly, - a \ d ( - a )  is 

infinite. Now construct a bijection f : a  ~ - a  which maps a \d (a )  onto d ( - a ) ,  and 

d(a) onto - a \ d ( - a )  such that  q~ given by q~(x) = f[x] satisfies the requirements  of 
Lemma 7. [ ]  

Lemm~ 10. Suppose A <~P(to) is countable and atomic, that all atoms of A are 
finite, and that, for some a e A ,  d(a) is infinite and - a  contains infinitely many 
proper atoms. Then A has a complement. 

Proof.  Denote  by PrAt  the set of proper  atoms of A contained in - a .  Let  

Xc_ U p rAt  such that [ x n t z [  = 1 for each a e PrAt .  Let Y =  - a \ X .  Let  T =  d(a) 
and S = akd(a).  We construct a bijection f :  a ~ - a  such that f[S] = X,  f [T]  = Y, 
and such that ~0 given by ~0(x)= f [x ]  satisfies the requirements of L e m m a  7. Let 
P = {p : a --~ - a  [ dom p is finite, p is one-one, p[S] ~_ X, p[T] c_ Y} be partially 

ordered by set inclusion. The following subsets of P are dense in P :  

(1) Dx = {q e P [ x e d0m q} for x ~ a. 

(2) Dy = {q ~ P I Y ~ rge q} for y ~ - a .  
(3) D~a ={q ~ P  [ there exists some x ~ t~ Adorn q such that  q(x)q~/3} for t~,/3 

A satisfying O~<a~<a, O ~ / 3 ~ < - a ,  and 

= lana i - -1 /31  = I -  aN/31: 

let p e P  and put  q = p U { ( x ,  y)} where  x and y are chosen as follows. Since d ( a )  
is infinite, pick x ~ d ( a ) \ d o m  p. P u t  3' = - a .  - /3 and pick y ~ (3" n Y) \ rge  p. The 
choice of y is possible by the following argument:  3" is an infinite d e m e n t  of 

A t - a ;  let 8 be  an a tom of A such that 8---<3" and ~ n r g e p = ~ .  Let  z be an 
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element of 6. If 6 is an improper  atom, then z ¢~ X, so, z ~ Y and we let y = z. If 6 

is a proper  a tom and z ~ X, again let y = z. Otherwise, let y E 6 such that y-~ z, so 

y ~ Y .  

Let f = U G where  G ~ P is generic for the above family of dense sets. We 
check that for no c~ ~ (A t a) \{0,  a},/3 = f [ a ]  is an d e m e n t  of A :  assume the 

contrary; if a and hence/3 are finite, it follows that d (a)  = 0, a :_ S and so/3 ~ X.  

Pick a proper  a tom 6 such that 6 f7/3 :/: ~. Now 6, being an a tom of A, is contained 
in/3, contradicting/3 _ X. The same argument  applies if a \ tx  and hence - a \ / 3  are 

finite. In the remaining case, the following sets are infinite: a, a f7 S,/3 N X (apply 

fl) ,  /31"1Y (as in the previous case), t~f7 T (apply f - l l )=d(a ) .  T h u s  D~  B is 
defined, and D~a 1"7 G ~  ~1 yields f [ a ]  ~k/3. I--1. 

I amnna  U .  Let  X,  Y be sets with partitions P, resp. Q, such that IPI = IOI = ~0, all 

p ~ P, q ~ O are finite and at most one r e P U Q has cardinality 1. Let x - x X '  if 

x, x' belong to the same element of P, and define y - r Y '  similarly. I f  f :X--> Y is 
one-one, let - f be the least equivalence relation on X tO Y including f. Then there 

exists an in]ective f : X---> Y such that each subset of X U Y is closed w.r.t. - x ,  - e ,  
and - f is empty or equals X U Y. 

Proof.  Consider the case that each p ~ P and q e Q has at least two elements. Let  

P={p .  I . ~ z } ,  

and fix different elements x,, x" E p , ;  then put 

X ' =  Xk({x,  In  e Z } U { x "  ] n eZ}). 

Choose O'_  O such that IO'l= IX'I and Q\Q' ={q. In EZ}; fix different dements 
y,, y" E q, and a bijection g : X '  ---> Q' .  Then define f :  X---> Y by 

f (x . )  = ' = y.-1, f(x~) y., 

f (x )  = some element of g(x) for x E X' .  

n ~  

- I 

I • : : q n  

I . . I  
I Pn-1 Pn 'Pn+l 

If  Ipl = 1 for some p E P, let P = {19, I n E ¢o) where Po = P and proceed as shown in 
the following diagram: 
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: "- A ,' "- : 

'~ -" "- :qo 

2:! 
:ql 

I 
Pl Po [] 

Lemma 12. Suppose A <~P(to) is countable and atomic, that all atoms of A are 
finite and that, for some a ~ A,  both a and - a  contain infinitely many proper atoms. 
Then A has a complement. 

