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a b s t r a c t

Within the framework of statistical learning theory we analyze in
detail the so-called elastic-net regularization scheme proposed by
Zou and Hastie [H. Zou, T. Hastie, Regularization and variable selec-
tion via the elastic net, J. R. Stat. Soc. Ser. B, 67(2) (2005) 301–320]
for the selection of groups of correlated variables. To investigate
the statistical properties of this scheme and in particular its con-
sistency properties, we set up a suitable mathematical framework.
Our setting is random-design regression where we allow the re-
sponse variable to be vector-valued and we consider prediction
functions which are linear combinations of elements (features) in
an infinite-dimensional dictionary. Under the assumption that the
regression function admits a sparse representation on the dictio-
nary, we prove that there exists a particular ‘‘elastic-net represen-
tation’’ of the regression function such that, if the number of data
increases, the elastic-net estimator is consistent not only for pre-
diction but also for variable/feature selection. Our results include
finite-sample bounds and an adaptive scheme to select the reg-
ularization parameter. Moreover, using convex analysis tools, we
derive an iterative thresholding algorithm for computing the
elastic-net solution which is different from the optimization pro-
cedure originally proposed in the above-cited work.
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1. Introduction

We consider the standard framework of supervised learning, that is non-parametric regression
with random design. In this setting, there is an input–output pair (X, Y ) ∈ X × Y with unknown
probability distribution P , and the goal is to find a prediction function fn : X→ Y, based on a training
set (X1, Y1), . . . , (Xn, Yn) of n independent random pairs distributed as (X, Y ). A good solution fn is
such that, given a new input x ∈ X, the value fn(x) is a good prediction of the true output y ∈ Y.
When choosing the square loss to measure the quality of the prediction, as we do throughout this
paper, this means that the expected risk E

[
|Y − fn(X)|2

]
is small, or, in other words, that fn is a good

approximation of the regression function f ∗(x) = E [Y | X = x] minimizing this risk.
In many learning problems, a major goal besides prediction is that of selecting the variables that are

relevant to achieving good predictions. In the problem of variable selection we are given a set (ψγ )γ∈Γ
of functions from the input spaceX into the output space Y and we aim at selecting those functions
which are needed to represent the regression function, where the representation is typically given by
a linear combination. The set (ψγ )γ∈Γ is usually called a dictionary and its elements features. We can
think of the features as measurements used to represent the input data, as providing some relevant
parametrization of the input space, or as a (possibly overcomplete) dictionary of functions used to
represent the prediction function. In modern applications, the number p of features in the dictionary
is usually very large, possibly much larger than the number n of examples in the training set. This
situation is often referred to as the ‘‘large p, small n paradigm’’ [1], and a key to obtaining ameaningful
solution in such a case is the requirement that the prediction function fn is a linear combination of only
a few elements in the dictionary, i.e. fn admits a sparse representation.
The above setting can be illustrated by two examples of applications we are currently working on

and which provide an underlying motivation for the theoretical framework developed in the present
paper. The first application is a classification problem in computer vision, namely face detection [2–4].
The training set contains images of faces and non-faces and each image is represented by a very large
redundant set of features capturing the local geometry of faces, for example wavelet-like dictionaries
or other local descriptors. The aim is to find a good predictor able to detect faces in new images.
The second application is the analysis of microarray data, where the features are the expression

level measurements of the genes in a given sample or patient, and the output is either a classification
label discriminating between two or more pathologies or a continuous index indicating, for example,
the gravity of an illness. In this problem, besides prediction of the output for examples-to-come,
another important goal is the identification of the features that are the most relevant to building the
estimator and would constitute a gene signature for a certain disease [5,6]. In both applications, the
number of features we have to deal with is much larger than the number of examples and assuming
sparsity of the solution is a very natural requirement.
The problem of variable/feature selection has a long history in statistics and it is known that

the brute-force approach (trying all possible subsets of features), though theoretically appealing,
is computationally unfeasible. A first strategy to overcome this problem is provided by greedy
algorithms. A second route, which we follow in this paper, makes use of sparsity-based regularization
schemes (convex relaxation methods). The most well-known example of such schemes is probably
the so-called Lasso regression [7] – also referred to in the signal processing literature as Basis Pursuit
Denoising [8] – where a coefficient vector βn is estimated as the minimizer of the empirical risk
penalized with the `1-norm, namely

βn = argmin
β=(βγ )γ∈Γ

(
1
n

n∑
i=1

|Yi − fβ(Xi)|2 + λ
∑
γ∈Γ

|βγ |

)
,

where fβ =
∑

γ∈Γ βγψγ , λ is a suitable positive regularization parameter and (ψγ )γ∈Γ a given set of
features. An extension of this approach, called bridge regression, amounts to replacing the `1-penalty
by an `p-penalty [9]. It has been shown that this kind of penalty can still achieve sparsity when p is
bigger, but very close to 1 (see [10]). For this class of techniques, both consistency and computational
aspects have been studied. Non-asymptotic bounds within the framework of statistical learning have
been studied in several papers [11–17,10]. A common feature of these results is that they assume
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that the dictionary is finite (with cardinality possibly depending on the number of examples) and
satisfies some assumptions about the linear independence of the relevant features – see [10] for
a discussion on this point – whereas Y is usually assumed to be R. Several numerical algorithms
have also been proposed to solve the optimization problem underlying Lasso regression and are
based e.g. on quadratic programming [8], on the so-called LARS algorithm [18] or on iterative soft-
thresholding (see [19] and references therein).
Despite its success inmany applications, the Lasso strategyhas somedrawback in variable selection

problemswhere there are highly correlated features andwe need to identify all the relevant ones. This
situation is of uttermost importance for e.g. microarray data analysis since, as well known, there is a
lot of functional dependency between genes which are organized in small interacting networks. The
identification of such groups of correlated genes involved in a specific pathology is desirable to make
progress in the understanding of the underlying biological mechanisms.
Motivated bymicroarray data analysis, Zou andHastie [20] proposed the use of a penaltywhich is a

weighted sum of the `1-norm and the square of the `2-norm of the coefficient vector β . The first term
enforces the sparsity of the solution, whereas the second term ensures democracy among groups of
correlated variables. In [20] the corresponding method is called (naive) elastic net. The method allows
selecting groups of correlated features when the groups are not known in advance (algorithms to
enforce group sparsity with preassigned groups of variables have been proposed in e.g. [21–23] using
other types of penalties).
In the present paper we study several properties of the elastic-net regularization scheme for

vector-valued regression in a randomdesign. In particular, we prove consistency under some adaptive
and non-adaptive choices for the regularization parameter. As concerns variable selection, we assess
the accuracy of our estimator for the vector β with respect to the `2-norm, whereas the prediction
ability of the corresponding function fn = fβn is measured by the expected risk E

[
|Y − fn(X)|2

]
. To

derive such error bounds, we characterize the solution of the variational problem underlying elastic-
net regularization as the fixed point of a contractive map and, as a byproduct, we derive an explicit
iterative thresholding procedure to compute the estimator. As explained below, in the presence of
highly collinear features, the presence of the `2-penalty, besides enforcing grouped selection, is crucial
to ensure stability with respect to random sampling.
In the remainder of this section, we define the main ingredients for elastic-net regularization

within our general framework, discuss the underlying motivations for the method and then outline
the main results established in the paper.
As an extension of the setting originally proposed in [20],we allow the dictionary to have an infinite

number of features. In such a case, to cope with infinite sums, we need some assumptions on the
coefficients. We assume that the prediction function we have to determine is a linear combination of
the features (ψγ )γ∈Γ in the dictionary and that the series

fβ(x) =
∑
γ∈Γ

βγψγ (x),

converges absolutely for all x ∈ X and for all sequences β = (βγ )γ∈Γ satisfying
∑

γ∈Γ uγβ
2
γ < ∞,

where uγ are given positive weights. The latter constraint can be viewed as a constraint on the
regularity of the functions fβ we use to approximate the regression function. For infinite-dimensional
sets, as for example wavelet bases or splines, suitable choices of the weights correspond to the
assumption that fβ is in a Sobolev space (see Section 2 for more details about this point). Such a
requirement of regularity is common when dealing with infinite-dimensional spaces of functions, as
happens in approximation theory, signal analysis and inverse problems.
To ensure the convergence of the series defining fβ , we assume that∑

γ∈Γ

|ψγ (x)|2

uγ
is finite for all x ∈ X . (1)

Notice that for finite dictionaries, the series becomes a finite sum and the previous condition as well
as the introduction of weights becomes superfluous.



