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The Finite Upper Half Space and Related Hypergraphs
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A space generalizing the finite upper half plane is presented along with a projective
action by the finite general linear group. A volume generalizing the pseudo-distance on
the finite upper half plane is also given. Then this volume is used to create hypergraphs
which are analyzed with respect to the Ramanujan property. � 2000 Academic Press

1. INTRODUCTION

The finite upper half plane [18] is defined as

Hq=[x+ y - $ : x, y # Fq , y{0],

where q is an integral power of an odd prime number, Fq is the finite field
with q elements, and $ is a nonsquare in Fq . Hq is a finite analogue of the
Poincare� upper half plane

H=[x+iy : x, y # R, y>0], where i=- &1.

It turns out that Hq has many properties analogous to those of H. For
example, one has an action by GL(2, Fq) on Hq analogous to that of
GL(2, R) on H. Then, Hq can be given a geometrical setting by assigning
it a pseudo-distance, which imitates that of Stark [15] on a p-adic analogue
of H and is analogous to the non-Euclidean arc-length on H. Namely, we
have that for z, w # Hq ,

k(z, w)=
N(z&w)
I(z) I(w)

, (1)

where if z=x+ y - $ then I(z)= y, z� =x& y - $, and N(z)=zz� . This
pseudo-distance is invariant under the projective action by GL(2, Fq)
on Hq .
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There are classical eigenvalue problems on H that involve the non-
Euclidean Laplacian

2=
dx2+dy2

y2 .

For example, there is much interest in obtaining a closed form for the eigen-
values of 2, acting on the fundamental domain of H under the full modular
group, corresponding to nonzero cuspidal Maass wave forms. This problem
is still open, but a similar one can be posed in the finite setting of Hq . A
finite analogue of the Laplacian is the adjacency operator of a regular graph.
Then, one is interested in analyzing the eigenvalues of such operators in
terms of their distribution and size. Using k as in (1), regular graphs of Hq

were constructed [2, 5, 14, 16, 19] which turned out to be Ramanujan as
defined by Lubotzky et al. [13]. That is, these graphs satisfied the property
that all nontrivial eigenvalues were bound in absolute value by

2 - d&1,

where d is the corresponding degree of regularity.
In this paper we present a generalization of Hq , which we call the finite

upper half space. We also give a projective action by GL(n, Fq) and an
n-point invariant on the finite upper half space, which we use to construct
related hypergraphs. The adjacency operator on such hypergraphs is as
defined by Feng and Li in [9]. Then, some examples are constructed,
which turn out to be Ramanujan as defined by Li and Sole� in [11]. We
hope that eventually this work will throw some light on similar eigenvalue
problems in the infinite setting using infinite fields such as R, C, and the
p-adic number fields.

2. THE FINITE UPPER HALF SPACE

Definition 1. For % a root of an n th degree irreducible polynomial in
Fq[x], the finite upper half space is

Hn
q={\

W1

b
Wn&1

1 + :
W1 , ..., Wn&1 # Fq(%)
W1 , ..., Wn&1 , 1 linearly independent over Fq= ,

where q is now an integral power of any prime number.

Hn
q is a subset of the finite projective space Pn&1(Fq(%)). We want to

have an action on Hn
q by GL(n, Fq) in such a way that the space is preserved.
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Naturally, such an action will be a projective one and the following theorem
gives it to us.

Theorem 2. For : # GL(n, Fq) and

W=\
W1

b
Wn&1

1 + # Hn
q ,

(2)

: b W=:W \ 1
(:W)n+

defines an action by GL(n, Fq) on Hn
q , where :W denotes just ordinary

matrix multiplication and (:W)n is the nth coordinate of the vector :W.

Proof. (i) It is clear that if :=In , the n_n identity matrix, then

: b W=W.