Proof. Let 

S = A t ( A  t -a)U{{x}l x e d ( - a ) } ,  

T = A t ( a  t a)U{{y}lyed(a)}. 

Then S (T) partitions - a  (a). Construct a partition of - a  (a) into infinitely many  
sets s, (t~), n ~ oJ, such that: 

(1) Each s~ (t~) is the union of infinitely many elements of S (T). 

(2) So, s2, s4 , . . .  (tl, t3, t s , . . . )  axe unions of proper atoms of A. 
(3) sl, s3, Ss , . . .  (to, t2, t4 , . . . )  contain at most one singleton from S (T). 
(4) If c ~ A t - a  includes infinitely many  proper atoms of A, then c n s, # ¢ for 

every n. 

For each n, let by (2), (3) and I -emma 11, f,:s,---> t, be  a one-one function 
w.r.t, the partitions {s ~ S I s ~ s~} and {t ~ T I t ~ t~} of s, and tn. Then f = U , , ~ , . ,  .f,, 

is a one-one function from - a  to a and q~ :P(a)---> P ( - a )  defined by q~(ct)= 

f -~[a]  is an epimorphism. We check that  q~ satisfies the condition of L e m m a  7: 
assume that a ~ A  t a and ~o(a)=f-x[ol]~A. Then 

M = c t  U f-l[ct]~ A NB,  

where B is defined by q~ as in L e m m a  7. For n ~ to let 

M,, = M n (s,, u t,,). 

We claim that each Mr is empty or equals s, O t~. This follows from the choice of 
f~, since M~ is closed w.r.t. - ~ ,  -t~, "~., defined as in L e m m a  11: M is an e lement  
of A (resp. B) and the non-singleton equivalence classes of ---~, - ~  (resp. ---~,) axe 
atoms of A (resp. B). 

If M ~  ¢ and M ~  to, there are k, l ~ to such that sk U tk ~ M and (sz U tt) n M = 
¢. Now, sk c_ M n - a  = c, so c is an e lement  of A t - a  containing infinitely many  
proper atom~. But then c n st ~ ¢, a contradiction. []  

The following example answers a question raised in [4, p. 62]. 
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Example 4. There are subalgebras A, B of P(co) such that B is both a complement 
and a quasicomplement of A, but A is not a quasicomplement of B. 

Proof. Let {an In oJ} be a partition of ~o such that la,,I = co for each n. Let A, 
resp. A* be the subalgebra of P(co) generated, resp. completely generated, by the 
an. Choose a partition {mi [ i ~co\{0}} of a0 such that Imil=co for each i # 0 .  Put 
bi = m~ U a~, i # 0, and let B0 be the subalgebra of P(co) completely generated by 
the bi. Let e be a subset of co intersecting each rn~ and each a~, i # 0, in exactly one 
point. Then let 

B l = { b ~ c o [ b n e = b o n e  for some bomB0}. 

Now, Bl(a0) =P(co) and A * A B I = 2  as is easily checked. Since B1 is a comple- 
ment of A*, choose a quasicomplement B of A* containing B~. We claim that 
A n Bo(a) ~ 2 for a ~ A*\2 :  let a = Ui~i ai be an element of A * \ 2  where I__ co. 
W.l.o.g. 0 ~ I, otherwise consider - a .  Thus, there exists ] ~ I, j ~  0; now, 

~/ = bi . a = bi . ai = a~ 

is an dement  of (A n Bo(a))\2. 
B is a quasicomplement of A: let B <~B'<~P(to) and B ~ B ' .  By maximality of 

B, let a ~ ( A * A B ' ) \ 2 .  By the above claim, 2 ~ A N B o ( a ) < ~ A O B  '. Since 
A* AB = 2 and A is a proper subalgebra of A*, A is not a quasicomplement of 
B. [ ]  

Since Bl(a0)=P(to)  and A * A B I = 2 ,  the example also shows that each 
Boolean algebra C having at least four elements and embeddable into P(co) is 
embeddable into P(to) such that it has a complement in P(co)- simply embed C 
into A*. 
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