204 C. De Mol et al. / Journal of Complexity 25 (2009) 201–230

To simplify the notation and the formulation of our results, and without any loss in generality, we
will in the following rescale the features by defining ϕγ = ψγ /

√
uγ , so that on this rescaled dictionary,

fβ =
∑

γ∈Γ β̃γϕγ will be represented by means of a vector β̃γ =
√
uγβγ belonging to `2; condition

(1) then becomes
∑

γ∈Γ |ϕγ (x)|
2 < +∞, for all x ∈ X . From now on, we will only use this rescaled

representation and we drop the tilde on the vector β .
Let us now define our estimator as theminimizer of the empirical risk penalized with a (weighted)

elastic-net penalty, that is, a combination of the squared `2-norm and a weighted `1-norm of the
vector β . More precisely, we define the elastic-net penalty as follows.

Definition 1. Given a family (wγ )γ∈Γ ofweightswγ ≥ 0 and a parameter ε ≥ 0, let pε : `2 → [0,∞]
be defined as

pε(β) =
∑
γ∈Γ

(wγ |βγ | + εβ
2
γ ) (2)

which can also be rewritten as pε(β) = ‖β‖1,w + ε ‖β‖
2
2, where ‖β‖1,w =

∑
γ∈Γ wγ |βγ |.

The weights wγ allow us to enforce more or less sparsity on different groups of features. We
assume that they are prescribed in a given problem, so that we do not need to explicitly indicate
the dependence of pε(β) on these weights. The elastic-net estimator is defined by the following
minimization problem.

Definition 2. Given λ > 0, let Eλn : `2 → [0,+∞] be the empirical risk penalized by the penalty
pε(β)

Eλn (β) =
1
n

n∑
i=1

|Yi − fβ(Xi)|2 + λpε(β), (3)

and let βλn ∈ `2 be the or aminimizer of (3) on `2

βλn = argmin
β∈`2

Eλn (β). (4)

The positive parameterλ is a regularization parameter controlling the trade-off between the empirical
error and the penalty. Clearly, βλn also depends on the parameter ε, but we do not write explicitly this
dependence since ε will always be fixed.
Setting ε = 0 in (3), we obtain as a special case an infinite-dimensional extension of the Lasso

regression scheme. On the other hand, setting wγ = 0, ∀γ , the method reduces to `2-regularized
least-squares regression – also referred to as ridge regression – with a generalized linear model. The
`1-penalty has selection capabilities since it enforces sparsity of the solution, whereas the `2-penalty
induces a linear shrinkage on the coefficients leading to stable solutions. The positive parameter ε
controls the trade-off between the `1-penalty and the `2-penalty.
We will show that, if ε > 0, the minimizer βλn always exists and is unique. In the paper we will

focus on the case ε > 0. Some of our results, however, still hold for ε = 0, possibly under some
supplementary conditions, as will be indicated in due time.
As previously mentioned one of the main advantages of the elastic-net penalty is that it allows

achieving stability with respect to random sampling. To illustrate this property more clearly, we
consider a toy examplewhere the (rescaled) dictionary has only two elements ϕ1 and ϕ2 withweights
w1 = w2 = 1. The effect of random sampling is particularly dramatic in the presence of highly
correlated features. To illustrate this situation, we assume that ϕ1 and ϕ2 exhibit a special kind of
linear dependency, namely that they are linearly dependent on the input data X1, . . . , Xn: ϕ2(Xi) =
tan θn ϕ1(Xi) for all i = 1, . . . , n, where we have parametrized the coefficient of proportionality by
means of the angle θn ∈ [0, π/2]. Notice that this angle is a random variable since it depends on the
input data.
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Fig. 1. The ε-ball with ε > 0 (solid line), the square (`1-ball), which is the ε-ball with ε = 0 (dashed line), and the disc (`2-ball),
which is the ε-ball with ε→∞ (dotted line).

Observe that theminimizers of (3) must lie at a tangency point between a level set of the empirical
error and a level set of the elastic-net penalty. The level sets of the empirical error are all parallel
straight lines with slope− cot θn, as depicted by a dashed line in the two panels of Fig. 2, whereas the
level sets of the elastic-net penalty are elastic-net balls (ε-balls) with center at the origin and corners at
the intersections with the axes, as depicted in Fig. 1. When ε = 0, i.e. with a pure `1-penalty (Lasso),
the ε-ball is simply a square (dashed line in Fig. 1) and we see that the unique tangency point will be
the top corner if θn > π/4 (the point T in the two panels of Fig. 2), or the right corner if θn < π/4. For
θn = π/4 (that is, when ϕ1 and ϕ2 coincide on the data), theminimizer of (3) is no longer unique since
the level sets will touch along an edge of the square. Now, if θn randomly tilts around π/4 (because of
the random sampling of the input data), we see that the Lasso estimator is not stable since it randomly
jumps between the top and the right corner. If ε→∞, i.e. with a pure `2-penalty (ridge regression),
the ε-ball becomes a disc (dotted line in Fig. 1) and the minimizer is the point of the straight line
having minimal distance from the origin (the point Q in the two panels of Fig. 2). The solution always
exists, is stable under random perturbations, but it is never sparse (if 0 < θn < π/2).
The situation changes if we consider the elastic-net estimator with ε > 0 (the corresponding

minimizer is the point P in the two panels of Fig. 2). The presence of the `2-term ensures a smooth
and stable behavior when the Lasso estimator becomes unstable. More precisely, let − cot θ+ be the
slope of the right tangent at the top corner of the elastic-net ball (θ+ > π/4), and− cot θ− the slope
of the upper tangent at the right corner (θ− < π/4). As depicted in top panel of Fig. 2, the minimizer
will be the top corner if θn > θ+. It will be the right corner if θn < θ−. In both cases the elastic-net
solution is sparse. On the other hand, if θ− ≤ θn ≤ θ+ the minimizer has both components β1 and
β2 different from zero — see the bottom panel of Fig. 2; in particular, β1 = β2 if θn = π/4. Now we
observe that if θn randomly tilts around π/4, the solution smoothly moves between the top corner
and the right corner. However, the price we paid to get such stability is a decrease in sparsity, since
the solution is sparse only when θn 6∈ [θ−, θ+].
The previous elementary example could be refined in various ways to show the essential role

played by the `2-penalty to overcome the instability effects inherent to the use of the `1-penalty for
variable selection in a random-design setting.

Remark 1. Stability in the case of collinear features can also be achieved by using an `p-penalty with
p > 1 instead of p = 1. However, since such penalty term is differentiable, the corresponding `p-
balls in our two-dimensional example are delimited by a smooth curve without any corner and, as
a consequence, sparse solutions are not obtained in the presence of collinear features. Nevertheless,
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Fig. 2. Estimators in the two-dimensional example: T = Lasso, P = elastic net and Q = ridge regression. Top panel:
θ+ < θ < π/2. Bottom panel: π/4 < θ < θ+ .

when assuming that the relevant features are linearly independent, sparsity could still be enforced by
means of `p-penalties as shown in [10].

We now conclude this introductory section by a summary of themain results which will be derived in
the core of the paper. A key result will be to show that for ε > 0, βλn is the fixed point of the following
contractive map

β =
1

τ + ελ
Sλ
(
(τ I − Φ∗nΦn)β + Φ

∗

nY
)

where τ is a suitable relaxation constant, Φ∗nΦn and Φ
∗
nY are respectively the matrix and the vector

with entries

(Φ∗nΦn)γ ,γ ′ =
1
n

n∑
i=1

〈
ϕγ (Xi), ϕγ ′(Xi)

〉
and (Φ∗nY )γ =

1
n

n∑
i=1

〈
ϕγ (Xi), Yi

〉
,

(〈·, ·〉 denotes the scalar product in the output space Y). Moreover, Sλ (β) is the soft-thresholding
operator acting componentwise as follows

[Sλ (β)]γ =


βγ −

λwγ

2
if βγ >

λwγ

2
0 if |βγ | ≤

λwγ

2
βγ +

λwγ

2
if βγ < −

λwγ

2
.