(ii) We now see that Hn
q is preserved under the map in (2); that is,

we need to see that the entries of : b W are in Fq(%) and linearly independent
over Fq . By the definition of Hn

q , we know W1 , ..., Wn&1 , 1, the entries of
W, are in Fq(%) and linearly independent over Fq . Since : is in GL(n, Fq),
then its rows are linearly independent over Fq . When we think of the rows
of : as coefficients of elements in Fq(%) with respect to the basis W1 , ...,
Wn&1 , 1, we see that the entries of the vector :W are linearly independent
over Fq . Moreover, the last entry of :W is nonzero and therefore the entries
of : b W, as in (2), are in Fq(%) and linearly independent over Fq .

(iii) We now show that if ; is in GL(n, Fq), then : b (; b W)=(:;) b W.

: b (; b W)=: \;W \ 1
(;W)n++ \

1

\: \;W \ 1
(;W)n +++n+ by (2)

=\:;W \ 1
(;W)n++ \

1

(:;W)n \ 1
(;W)n++

=:;W \ 1
(:;W)n+

=(:;) b W

by (2). K
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Thus, we have an action by GL(n, Fq) on Hn
q , which will be shown to

be transitive. First, we state some preliminary facts and definitions.

Remark 3. Let [%n&1, ..., %, 1] be a basis of Fq(%). The algebra
EndFq

(Fq(%)) is isomorphic to Mn(Fq), the n_n matrices over Fq , and the
isomorphism ,: EndFq

(Fq(%)) � Mn(Fq) can be defined by mapping A #
EndFq

(Fq(%)) to the matrix ,(A), whose (i, j) entries for i, j=1, ..., n are
given by

A(%n&i)= :
n

j=1

(,(A)) i, j %n& j for i=1, ..., n.

This is a standard result in linear algebra; for a reference see [4]. Note
that representing EndFq

(Fq(%)) with Mn(Fq), as above, would mean that the
elements of Fq(%) are represented as row vectors with respect to the basis
[%n&1, ..., %, 1]. Thus, the elements of Mn(Fq) would be acting on the right
of such row vectors.

Now, X # Fq(%) give rise to a linear transformation on Fq(%) by multi-
plication. Let MX be the corresponding matrix of coefficients with respect
to the basis [%n&1, ..., %, 1], whose (i, j) entries for i, j=1, ..., n are given by

X } %n&i= :
n

j=1

(MX) i, j %n& j for i=1, ..., n. (3)

Then, we have for X # Fq(%),

det(MX)=N(X), (4)

where MX is as in (3) and N(X) (the norm of X) is defined as the product
of X with all its conjugates in the extension Fq(%). To see this note that X
satisfies the characteristic polynomial of MX by the isomorphism given in
Remark 3. Thus, all conjugates of X in Fq(%) also satisfy this polynomial.
As a result, the eigenvalues of MX are X and all its conjugates in Fq(%), and
the desired result follows.

It will turn out that Hn
q is a homogeneous space under the action by

GL(n, Fq), which means that all elements of Hn
q look more or less the same

with respect to this action. Thus, we pick one element of Hn
q and call it the

special point. For a further reference on homogeneous spaces see [8].

Definition 4. The special point or origin of Hn
q is defined as

3n=\
%n&1

b
%
1 + . (5)
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Proposition 5. The action by GL(n, Fq) on Hn
q , as defined in Theorem

2, is transitive. That is, for W, Z # Hn
q , there exists : # GL(n, Fq) such that

: b W=Z. In this case Hn
q is said to be a homogeneous space under the

action by GL(b, Fq).

Proof. For

W=\
u1, 1%n&1

un&1, 1%n&1

+ } } }

+ } } }

+
b

+
1

u1, n&1 %

un&1, n&1%

+

+

u1, n

un&1, n+ # Hn
q ,

define

:W=\
u1, 1

b
un&1, 1

0

} } }
. . .
} } }
} } }

u1, n&1

b
un&1, n&1

0

u1, n

b
un&1, n

1 + , (6)

which is in GL(n, Fq) since the entries of W are linearly independent over
Fq by the definition of Hn

q . Then :W b 3n=W, which implies that
3n=:&1

W b W. Thus,

Z=:Z b 3n=:Z b (:&1
W b W)=(:Z:&1

W ) b W. K

We now want to represent the action in Theorem 2 in another form. For
; # GL(n, Fq) and W # Hn

q ,

; b W=;W \ 1
(;W)n+

=;(:W b 3n) \ 1
(;W)n +

by the definition of :W (6);

=;(:W3n) \ 1
(;W)n+

since :W b 3n=:W3n , and

=(;:W) 3n \ 1
(;W)n+ .
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The rows of ;:W can be interpreted as the coefficients of elements of Fq(%)
with respect to the basis [%n&1, ..., %, 1] which are obtained by multiplying
;:W by 3n on the right. Then, by the isomorphism is given in Remark 3,
dividing ;:W3n by (;W)n can be written as in the following lemma.