As a consequence of the Banach fixed point theorem, βλn can be computed by means of an iterative
algorithm. This procedure is completely different from the modification of the LARS algorithm used
in [20] and is akin instead to the algorithm developed in [19].
Another interesting property which we will derive from the above equation is that the non-zero

components of βλn are such that wγ ≤
C
λ
, where C is a constant depending on the data. Hence the

only active features are those for which the corresponding weight lies below the threshold C/λ. If
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the features are organized into finite subsets of increasing complexity (as happens for example for
wavelets) and the weights tend to infinity with increasing feature complexity, then the number of
active features is finite and can be determined for any given data set. Let us recall that in the case
of ridge regression, the so-called representer theorem, see [24], ensures that we only have to solve in
practice a finite-dimensional optimization problem, even when the dictionary is infinite-dimensional
(as in kernelmethods). This is no longer true, however,with an `1-type regularization and, for practical
purposes, one would need to truncate infinite dictionaries. A standard way to do this is to consider
only a finite subset of m features, with m possibly depending on n — see for example [12,15]. Notice
that such a procedure implicitly assumes some order in the features and makes sense only if the
retained features are the most relevant ones. For example, in [25], it is assumed that there is a natural
exhaustion of the hypothesis space with nested subspaces spanned by finite-dimensional subsets of
features of increasing size. In our approachwe adopt a different strategy, namely the encoding of such
information in the elastic-net penalty by means of suitable weights in the `1-norm.
The main result of our paper concerns the consistency for variable selection of βλn . We prove that,

if the regularization parameter λ = λn satisfies the conditions limn→∞ λn = 0 and limn→∞(nλ2n −
2 log n) = +∞, then

lim
n→∞

∥∥βλnn − βε∥∥2 = 0 with probability one,
where the vector βε , which we call the elastic-net representation of fβ , is the minimizer of

min
β∈`2

(∑
γ∈Γ

wγ |βγ | + ε
∑
γ∈Γ

|βγ |
2

)
subject to fβ = f ∗.

The vector βε exists and is unique provided that ε > 0 and the regression function f ∗ admits a
sparse representation on the dictionary, i.e. f ∗ =

∑
γ∈Γ β

∗
γϕγ for at least a vector β

∗
∈ `2 such that∑

γ∈Γ wγ |β
∗
γ | is finite. Notice that, when the features are linearly dependent, there is a problem of

identifiability since there are many vectors β such that f ∗ = fβ . The elastic-net regularization scheme
forces βλnn to converge to β

ε . This is precisely what happens for linear inverse problems where the
regularized solution converges to theminimum-norm solution of the least-squares problem. As a con-
sequence of the above convergence result, one easily deduces the consistency of the corresponding
prediction function fn := fβλnn , that is, limn→∞ E

[
|fn − f ∗|2

]
= 0 with probability one. When the re-

gression function does not admit a sparse representation, we can still prove the previous consistency
result for fn provided that the linear span of the features is sufficiently rich. Finally, we use a data-
driven choice for the regularization parameter, based on the so-called balancing principle [26], to ob-
tain non-asymptotic bounds which are adaptive to the unknown regularity of the regression function.
The rest of the paper is organized as follows. In Section 2, we set up themathematical framework of

the problem. In Section 3, we analyze the optimization problem underlying elastic-net regularization
and the iterative thresholding procedure we propose to compute the estimator. Finally, Section 4
contains the statistical analysis with our main results concerning the estimation of the errors on our
estimators as well as their consistency properties under appropriate a priori and adaptive strategies
for choosing the regularization parameter.

2. Mathematical setting of the problem

2.1. Notations and assumptions

In this section we describe the general setting of the regression problem we want to solve and
specify all the required assumptions.
We assume thatX is a separable metric space and that Y is a (real) separable Hilbert space, with

norm and scalar product denoted respectively by | · | and 〈·, ·〉. Typically,X is a subset of Rd and Y is
R. Recently, however, there has been an increasing interest in vector-valued regression problems [27,
28] and multiple supervised learning tasks [29,30]: in both settings Y is taken to be Rm. Also infinite-
dimensional output spaces are of interest as e.g. in the problemof estimating glycemic response during
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a time interval depending on the amount and type of food; in such a case, Y is the space L2 or some
Sobolev space. Other examples of applications in an infinite-dimensional setting are given in [31].
Our first assumption concerns the set of features.

Assumption 1. The family of features (ϕγ )γ∈Γ is a countable set ofmeasurable functionsϕγ : X→ Y
such that

∀x ∈ X k(x) =
∑
γ∈Γ

|ϕγ (x)|2 ≤ κ, (5)

for some finite number κ .

The index set Γ is countable, but we do not assume any order. As for the convergence of series,
we use the notion of summability: given a family (vγ )γ∈Γ of vectors in a normed vector space V ,
v =

∑
γ∈Γ vγ means that (vγ )γ∈Γ is summable

1 with sum v ∈ V .
Assumption 1 can be seen as a condition on the class of functions that can be recovered by

the elastic-net scheme. As already noted in the Introduction, we have at our disposal an arbitrary
(countable) dictionary (ψγ )γ∈Γ of measurable functions, and we try to approximate f ∗ with linear
combinations fβ(x) =

∑
γ∈Γ βγψγ (x) where the set of coefficients (βγ )γ∈Γ satisfies some decay

condition equivalent to a regularity condition on the functions fβ . We make this condition precise
by assuming that there exists a sequence of positive weights (uγ )γ∈Γ such that

∑
γ∈Γ uγβ

2
γ <

∞ and, for any of such vectors β = (βγ )γ∈Γ , that the series defining fβ converges absolutely
for all x ∈ X. These two facts follow from the requirement that the set of rescaled features
ϕγ =

ψγ
√uγ

satisfies
∑

γ∈Γ |ϕγ (x)|
2 < ∞. Condition (5) is a little bit stronger since it requires that

supx∈X
∑

γ∈Γ |ϕγ (x)|
2 < ∞, so that we also have that the functions fβ are bounded. To simplify the

notation, in the rest of the paper, we only use the (rescaled) features ϕγ and, with this choice, the
regularity condition on the coefficients (βγ )γ∈Γ becomes

∑
γ∈Γ β

2
γ <∞.

An example of features satisfying condition (5) is given by a family of rescaled wavelets on X =
[0, 1]. Let

{
ψjk | j = 0, 1 . . . ; k ∈ ∆j

}
be a orthonormal wavelet basis in L2([0, 1])with regularity C r ,

r > 1
2 , where for j ≥ 1

{
ψjk | k ∈ ∆j

}
is the orthonormal wavelet basis (with suitable boundary

conditions) spanning the detail space at level j. To simplify notation, it is assumed that the set
{ψ0k | k ∈ ∆0} contains both the wavelets and the scaling functions at level j = 0. Fix s such that
1
2 < s < r and let ϕjk = 2

−jsψjk. Then

∞∑
j=0

∑
k∈∆j

|ϕjk(x)|2 =
∞∑
j=0

∑
k∈∆j

2−2js|ψjk(x)|2 ≤ C
∞∑
j=0

2−2js2j = C
1

1− 21−2s
= κ,

where C is a suitable constant depending on the number of wavelets that are non-zero at a point
x ∈ [0, 1] for a given level j, and on the maximum values of the scaling function and of the mother
wavelet; see [32] for a similar setting.
Condition (5) allows defining the hypothesis space in which we search for the estimator. Let `2 be

the Hilbert space of the families (βγ )γ∈Γ of real numbers such that
∑

γ∈Γ β
2
γ < ∞, with the usual

scalar product 〈·, ·〉2 and the corresponding norm ‖·‖2. We will denote by (eγ )γ∈Γ the canonical basis
of `2 and by supp(β) =

{
γ ∈ Γ | βγ 6= 0

}
the support of β . The Cauchy–Schwarz inequality and

condition (5) ensure that, for any β = (βγ )γ∈Γ ∈ `2, the series∑
γ∈Γ

βγϕγ (x) = fβ(x)

1 That is, for allη > 0, there is a finite subsetΓ0 ⊂ Γ such that
∥∥∥v −∑γ∈Γ ′ vγ

∥∥∥
V
≤ η for all finite subsetsΓ ′ ⊃ Γ0 . IfΓ = N,

the notion of summability is equivalent to requiring the series to converge unconditionally (i.e. its terms can be permuted
without affecting convergence). If the vector space is finite-dimensional, summability is equivalent to absolute convergence,
but in the infinite-dimensional setting, there are summable series which are not absolutely convergent.
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is summable in Y uniformly onXwith

sup
x∈X
|fβ(x)| ≤ ‖β‖2 κ

1
2 . (6)

Later on, in Proposition 3, we will show that the hypothesis spaceH =
{
fβ | β ∈ `2

}
is then a vector-

valued reproducing kernel Hilbert space on X with a bounded kernel [33], and that (ϕγ )γ∈Γ is a
normalized tight frame for H . In the example of the wavelet features one can easily check that H
is the Sobolev space Hs on [0, 1] and ‖β‖2 is equivalent to

∥∥fβ∥∥Hs .
The second assumption concerns the regression model.

Assumption 2. The random couple (X, Y ) inX× Y obeys the regression model

Y = f ∗(X)+W

where

f ∗ = fβ∗ for some β∗ ∈ `2 with
∑
γ∈Γ

wγ |β
∗

γ | < +∞ (7)

and

E [W | X] = 0 (8)

E
[
exp

(
|W |
L

)
−
|W |
L
− 1

∣∣∣∣ X] ≤ σ 2

2L2
(9)

with σ , L > 0. The family (wγ )γ∈Γ forms the positive weights defining the elastic-net penalty pε(β)
in (2).

Observe that f ∗ = fβ∗ is always a bounded function by (6). Moreover condition (7) is a further
regularity condition on the regression function and will not be needed for some of the results derived
in the paper. Assumption (9) is satisfied by bounded, Gaussian or sub-Gaussian noise. In particular, it
implies

E
[
|W |m|X

]
≤
1
2
m! σ 2Lm−2, ∀m ≥ 2, (10)

see [34], so that W has a finite second moment. It follows that Y has a finite first moment and (8)
implies that f ∗ is the regression function E [Y | X = x].
Condition (7) controls both the sparsity and the regularity of the regression function. If infγ∈Γ wγ =

w0 > 0, it is sufficient to require that ‖β∗‖1,w is finite. Indeed, the Hölder inequality gives that

‖β‖2 ≤
1
w0
‖β‖1,w . (11)

Ifw0 = 0, we also need ‖β∗‖2 to be finite. In the example of the (rescaled) wavelet features a natural
choice for the weights is wjk = 2ja for some a ∈ R, so that ‖β‖1,w is equivalent to the norm

∥∥fβ∥∥Bs̃1,1 ,
with s̃ = a + s + 1

2 , in the Besov space B
s̃
1,1 on [0, 1] (for more details, see e.g. the appendix in [19]).

In such a case, (7) is equivalent to requiring that f ∗ ∈ Hs ∩ Bs̃1,1.
Finally, our third assumption concerns the training sample.

Assumption 3. The sequence of randompairs (Xn, Yn)n≥1 are independent and identically distributed
(i.i.d.) according to the distribution of (X, Y ).

In the following, we let P be the probability distribution of (X, Y ), and L2Y(P) be the Hilbert space of
(measurable) functions f : X× Y→ Y with the norm

‖f ‖2P =
∫

X×Y

|f (x, y)|2 dP(x, y).
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With a slight abuse of notation, we regard the random pair (X, Y ) as a function on X × Y, that is,
X(x, y) = x and Y (x, y) = y. Moreover, we denote by Pn = 1

n

∑n
i=1 δXi,Yi the empirical distribution

and by L2Y(Pn) the corresponding (finite-dimensional) Hilbert space with norm

‖f ‖2n =
1
n

n∑
i=1

|f (Xi, Yi)|2.

2.2. Operators defined by the set of features

The choice of a quadratic loss function and the Hilbert structure of the hypothesis space suggest
using some tools from the theory of linear operators. In particular, the function fβ depends linearly
on β and can be regarded as an element of both L2Y(P) and of L

2
Y(Pn). Hence it defines two operators,

whose properties are summarized by the next two propositions, based on the following lemma.

Lemma 1. For any fixed x ∈ X, the mapΦx : `2 → Y defined by

Φxβ =
∑
γ∈Γ

ϕγ (x)βγ = fβ(x)

is a Hilbert–Schmidt operator, its adjoint Φ∗x : Y→ `2 acts as

(Φ∗x y)γ =
〈
y, ϕγ (x)

〉
γ ∈ Γ , y ∈ Y. (12)

In particular Φ∗xΦx is a trace-class operator with

Tr (Φ∗xΦx) ≤ κ. (13)

Moreover,Φ∗XY is an `2-valued random variable with∥∥Φ∗XY∥∥2 ≤ κ 12 |Y |, (14)

andΦ∗XΦX is anLHS-valued random variable with∥∥Φ∗XΦX∥∥HS ≤ κ, (15)

where LHS denotes the separable Hilbert space of the Hilbert–Schmidt operators on `2, and ‖·‖HS is the
Hilbert–Schmidt norm.

Proof. ClearlyΦx is a linear map from `2 to Y. SinceΦxeγ = ϕγ (x), we have∑
γ∈Γ

|Φxeγ |2 =
∑
γ∈Γ

|ϕγ (x)|2 ≤ κ,

so thatΦx is a Hilbert–Schmidt operator and Tr (Φ∗xΦx) ≤ κ by (5). Moreover, given y ∈ Y and γ ∈ Γ

(Φ∗x y)γ =
〈
Φ∗x y, eγ

〉
2 =

〈
y, ϕγ (x)

〉
which is (12). Finally, sinceX and Y are separable, the map (x, y) →

〈
y, ϕγ (x)

〉
is measurable, then

(Φ∗XY )γ is a real random variable and, since `2 is separable,Φ
∗

XY is an `2-valued random variable with∥∥Φ∗XY∥∥22 =∑
γ∈Γ

〈
Y , ϕγ (X)

〉2
≤ κ|Y |2.

A similar proof holds for Φ∗XΦX , recalling that any trace-class operator is in LHS and
∥∥Φ∗XΦX∥∥HS ≤

Tr (Φ∗XΦX ). �

The following proposition defines the distribution-dependent operator ΦP as a map from `2 into
L2Y(P).
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Proposition 1. The mapΦP : `2 → L2Y(P), defined byΦPβ = fβ , is a Hilbert–Schmidt operator and

Φ∗P Y = E
[
Φ∗XY

]
(16)

Φ∗PΦP = E
[
Φ∗XΦX

]
(17)

Tr (Φ∗PΦP) = E [k(X)] ≤ κ. (18)

Proof. Since fβ is a bounded (measurable) function, fβ ∈ L2Y(P) and∑
γ∈Γ

∥∥ΦPeγ ∥∥2P =∑
γ∈Γ

E
[
|ϕγ (X)|2

]
= E [k(X)] ≤ κ.

HenceΦP is a Hilbert–Schmidt operator with Tr (Φ∗PΦP) =
∑

γ∈Γ

∥∥ΦPeγ ∥∥2P so that (18) holds. By (9)
W has a finite second moment and by (6) f ∗ = fβ∗ is a bounded function, hence Y = f ∗(X)+W is in
L2Y(P). Now for any β ∈ `2 we have〈

Φ∗P Y , β
〉
2 = 〈Y ,ΦPβ〉P = E [〈Y ,ΦXβ〉] = E

[〈
Φ∗XY , β

〉
2

]
.

On the other hand, by (14),Φ∗XY has finite expectation, so that (16) follows. Finally, given β, β
′
∈ `2〈

Φ∗PΦPβ
′, β
〉
2 =

〈
ΦPβ

′,ΦPβ
〉
P = E

[〈
ΦXβ

′,ΦXβ
〉]
= E

[〈
Φ∗XΦXβ

′, β
〉
2

]
so that (17) is clear, sinceΦ∗XΦX has finite expectation as a consequence of the fact that it is a bounded
LHS-valued random variable. �

Replacing P by the empirical measure we get the sample version of the operator.

Proposition 2. The mapΦn : `2 → L2Y(Pn) defined byΦnβ = fβ is Hilbert–Schmidt operator and

Φ∗nY =
1
n

n∑
i=1

Φ∗XiYi (19)

Φ∗nΦn =
1
n

n∑
i=1

Φ∗XiΦXi (20)

Tr (Φ∗nΦn) =
1
n

n∑
i=1

k(Xi) ≤ κ. (21)

The proof of Proposition 2 is analogous to the proof of Proposition 1, except that P is to be replaced
by Pn.
By (12) with y = ϕγ ′(x), we have that the matrix elements of the operatorΦ∗xΦx are (Φ

∗
xΦx)γ γ ′ =〈

ϕγ ′(x), ϕγ (x)
〉
so that Φ∗nΦn is the empirical mean of the Gram matrix of the set (ϕγ )γ∈Γ , whereas

Φ∗PΦP is the corresponding mean with respect to the distribution P . Notice that if the features are
linearly dependent in L2Y(Pn), the matrix Φ

∗
nΦn has a non-trivial kernel and hence is not invertible.