Lemma 6. For W # Hn
q and ; # GL(n, Fq),

; b W=(;:W) M &1
(;W)n

3n ,

where M(;W)n
is as in (3), :W is as in (6), and 3n is as in (5).

We now want to identity the stabilizer of 3n ; that is, the subgroup of
GL(n, Fq) which is given by [: # GL(n, Fq) : : b 3n=3n]. The following
theorem gives it to us.

Theorem 7. The stabilizer of 3n is given by

Kn=[MX : X # Fq(%)*]$Fq(%)*,

where MX is as in (3).

Proof. For ; # GL(n, Fq) we have

; b 3n=3n if and only if ;M &1
(;3n)n

3n=3n ,

by Lemma 6, since :3n
=In , the n_n identity matrix. Now, [%n&1, ..., %, 1]

linearly independent over Fq implies

;M &1
(;3n)n

3n=3n if and only if ;M &1
(;3n)n

=In .

Thus, ;=M(;3n)n
, which implies ; # Kn .

Now, given ;=MX for some X # Fq(%)*, we have

; b 3n=MXM &1
(;3n)n

3n

by Lemma 6,

=MX M &1
X 3n .

The last inequality follows since the last row of ;=MX corresponds to the
coefficients of X } 1 with respect to the basis [%n&1, ..., %, 1], as in (3). This
implies that (;3n)n=X } 1 with respect to the basis [%n&1, ..., %, 1], and so
M&1

(;3n)n
=M &1

X . Thus,

MX b 3n=In 3n=3n . K
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Since Hn
q is a homogeneous space under the action in (2) by GL(n, Fq),

we can establish a bijection between GL(n, Fq)�Kn and Hn
q that preserves

such action. Before we do so we define a related subgroup of GL(n, Fq).

Definition 8. The affine group is defined as

Affn
q={\

u1, 1

b
un&1, 1

0

} } }
. . .
} } }
} } }

u1, n&1

b
un&1, n&1

0

u1, n

b
un&1, n

1 + # GL(n, Fq)= . (7)

We claim that GL(n, Fq)=Aff n
q } Kn and Aff n

q & Kn=[In], where In is
the n_n identity matrix. To see that Aff n

q & Kn=[In], recall that any
element of Kn is given by MX for X # Fq(%)*, MX as in (3). Then, the last
row of MX corresponds to X } 1 with respect to the basis [%n&1, ..., %, 1],
which is (0, ..., 0, 1) if and only if X=1. Thus, any element MX # Kn is in
Aff n

q if and only if MX=In . Now, : # GL(n, Fq) can be expressed as

:=(:M &1
(:3n)n

) M(:3n)n
,

where (:M &1
(:3n)n

) # Aff n
q . To see this, note that (:3n)n is the element of

Fq(%) whose coefficients with respect to the basis [%n&1, ..., %, 1] are in the
last row of :. Thus, by the isomorphism given in Remark 3, multiplying :
on the right by M &1

(:3n)n
is equivalent to dividing by (:3n)n , and the result

is a matrix with its last row equal to (0, ..., 0, 1).
As a result, Aff n

q is a complete set of coset representatives for GL(n, Fq)�Kn .
We now define the following map between GL(n, Fq) and Hn

q ,

: # GL(n, Fq) [ : b 3n . (8)

This map is clearly a bijection between GL(n, Fq)�Kn and Hn
q and is well-

defined since Kn is the stabilizer of 3n .
We are now ready to introduce the generalization of the pseudo-distance

on Hq given in (1), but before we do so we give a preliminary definition
and a lemma.

Definition 9. For W # Hn
q , define

det(W)=det(:W),

where :W is as in (6).
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Lemma 10. For ; # GL(n, Fq) and W # Hn
q ,

det(; b W)=
det(;) det(W)

N((;W)n)
,

where det(; b W) and det(W) are as in Definition 9.

Proof. We have

; b W=(;:WM &1
(;W)n

) 3n (9)

by Lemma 6, where (;:W M &1
(;W)n

) is in Affn
q and :W is as in (6). To see that

(;:WM&1
(;W)n

) is in Aff n
q , note that (;W)n=(;:W3n)n , which is the element

in Fq(%) whose coefficients with respect to [%n&1, ..., %, 1] are in the last
row of ;:W . Thus, (;:WM &1

(;W)n
) has its last row equal to (0, ..., 0, 1). Now,

by (6),

; b W=:; b W b 3n ,

which together with (9) implies

:; b W b 3n=(;:WM &1
(;W)n

) 3n=(;:W M &1
(;W)n

) b 3n .

The last equality follows since (;:WM &1
(;W)n

) is in Aff n
q , which implies in

this case that the action in (2) and ordinary matrix multiplication are the
same.

Thus,

:(; b W)=(;:W M &1
(;W)n

), (10)

by the bijection between GL(n, Fq)�Kn and Hn
q defined in (8).

Therefore,

det(; b W)=det(;:WM &1
(;W)n

)

by (10) and Definition 9, which implies that

det(; b W)=
det(;) det(W)

N((;W)n)
,

since det(M(;W)n
)=N((;W)n) by the result in (4). K

The following definition gives an n-point invariant generalizing the
pseudo-distance on Hq , as given in (1), to the finite upper half space Hn

q .
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Definition 11. For T1 , ..., Tn # Hn
q , define

K(T1 , ..., Tn)=\N(det[T1 , ..., Tn])
det(T1) } } } det(Tn) +

((n mod 2)+1)

.

That is, when n is odd we want to square everything to make K symmetric
under permutation of entries. [T1 , ..., Tn] denotes the matrix whose i th
column is Ti , i=1, ..., n.

Theorem 12. For ; # GL(n, Fq) and T1 , ..., Tn # Hn
q ,

K(; b T1 , ..., ; b Tn)=K(T1 , ..., Tn).

That is, K is an n-point invariant of GL(n, Fq) on Hn
q .

Proof. We have

K(; b T1 , ..., ; b Tn)=\N(det[; b T1 , ..., ; b Tn])
det(; b T1) } } } det(; b Tn) +

((n mod 2)+1)

. (11)

Now, by (2),

[; b T1 , ..., ; b Tn]=; _T1 \ 1
(;T1)n+ , ..., Tn \ 1

(;Tn)n+& ,

which implies

det[; b T1 , ..., ; b Tn]=
1

(;T1)n } } } (;Tn)n
det(;) det([T1 , ..., Tn]). (12)

Moreover, by Lemma 10,

det(; b Ti)=
det(;) det(Ti)

N((;Ti)n)
for i=1, ..., n. (13)

Thus, plugging (12) and (13) into Eq. (11), taking norms, and canceling
terms, we obtain the desired result. K

3. HYPERGRAPHS OF Hn
q

We give some background for hypergraphs; however, every hypergraph
has an underlying ordinary graph and many of its properties depend on the
properties of this graph, so we refer the reader to [18] and [3] for the
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graph theory background. For further hypergraph background, the reader
is referred to [9] and [6].

A hypergraph X consists of a hypervertex set V(X) and a hyperedge set
E(X) such that each element of E(X) is a subset of V(X). Our hypergraphs
will be finite, undirected, and have no self-loops, so any given hyperedge
contains distinct elements and is unordered. We will usually denote V(X)
and E(X) just by V and E, respectively, when no ambiguity can arise.

For a hypergraph X, the finite Hilbert space on V(X) is given by

L2(V)=[ f: V � R],

with the corresponding inner product

( f, g)= :
x # V

f (x) g(x) \f, g # L2(V).