More important, if Γ is countably infinite,Φ∗nΦn is a compact operator, so that its inverse (if it exists)
is not bounded. On the contrary, if Γ is finite and (ϕγ )γ∈Γ are linearly independent in L2Y(Pn), then
Φ∗nΦn is invertible. A similar reasoning holds for the matrixΦ

∗

PΦP . To control whether these matrices
have a bounded inverse or not, we introduce a lower spectral bound κ0 ≥ 0, such that

κ0 ≤ inf
β∈`2|‖β‖2=1

〈
Φ∗PΦPβ, β

〉
2

and, with probability 1,

κ0 ≤ inf
β∈`2|‖β‖2=1

〈
Φ∗nΦnβ, β

〉
2 .
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Clearly we can have κ0 > 0 only if Γ is finite and the features (ϕγ )γ∈Γ are linearly independent both
in L2Y(Pn) and L

2
Y(P).

On the other hand, (18) and (21) give the crude upper spectral bounds

sup
β∈`2|‖β‖2=1

〈
Φ∗PΦPβ, β

〉
2 ≤ κ,

sup
β∈`2|‖β‖2=1

〈
Φ∗nΦnβ, β

〉
2 ≤ κ.

One could improve these estimates by means of a tight bound on the largest eigenvalue ofΦ∗PΦP .
We end this section by showing that, under the assumptions we made, a structure of reproducing

kernel Hilbert space emerges naturally. Let us denote by YX the space of functions fromX to Y.

Proposition 3. The linear operator Φ : `2 → YX, Φβ = fβ , is a partial isometry from `2 onto the
vector-valued reproducing kernel Hilbert spaceH onX, with reproducing kernel K : X×X→ L(Y)

K(x, t)y = (ΦxΦ∗t )y =
∑
γ∈Γ

ϕγ (x)
〈
y, ϕγ (t)

〉
x, t ∈ X, y ∈ Y, (22)

the null space of Φ is

kerΦ =

{
β ∈ `2 |

∑
γ∈Γ

ϕγ (x)βγ = 0 ∀x ∈ X

}
, (23)

and the family (ϕγ )γ∈Γ is a normalized tight frame inH , namely∑
γ∈Γ

∣∣〈f , ϕγ 〉H ∣∣2 = ‖f ‖2H ∀f ∈ H .

Conversely, let H be a vector-valued reproducing kernel Hilbert space with reproducing kernel K such
that K(x, x) : Y → Y is a trace-class operator for all x ∈ X, with trace bounded by κ . If (ϕγ )γ∈Γ is a
normalized tight frame inH , then (5) holds.

Proof. Proposition 2.4 of [33] (withK = Y, Ĥ = `2, γ (x) = Φ∗x and A = Φ) gives thatΦ is a partial
isometry from `2 onto the reproducing kernel Hilbert space H , with reproducing kernel K(x, t). On
the other hand (23) is clear. SinceΦ is a partial isometry with rangeH andΦeγ = ϕγ where (eγ )γ∈Γ
is a basis in `2, then (ϕγ )γ∈Γ is a normalized tight frame inH .
To show the converse result, given x ∈ X and y ∈ Y, we apply the definition of a normalized

tight frame to the function Kxy defined by (Kxy)(t) = K(t, x)y. Kxy belongs toH by the definition of
a reproducing kernel Hilbert space and is such that the following reproducing property 〈f , Kxy〉H =
〈f (x), y〉 holds for any f ∈ H . Then

〈K(x, x)y, y〉 = ‖Kxy‖2H =
∑
γ∈Γ

∣∣〈Kxy, ϕγ 〉H ∣∣2 =∑
γ∈Γ

∣∣〈y, ϕγ (x)〉∣∣2 ,
where we used twice the reproducing property. Now, if (yi)i∈I is a basis in Y and x ∈ X∑

γ∈Γ

|ϕγ (x)|2 =
∑
γ∈Γ

∑
i∈I

∣∣〈yi, ϕγ (x)〉∣∣2 =∑
i∈I

〈K(x, x)yi, yi〉 = Tr (K(x, x)) ≤ κ. �

3. Minimization of the elastic-net functional

In this section, we study the properties of the elastic-net estimator βλn defined by (4). First of all, we
characterize the minimizer of the elastic-net functional (3) as the unique fixed point of a contractive
map. Moreover, we characterize some sparsity properties of the estimator and propose a natural
iterative soft-thresholding algorithm to compute it. Our algorithmic approach is totally different from
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the method proposed in [20], where βλn is computed by first reducing the problem to the case of a
pure `1-penalty and then applying the LARS algorithm [18].
In the followingwemakeuse of the following vector notation. Given a sample ofn i.i.d. observations

(X1, Y1), . . . , (Xn, Yn), and using the operators defined in the previous section, we can rewrite the
elastic-net functional (3) as

Eλn (β) = ‖Φnβ − Y‖
2
n + λpε(β), (24)

where the pε(·) is the elastic-net penalty defined by (2).

3.1. Fixed point equation

The main difficulty in minimizing (24) is that the functional is not differentiable because of the
presence of the `1-term in the penalty. Nonetheless the convexity of such a term enables us to use
tools from subdifferential calculus. Recall that, if F : `2 → R is a convex functional, the subgradient
at a point β ∈ `2 is the set of elements η ∈ `2 such that

F(β + β ′) ≥ F(β)+
〈
η, β ′

〉
2 ∀β

′
∈ `2.

The subgradient at β is denoted by ∂F(β), see [35]. We compute the subgradient of the convex
functional pε(β), using the following definition of sgn(t){sgn(t) = 1 if t > 0

sgn(t) ∈ [−1, 1] if t = 0
sgn(t) = −1 if t < 0.

(25)

We first state the following lemma.

Lemma 2. The functional pε(·) is a convex, lower semi-continuous (l.s.c.) functional from `2 into [0,∞].
Given β ∈ `2, a vector η ∈ ∂pε(β) if and only if

ηγ = wγ sgn(βγ )+ 2εβγ ∀γ ∈ Γ and
∑
γ∈Γ

η2γ < +∞.

Proof. Define the map F : Γ × R→ [0,∞]

F(γ , t) = wγ |t| + εt2.

Given γ ∈ Γ , F(γ , ·) is a convex, continuous function and its subgradient is

∂F(γ , t) =
{
τ ∈ R | τ = wγ sgn(t)+ 2εt

}
,

where we used the fact that the subgradient of |t| is given by sgn(t). Since

pε(β) =
∑
γ∈Γ

F(γ , βγ ) = sup
Γ ′ finite

∑
γ∈Γ ′

F(γ , βγ )

and β 7→ βγ is continuous, a standard result of convex analysis [35] ensures that pε(·) is convex and
lower semi-continuous.
The computation of the subgradient is standard. Given β ∈ `2 and η ∈ ∂pε(β) ⊂ `2, by the

definition of a subgradient,∑
γ∈Γ

F(γ , βγ + β ′γ ) ≥
∑
γ∈Γ

F(γ , βγ )+
∑
γ∈Γ

ηγβ
′

γ ∀β
′
∈ `2.

Given γ ∈ Γ , choosing β ′ = teγ with t ∈ R, it follows that ηγ belongs to the subgradient of F(γ , βγ ),
that is,

ηγ = wγ sgn(βγ )+ 2εβγ . (26)
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Conversely, if (26) holds for all γ ∈ Γ , by the definition of a subgradient

F(γ , βγ + β ′γ ) ≥ F(γ , βγ )+ ηγβ
′

γ .