Then, the main operator associated with X is its adjacency operator A(X),
A for short. For f # L2(V) we have

(Af )(x)= :

x # e
e # E

:

y{x
y # e

f ( y) \x # V. (14)

One also speaks of the adjacency matrix of X, which is the matrix obtained
by expressing A with respect to the basis of L2(V),

[$x : x # V], where $x( y)={1
0

if y=x,
otherwise.

Namely, the adjacency matrix of X is parametrized by the hypervertices
and we have for v, v$ # V,

Av, v$=*[e # E : v, v$ # e].

This is the definition given by Feng and Li in [9]. We will use A for both
the adjacency operator and the adjacency matrix. Also, since our hypergraphs
will be undirected and with no self-loops, the corresponding adjacency
matrices are symmetric and with zeros on the diagonal.

Thus, when we speak of the spectrum of a hypergraph what we are
referring to is the spectrum of the corresponding adjacency operator. Two
hypergraphs (graphs) are isospectral if they have the same spectrum. Also,
two hypergraphs (graphs) are isomorphic if there is a bijection between
their hypervertices (vertices) which preserves adjacencies or connections.
Now, for a hypergraph X, given a hypervertex v # V(X) and a hyperedge
e # E(X), when we say that v is incident to e or that e is incident to v what
we mean is that v # e.
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Definition 13 (Feng and Li [9]). A hypergraph is said to be (d, r)-
regular if every hypervertex is incident to d hyperedges and every hyperedge
is incident to r hypervertices. Note that for an ordinary graph r=2.

Proposition 14. Given a finite (d, r)-regular hypergraph X, if * is an
eigenvalue of A(X) then |*|�d(r&1). Moreover, d(r&1) is an eigenvalue
of A(X).

The Laplacian of a (d, r)-regular hypergraph X, which also operates on
L2(V), is defined as

2=d(r&1) I&A,

where I is the identity operator and A=A(X) is as in (14). Thus, the eigen-
values of 2 are strongly related to those of A; furthermore, they are all
nonnegative since the eigenvalues of A are bounded in absolute value by
d(r&1), as seen in Proposition 14.

A hypergraph X is said to be connected if for any given pair of hyper-
vertices, v and v$ in V(X), there is a path connecting v to v$.

Proposition 15. For a (d, r)-regular hypergraph X, the multiplicity of
d(r&1), as an eigenvalue of A(X), is equal to the number of connected
components of X.

We have the following definition of a Ramanujan hypergraph given by
Li and Sole� [11], which is in the same spirit as that given by Lubotzky
et al. [13] for an ordinary regular graph.

Definition 16 (Li and Sole� [11]). A finite connected (d, r)-regular
hypergraph X is a Ramanujan hypergraph if every eigenvalue * of A(X),
|*|{d(r&1), satisfies

|*&(r&2)|�2 - (d&1)(r&1).

The motivation for this definition is given by the following facts about
regular hypergraphs.

Theorem 17 (Feng and Li [9]). Let X be a (d, r)-regular hypergraph
with diameter �2l+2�4, and set q=(d&1)(r&1)=k&(r&1), where
k=d(r&1) is the degree of the underlying graph. Let *2(X) =

def the second
largest eigenvalue of the adjacency matrix of X. Then,

*2(X)>(r&2)+2 - q&
2 - q&1

l
.
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The diameter is just the maximum of the minimum of all lengths of paths
between any two vertices.

We state a more general result after the following corollary.

Corollary 18. Let [Xm]�
m=1 be a family of connected (d, r)-regular

hypergraphs with |V(Xm)| � � as m � �; then

lim inf
m � �

*2(Xm)�r&2+2 - q,

where *2(Xm) is the second largest eigenvalue of Xm .

Theorem 19 (Feng and Li [9]). Suppose that X$ is a k-regular graph,
k # Z+, for which there exists a constant c such that for all pairs of adjacent
vertices in X$ there exist at least c vertices in X$ adjacent to both. If the
diameter, D, of X$ satisfies D�2l+2�4, for some l # Z+, then

*2(X$)>c+2 - q&
2 - q&1

l
,

where q=k&c&1 and *2(X$) is the second largest eigenvalue of X$.

For a proof see [9].

Definition 20. Given a finite group G and a multiset S (which can
have repeats), which is a subset of G, one has the group graph G(G, S)
whose vertex set is G and we put a connection between g # G and gs for
each s # S.

We make this definition for an ordinary graph since the underlying
graph of our hypergraphs will be a group graph. Note also that this is a
generalization of what is known as a Cayley graph [3].

Definition 21. For a # Fq , let Hn
q(a) be the hypergraph of Hn

q with
vertex set Hn

q and a hyperedge between T1 , ..., Tn # Hn
q , pairwise distinct,

if K(T1 , ..., Tn)=a((n mod 2)+1).

By the very definition of Hn
q(a), each of its hyperedges is incident to n

hypervertices. Moreover, each hypervertex of Hn
q(a) will be incident to the

same number of hyperedges. That is, Hn
q(a) will be (d, n)-regular as given

in Definition 13, where d is the number of hyperedges incident to 3n , for
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example. This can be easily seen by the following argument: for T1 , ..., Tn&1 #
Hn

q&[3n], pairwise distinct,

[3n , T1 , ..., Tn]

is a hyperedge of Hn
q(a) if and only if

[:W b 3n , :W b T1 , ..., :W b Tn] \W # Hn
q

is also a hyperedge of Hn
q(a). This is by the invariance of K under

GL(n, Fq) and by the definition of Hn
q(a). Since :W b 3n=W and the

action by GL(n, Fq) on Hn
q is transitive, then each W # Hn

q is incident to
the same number of hyperedges that 3n is incident to in Hn

q(a).
The following theorem provides us with another way of viewing Hn

q(a).

Theorem 22. For a # Fq , Hn
q(a) is the group graph G(Aff n

q , Sn), where
Hn

q(a) is as in Definition 21, G(Aff n
q , Sn) is as in Definition 20, and

Sn= .
M

e # E(Hn
q (a))

3n # e

[:W : W # e, W{3n].

Remark 23. �M denotes a multiunion; that is, a union where all repeats
are included.

Proof. Consider the hypergraph G obtained by matching each hyper-
vertex of Hn

q(a) to its preimage in Aff n
q according to the bijection given

in (8). Then, for T1 , ..., Tn&1 # Hn
q&[3n], pairwise distinct, we have the

hyperedge of Hn
q(a)

[3n , T1 , ..., Tn&1]

if and only if we also have the hyperedge of Hn
q

[:W b 3n , :W b T1 , ..., :W b Tn&1] \W # Hn
q ,

which, by (6), is equal to

[:WIn3n , :W:T1
3n , ..., :W :Tn&1

3n]. (15)

Thus, for each hyperedge in Hn
q(a), we can map (15) to the hyperedge

of G

[:W , :W:T1
, ..., :W:Tn&1

] \W # Hn
q ,
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which is in G(Aff n
q , Sn). That is, the connections of :W are obtained by

multiplying :W:T for each

:T # .
M

e # E(Hn
q (a))

3n # e

[:T $ : T $ # e, T ${3n].

This is precisely the definition of G(Aff n
q , Sn) and so G=G(Aff n

q , Sn). K

We have examples of Hn
q(a) for n=3 and q=2, 3, and we have obtained

Ramanujan hypergraphs. The case n=2 and q odd, which corresponds to
the finite upper half plane, has been worked out, see [18]. And for fixed
$ # Fq* and $ a nonsquare, all corresponding graphs turned out to be
Ramanujan graphs for a{0, 4$.

4. EXAMPLES

The hypergraphs to be considered will be checked for the Ramanujan
property. That is, for a # Fq , we will check if the eigenvalues * of Hn

q(a),
a (d, r)-regular hypergraph with *{d(r&1), satisfy the bound

|*&(r&2)|�2 - (d&1)(r&1).

The eigenvalues given here were obtained by using Mathematica to
obtain the adjacency matrices and Matlab to obtain the corresponding
eigenvalues.