By summing over γ ∈ Γ and taking into account the fact that (ηγβγ )γ∈Γ ∈ `1, then

pε(β + β ′) ≥ pε(β)+
〈
η, β ′

〉
2 . �

To state our main result about the characterization of the minimizer of (24), we need to introduce the
soft-thresholding function Sλ : R→ R, λ > 0 which is defined by

Sλ (t) =


t −

λ

2
if t >

λ

2
0 if |t| ≤

λ

2
t +

λ

2
if t < −

λ

2
,

(27)

and the corresponding nonlinear thresholding operator Sλ : `2 → `2 acting componentwise as

[Sλ (β)]γ = Sλwγ
(
βγ
)
. (28)

We note that the soft-thresholding operator satisfies

Saλ (aβ) = aSλ (β) a > 0, β ∈ `2, (29)∥∥Sλ (β)− Sλ
(
β ′
)∥∥
2 ≤

∥∥β − β ′∥∥2 β, β ′ ∈ `2. (30)

These properties are immediate consequences of the fact that

Saλ (at) = aSλ (t) a > 0, t ∈ R
|Sλ (t)− Sλ

(
t ′
)
| ≤ |t − t ′| t, t ′ ∈ R.

Notice that (30) with β ′ = 0 ensures that Sλ (β) ∈ `2 for all β ∈ `2.
We are ready to prove the following theorem.

Theorem 1. Given ε ≥ 0 and λ > 0, a vector β ∈ `2 is a minimizer of the elastic-net functional (3) if
and only if it solves the nonlinear equation

1
n

n∑
i=1

〈
Yi − (Φnβ)(Xi), ϕγ (Xi)

〉
− ελβγ =

λ

2
wγ sgn(βγ ) ∀γ ∈ Γ , (31)

or, equivalently,

β = Sλ
(
(1− ελ)β + Φ∗n (Y − Φnβ)

)
. (32)

If ε > 0 the solution always exists and is unique. If ε = 0, κ0 > 0 andw0 = infγ∈Γ wγ > 0, the solution
still exists and is unique.

Proof. If ε > 0 the functional Eλn is strictly convex, finite at 0, and it is coercive by

Eλn (β) ≥ pε(β) ≥ λε ‖β‖
2
2 .

Observing that ‖Φnβ − Y‖2n is continuous and, by Lemma 2, the elastic-net penalty is l.s.c., then Eλn is
l.s.c. and, since `2 is reflexive, there is a unique minimizer βλn in `2. If ε = 0, E

λ
n is convex, but the fact

that κ0 > 0 ensures that the minimizer is unique. Its existence follows from the observation that

Eλn (β) ≥ pε(β) ≥ λ ‖β‖1,w ≥ λw0 ‖β‖2 ,
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where we used (11). In both cases the convexity of Eλn implies that β is a minimizer if and only if
0 ∈ ∂Eλn (β). Since ‖Φnβ − Y‖

2
n is continuous, Corollary III.2.1 of [35] ensures that the subgradient is

linear. Observing that ‖Φnβ − Y‖2n is differentiable with derivative 2Φ
∗
nΦnβ − 2Φ

∗
nY , we get

∂Eλn (β) = 2Φ
∗

nΦnβ − 2Φ
∗

nY + λ∂pε(β),

so that (31) follows taking into account the explicit form of ∂pε(β), Φ∗nΦnβ and Φ
∗
nY , given by

Lemma 2 and Proposition 2, respectively.
We now prove (32), which is equivalent to the set of equations

βγ = Sλwγ

(
(1− ελ)βγ +

1
n

n∑
i=1

〈
Yi − (Φnβ)(Xi), ϕγ (Xi)

〉)
∀γ ∈ Γ . (33)

Setting β ′γ =
〈
Y − Φnβ, ϕγ (X)

〉
n − ελβγ , we have βγ = Sλwγ

(
βγ + β

′
γ

)
if and only if

βγ =


βγ + β

′

γ −
λwγ

2
if βγ + β ′γ >

λwγ

2

0 if |βγ + β ′γ | ≤
λwγ

2

βγ + β
′

γ +
λwγ

2
if βγ + β ′γ < −

λwγ

2
,

that is,
β ′γ =

λwγ

2
if βγ > 0

|β ′γ | ≤
λwγ

2
if βγ = 0

β ′γ = −
λwγ

2
if βγ < 0

or else β ′γ =
λwγ

2
sgn(βγ )

which is equivalent to (31). �

The following corollary gives some more information about the characterization of the solution as
the fixed point of a contractive map. In particular, it provides an explicit expression for the Lipschitz
constant of this map and it shows how it depends on the spectral properties of the empirical mean of
the Gram matrix and on the regularization parameter λ.

Corollary 1. Let ε ≥ 0 and λ > 0. Pick any arbitrary τ > 0. Then β is a minimizer of Eλn in `2 if and only
if it is a fixed point of the following Lipschitz map Tn : `2 → `2, namely

β = Tnβ where Tnβ =
1

τ + ελ
Sλ
(
(τ I − Φ∗nΦn)β + Φ

∗

nY
)
. (34)

With the choice τ = κ0+κ
2 , the Lipschitz constant is bounded by

q =
κ − κ0

κ + κ0 + 2ελ
≤ 1.

In particular, with this choice of τ and if ε > 0 or κ0 > 0, Tn is a contraction.

Proof. Clearly β is a minimizer of Eλn if and only if it is a minimizer of
1

τ+ελ
Eλn , which means that, in

(32), we can replace λ with λ
τ+ελ

, Φn by 1
√
τ+ελ

Φn and Y by 1
√
τ+ελ

Y . Hence β is a minimizer of Eλn if
and only if it is a solution of

β = S λ
τ+ελ

((
1−

ελ

τ + ελ

)
β +

1
τ + ελ

Φ∗n (Y − Φnβ)
)
.
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Therefore, by (29) with a = 1
τ+ελ

, β is a minimizer of Eλn if and only if β = Tnβ .
We show that Tn is Lipschitz and calculate explicitly a bound on the Lipschitz constant. By

assumption we have κ0I ≤ Φ∗nΦn ≤ κ I; then, by the Spectral Theorem,∥∥τ I − Φ∗nΦn∥∥`2,`2 ≤ max {|τ − κ0|, |τ − κ|} ,
where ‖·‖

`2,`2
denotes the operator norm of a bounded operator on `2. Hence, using (30), we get∥∥Tnβ − Tnβ

′
∥∥
2 ≤

1
τ + ελ

∥∥(τ I − Φ∗nΦn)(β − β ′)∥∥2
≤ max

{∣∣∣∣ τ − κ0τ + ελ

∣∣∣∣ , ∣∣∣∣ τ − κτ + ελ

∣∣∣∣} ∥∥β − β ′∥∥2
=: q

∥∥β − β ′∥∥2 .
The minimum of qwith respect to τ is obtained for

τ − κ0

τ + ελ
=

κ − τ

τ + ελ
,

that is, τ = κ+κ0
2 , and, with this choice, we get

q =
κ − κ0

κ + κ0 + 2ελ
. �

By inspecting the proof, we notice that the choice τ = κ0+κ
2 provides the best possible Lipschitz

constant under the assumption that κ0I ≤ Φ∗nΦn ≤ κ I . If ε > 0 or κ0 > 0, Tn is a contraction
and βλn can be computed by means of the Banach fixed point theorem. If ε = 0 and κ0 = 0, Tn is
only non-expansive, so that proving the convergence of the successive approximation scheme is not
straightforward.2
Let us now write down explicitly the iterative procedure suggested by Corollary 1 to compute βλn .

Define the iterative scheme by

β0 = 0,

β` =
1

τ + ελ
Sλ
(
(τ I − Φ∗nΦn)β

`−1
+ Φ∗nY

)
with τ = κ0+κ

2 . The following corollary shows that the β
` converges to βλn when ` goes to infinity.

Corollary 2. Assume that ε > 0 or κ0 > 0. For any ` ∈ N the following inequality holds∥∥β` − βλn∥∥2 ≤ (κ − κ0)
`

(κ + κ0 + 2ελ)`(κ0 + ελ)

∥∥Φ∗nY∥∥2 . (35)

In particular, lim`→∞
∥∥β` − βλn∥∥2 = 0.

Proof. Since Tn is a contraction with Lipschitz constant q =
κ−κ0

κ+κ0+2ελ
< 1, the Banach fixed point

theorem applies and the sequence
(
β`
)
`∈N converges to the unique fixed point of Tn, which is β

λ
n by

Corollary 1. Moreover we can use the Lipschitz property of Tn to write∥∥β` − βλn∥∥2 ≤ ∥∥β` − β`+1∥∥2 + ∥∥β`+1 − βλn∥∥2
≤ q

∥∥β`−1 − β`∥∥2 + q ∥∥β` − βλn∥∥2
≤ q`

∥∥β0 − β1∥∥2 + q ∥∥β` − βλn∥∥2 ,
2 Interestingly, it was proved in [19] using different arguments that the same iterative scheme can still be used for the case
ε = 0 and κ0 = 0.
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so that we immediately get∥∥β` − βλn∥∥2 ≤ q`

1− q

∥∥β1 − β0∥∥2 ≤ (κ − κ0)
`

(κ0 + κ + 2ελ)`(κ0 + ελ)

∥∥Φ∗nY∥∥2
since β0 = 0, β1 = 1

τ+ελ
Sλ
(
Φ∗nY

)
and 1− q = 2(κ0+ελ)

κ0+κ+2ελ
. �

Let us remark that bound (35) provides a natural stopping rule for the number of iterations, namely
to select ` such that

∥∥β` − βλn∥∥2 ≤ η, where η is a bound on the distance between the estimator βλn
and the true solution. For example, if

∥∥Φ∗nY∥∥2 is bounded byM and if κ0 = 0, the stopping rule is
`stop ≥

log M
ελη

log(1+ 2ελ
κ
)
so that

∥∥β`stop − βλn∥∥2 ≤ η.
Note that in the case of an infinite-dimensional dictionary, the above iteration involves infinite-
dimensional matrices. In Section 3.2 we will show that under mild assumptions on the weights it
is always possible to reduce the problem to a finite-dimensional one.
Finally we notice that all previous results also hold when considering the distribution-dependent

version of the method. The following proposition summarizes the results in this latter case.

Proposition 4. Let ε ≥ 0 and λ > 0. Pick any arbitrary τ > 0. Then a vector β ∈ `2 is a minimizer of

Eλ(β) = E
[
|ΦPβ − Y |2

]
+ λpε(β).

if and only if it is a fixed point of the following Lipschitz map, namely

β = T β where T β =
1

τ + ελ
Sλ
(
(τ I − Φ∗PΦP)β + Φ

∗

P Y
)
. (36)

If ε > 0 or κ0 > 0, the minimizer is unique.

If it is unique, we denote it by βλ:

βλ = argmin
β∈`2

(
E
[
|ΦPβ − Y |2

]
+ λpε(β)

)
. (37)

We add a comment. Under Assumption 2 and the definition of βε , the statistical model is Y =
ΦPβ

ε
+W whereW has zero mean, so that βλ is also the minimizer of

‖ΦPβ − ΦPβ
ε
‖
2
P + λpε(β). (38)

3.2. Sparsity properties

The results of the previous section immediately yield a crude estimate of the number and
localization of the non-zero coefficients of our estimator. Indeed, although the set of features could be
infinite, βλn has only a finite number of coefficients different from zero provided that the sequence of
weights is bounded away from zero.

Corollary 3. Assume that the family of weights satisfies infγ∈Γ wγ > 0, then for any β ∈ `2, the support
of Sλ (β) is finite. In particular, βλn , β

` and βλ are all finitely supported.

Proof. Let w0 = infγ∈Γ wγ > 0. Since
∑

γ∈Γ |βγ |
2 < +∞, there is a finite subset Γ0 ⊂ Γ such that

|βγ | ≤
λ
2w0 ≤

λ
2wγ for all γ 6∈ Γ0. This implies that

Sλwγ
(
βγ
)
= 0 for γ 6∈ Γ0,

by the definition of soft-thresholding, so that the support of Sλ (β) is contained in Γ0. Eqs. (32) and
(36) and the definition of β` imply that βλn , β

λ and β` have finite support. �
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However, the supports of β` and βλn are not known a priori and to compute β
` one would need to

store the infinite matrixΦ∗nΦn. The following corollary suggests a strategy to overcome this problem.

Corollary 4. Given ε ≥ 0 and λ > 0, let

Γλ =

{
γ ∈ Γ |

∥∥ϕγ ∥∥n 6= 0 and wγ ≤
2 ‖Y‖n (

∥∥ϕγ ∥∥n +√ελ)
λ

}
then

supp(βλn ) ⊂ Γλ. (39)

Proof. If
∥∥ϕγ ∥∥n = 0, clearly βγ = 0 is a solution of (31). Let M = ‖Y‖n; the definition of βλn as the

minimizer of (24) yields the bound Eλn (β
λ
n ) ≤ Eλn (0) = M

2, so that∥∥Φnβλn − Y∥∥n ≤ M pε(βλn ) ≤
M2

λ
.

Hence, for all γ ∈ Γ , the second inequality gives that ελ(βλn )
2
γ ≤ M

2, and we have∣∣〈Y − Φnβλn , ϕγ (X)〉n − ελ(βλn )γ ∣∣ ≤ M (∥∥ϕγ ∥∥n +√ελ)
and, therefore, by (31),

|sgn((βλn )γ )| ≤
2M(

∥∥ϕγ ∥∥n +√ελ)
λwγ

.

Since |sgn((βλn )γ )| = 1 when (β
λ
n )γ 6= 0, this implies that (β

λ
n )γ = 0 if

2M(‖ϕγ‖n+
√
ελ)

λwγ
< 1. �

Now, let Γ ′ be the set of indices γ such that the corresponding feature ϕγ (Xi) 6= 0 for some
i = 1, . . . , n. If the family of corresponding weights (wγ )γ∈Γ ′ goes to infinity,3 then Γλ is always
finite.

Remark 2. This last property has immediate computational implications. Since supp(βλn ) ⊂ Γλ, one
can replace Γ with Γλ in the definition ofΦn so thatΦ∗nΦn is a finite matrix andΦ

∗
nY is a finite vector.

In particular the iterative procedure given by Corollary 1 can then be implemented by means of finite
matrices.

Finally, by inspecting the proof above one sees that a similar result holds true for the distribution-
dependent minimizer βλ. Its support is always finite, as already noticed, and moreover is included in
the following set{

γ ∈ Γ |
∥∥ϕγ ∥∥P 6= 0 and wγ ≤

2 ‖Y‖P (
∥∥ϕγ ∥∥P +√ελ)
λ

}
.

4. Probabilistic error estimates

In this section we provide an error analysis for the elastic-net regularization scheme. Our primary
goal is the variable selection problem, so that we need to control the error

∥∥βλnn − β∥∥2, where λn is a
suitable choice of the regularization parameter as a function of the data, andβ is an explanatory vector
encoding the features that are relevant to reconstructing the regression function f ∗, that is, such that
f ∗ = ΦPβ . Although Assumption (7) implies that the above equation has at least a solution β∗ with

3 The sequence (wγ )γ∈Γ ′ goes to infinity, if for allM > 0 there exists a finite set ΓM such that |wγ | > M , ∀γ 6∈ ΓM .
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pε(β∗) < ∞, nonetheless, the operator ΦP is injective only if (ϕγ (X))γ∈Γ is `2-linearly independent
in L2Y(P). As usually done for inverse problems, to restore uniquenesswe choose, among all the vectors
β such that f ∗ = ΦPβ , the vector βε which is the minimizer of the elastic-net penalty. The vector βε
can be regarded as the best representation of the regression function f ∗ according to the elastic-net
penalty and we call it the elastic-net representation. Clearly this representation will depend on ε.
Next we focus on the following error decomposition (for any fixed positive λ),∥∥βλn − βε∥∥2 ≤ ∥∥βλn − βλ∥∥2 + ∥∥βλ − βε∥∥2 , (40)

where βλ is given by (37). The first error term in the right-hand side of the above inequality is
due to finite sampling and will be referred to as the sample error, whereas the second error term
is deterministic and is called the approximation error. In Section 4.2 we analyze the sample error via
concentration inequalities and we consider the behavior of the approximation error as a function of
the regularization parameter λ. The analysis of these error terms leads us to discuss the choice of λ
and to derive statistical consistency results for elastic-net regularization. In Section 4.3 we discuss a
priori and a posteriori (adaptive) parameter choices.

4.1. Identifiability condition and elastic-net representation

The following proposition provides a way to define a unique solution of the equation f ∗ = ΦPβ .
Let

B =
{
β ∈ `2 | ΦPβ = f ∗(X)

}
= β∗ + kerΦP

where β∗ ∈ `2 is given by (7) in Assumption 2 and

kerΦP = {β ∈ `2 | ΦPβ = 0} =
{
β ∈ `2 | fβ(X) = 0 with probability 1

}
.