Case q=2 and n=3. The corresponding finite upper half space is

W1

H3
2={\W2+ :

W1 , W2 # F2(%)
W1 , W2 , 1 linearly independent over F2= ,

1

where % is a root of the cubic irreducible polynomial

P(x)=x3&x&1 # F2[x]. (16)

Here, the stabilizer of

%2

33=\ % +1
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can be easily obtained by matching %2, %, and 1 to the matrices that
represent them as linear transformations by multiplication on F2(%) with
respect to the basis [%2, %, 1]. Thus, by (16),

%%2=%3$%+1, %%=%2, and % } 1=%,

which implies that

0 1 1 1 1 0

M%=\1 0 0+ , M%2=\0 1 1+ , and M1=I3 ,

0 1 0 1 0 0

where MX , for X # Fq(%), is as in (3). Then, by the isomorphism given in
(3), for (g, h, k) # F3

2 we have

g+k g+h h
Mg%2+h%+k=\ h g+k g+ .

g h k

Thus, since K3 consists of MX for X # F2(%)*,

g+k g+h h
K3={\ h g+k g+ # GL(3, F2)= .

g h k

Hypergraphs

For a # F2 connect T1 , T2 , T3 # H3
2 , pairwise distinct, if K(T1 , T2 , T3)=a2.

Case a2=0: H3
2(0) is (d, r)-regular, where d=21 and r=3. The distinct

eigenvalues of the corresponding adjacency matrix are [42, &6, 0] and the
Ramanujan bound is given by

2 - (d&1)(r&1)=12.65.

Thus, we have a Ramanujan hypergraph as all the eigenvalues *, with
|*|{42, satisfy the inequality

|*&1|�12.65.

See Fig. 1 for a picture of H3
2(0).
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FIG. 1. H3
2(0), the finite upper half space hypergraph for n=3, p=2, and a=0. This

graph was created with Mathematica using the Combinatorica package.

Case a2=1: H3
2(1) is (d, r)-regular, where d=232 and r=3. The

distinct eigenvalues of H3
2(1) are [464, &22, &16] and the Ramanujan

bound is

2 - (d&1)(r&1)=42.99.

All the nontrivial eigenvalues * satisfy the inequality

|*&1|�42.99.

Thus, H3
2(1) is a Ramanujan hypergraph.

Case q=3 and n=3. The corresponding finite upper half space is

W1

H3
3={\W2+ :

W1 , W2 # F3(%)
W1 , W2 , 1 linearly independent over F3= ,

1
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where % is a root of the cubic irreducible polynomial

P(x)=x3&x&2. (17)

We now obtain the stabilizer of 33 . We have, by (17),

%%2=%3$%+2, %%=%2, and % } 1=%.

This implies that

0 1 2 1 2 0

M%=\1 0 0+ , M%2=\0 1 2+ , and M1=I3 ,

0 1 0 1 0 0

where MX , for X # F3(%), is as in (3). Thus, by the isomorphism given in
(3), for g, h, k # F3

g+k 2g+h 2h
Mg%2+h%+k=\ h g+k 2g+ .

g h k

Looking at the nonzero elements of F3(%)

g+k 2g+h 2h
K3={\ h g+k 2g+ # GL(3, F3)= .

g h k

Corresponding Hypergraphs

Case a2=0: H3
3(0) is (d, r)-regular, where d=3133 and r=3. The

distinct eigenvalues of H3
3(0) are [6266, &52, 26, 2] and the Ramanujan

bound is

2 - (d&1)(r&1)=158.29.

Thus, H3
3(0) is a Ramanujan hypergraph since all its nontrivial eigenvalues

* satisfy

|*&1|�158.29.

Case a2=1: H3
3(1) is (d, r)-regular, where d=89532 and r=3. The

distinct eigenvalues of H3
3(1) are

[179064, &456, &432, &378].
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The Ramanujan bound is 2 - (d&1)(r&1)=846.31 and is satisfied by all
the nontrivial eigenvalues. That is,

|*&1|�846.31 \* % |*|{179064.

Thus, we have a Ramanujan hypergraph.
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