Proposition 5. If ε > 0 or κ0 > 0, there is a unique βε ∈ `2 such that

pε(βε) = inf
β∈B
pε(β). (41)

Proof. If κ0 > 0,B reduces to a single point, so that there is nothing to prove. If ε > 0,B is a closed
subset of a reflexive space. Moreover, by Lemma 2, the penalty pε(·) is strictly convex, l.s.c. and, by
(7) of Assumption 2, there exists at least one β∗ ∈ B such that pε(β∗) is finite. Since pε(β) ≥ ε ‖β‖22,
pε(·) is coercive. A standard result of convex analysis implies that the minimizer exists and is unique.

�

4.2. Consistency: Sample and approximation errors

The main result of this section is a probabilistic error estimate for
∥∥βλn − βλ∥∥2, which will provide

a choice λ = λn for the regularization parameter as well as a convergence result for
∥∥βλnn − βε∥∥2.

We first need to establish two lemmas. The first one shows that the sample error can be studied in
terms of the following quantities∥∥Φ∗nΦn − Φ∗PΦP∥∥HS and

∥∥Φ∗nW∥∥2 (42)

measuring the perturbation due to random sampling and noise (we recall that ‖·‖HS denotes the
Hilbert–Schmidt norm of a Hilbert–Schmidt operator on `2). The second lemma provides suitable
probabilistic estimates for these quantities.

Lemma 3. Let ε ≥ 0 and λ > 0. If ε > 0 or κ0 > 0, then∥∥βλn − βλ∥∥2 ≤ 1
κ0 + ελ

(∥∥(Φ∗nΦn − Φ∗PΦP)(βλ − βε)∥∥2 + ∥∥Φ∗nW∥∥2) . (43)
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Proof. Let τ = κ0+κ
2 and recall that βλn and β

λ satisfy (34) and (36), respectively. Taking into account
(30) we get∥∥βλn − βλ∥∥2 ≤ 1

τ + ελ

∥∥(τβλn − Φ∗nΦnβλn + Φ∗nY )− (τβλ − Φ∗PΦPβλ + Φ∗P Y )∥∥2 . (44)

By Assumption 2 and the definition of βε , Y = f ∗(X) + W , and ΦPβε and Φnβε both coincide with
the function f ∗, regarded as an element of L2Y(P) or L

2
Y(Pn) respectively. Moreover by (8) Φ

∗

PW = 0,
so that

Φ∗nY − Φ
∗

P Y = (Φ
∗

nΦn − Φ
∗

PΦP)β
ε
+ Φ∗nW .

Moreover

(τ I − Φ∗nΦn)β
λ
n − (τ I − Φ

∗

PΦP)β
λ
= (τ I − Φ∗nΦn)(β

λ
n − β

λ)− (Φ∗nΦn − Φ
∗

PΦP)β
λ.

From the assumption on Φ∗nΦn and the choice τ =
κ+κ0
2 , we have

∥∥τ I − Φ∗nΦn∥∥`2,`2 ≤ κ−κ0
2 , so that

(44) gives

(τ + ελ)
∥∥βλn − βλ∥∥2 ≤ ∥∥(Φ∗nΦn − Φ∗PΦP)(βλ − βε)∥∥2 + ∥∥Φ∗nW∥∥2 + κ − κ02 ∥∥βλn − βλ∥∥2 .

Bound (43) is established by observing that τ + ελ− (κ − κ0)/2 = κ0 + ελ. �

The probabilistic estimates for (42) are straightforward consequences of the law of large numbers
for vector-valued random variables. More precisely, we recall the following probabilistic inequalities
based on a result of [36,37]; see also Th. 3.3.4 of [38] as well as [39] for concentration inequalities for
Hilbert-space-valued random variables.

Proposition 6. Let (ξn)n∈N be a sequence of i.i.d. zero-mean random variables taking values in a real
separable Hilbert spaceH and satisfying

E[‖ξi‖mH ] ≤
1
2
m!M2Hm−2 ∀m ≥ 2, (45)

where M and H are two positive constants. Then, for all n ∈ N and η > 0

P

[∥∥∥∥∥1n
n∑
i=1

ξi

∥∥∥∥∥
H

≥ η

]
≤ 2e

−
nη2

M2+Hη+M
√
M2+2Hη = 2e−n

M2

H2
g
(
Hη
M2

)
(46)

where g(t) = t2

1+t+
√
1+2t,

or, for all δ > 0,

P

[∥∥∥∥∥1n
n∑
i=1

ξi

∥∥∥∥∥
H

≤

(
Hδ
n
+
M
√
2δ
√
n

)]
≥ 1− 2e−δ. (47)

Proof. Bound (46) is given in [36] with awrong factor, see [37]. To show (47), observe that the inverse
of the function t2

1+t+
√
1+2t

is the function t +
√
2t so that the equation

2e−n
M2

H2
g
(
Hη
M2

)
= 2e−δ

has the solution

η =
M2

H

(
H2δ
nM2
+

√
2
H2δ
nM2

)
. �
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Lemma 4. With probability greater than 1−4e−δ , the following two inequalities hold, for any λ > 0 and
ε > 0,

∥∥Φ∗nW∥∥2 ≤
(
L
√
κδ

n
+
σ
√
κ
√
2δ

√
n

)
≤

√
2κδ(σ + L)
√
n︸ ︷︷ ︸

if δ≤n

(48)

and ∥∥Φ∗nΦn − Φ∗PΦP∥∥HS ≤
(
κδ

n
+
κ
√
2δ
√
n

)
≤
3κ
√
δ

√
n︸ ︷︷ ︸

if δ≤n

. (49)

Proof. Consider the `2-valued random variable Φ∗XW . From (8), E
[
Φ∗XW

]
= E

[
E
[
Φ∗XW |X

]]
= 0

and, for anym ≥ 2,

E
[∥∥Φ∗XW∥∥m2 ] = E

(∑
γ∈Γ

∣∣〈ϕγ (X),W 〉∣∣2)
m
2
 ≤ κ m2 E

[
|W |m

]
≤ κ

m
2
m!
2
σ 2Lm−2,

due to (5) and (10). Applying (47) with H =
√
κL and M =

√
κσ , and recalling definition (19), we

get that

‖Φ∗nW‖2 ≤
√
κLδ
n
+

√
κσ
√
2δ

√
n

with probability greater than 1− 2e−δ .
Consider the random variable ΦXΦ∗X taking values in the Hilbert space of Hilbert–Schmidt

operators (where ‖·‖HS denotes the Hilbert–Schmidt norm). One has that E
[
ΦXΦ

∗

X

]
= ΦPΦ

∗

P and,
by (13)∥∥ΦXΦ∗X∥∥HS ≤ Tr (ΦXΦ∗X ) ≤ κ.
Hence

E
[∥∥ΦXΦ∗X − ΦPΦ∗P∥∥mHS] ≤ E

[∥∥ΦXΦ∗X − ΦPΦ∗P∥∥2HS] (2κ)m−2
≤
m!
2
κ2κm−2,

bym! ≥ 2m−1. Applying (47) with H = M = κ∥∥ΦnΦ∗n − ΦPΦ∗P∥∥HS ≤ κδ

n
+
κ
√
2δ
√
n
,

with probability greater than 1− 2e−δ . The simplified bounds are clear provided that δ ≤ n. �

Remark 3. In both (48) and (49), the condition δ ≤ n allows simplifying the bounds enlightening the
dependence on n and the confidence level 1 − 4e−δ . In the following results we always assume that
δ ≤ n, but we stress the fact that this condition is only needed to simplify the form of the bounds.
Moreover, observe that, for a fixed confidence level, this requirement on n is veryweak— for example,
to achieve a 99% confidence level, we only need to require that n ≥ 6.

The next proposition gives a bound on the sample error. This bound is uniform in the regularization
parameter λ in the sense that there exists an event independent of λ such that its probability is greater
than 1− 4e−δ and (50) holds true.
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Proposition 7. Assume that ε > 0 or κ0 > 0. Let δ > 0 and n ∈ N such that δ ≤ n, for any λ > 0 the
bound ∥∥βλn − βλ∥∥2 ≤ c

√
δ

√
n(κ0 + ελ)

(
1+

∥∥βλ − βε∥∥2) (50)

holds with probability greater than 1− 4e−δ , where c = max
{√
2κ(σ + L), 3κ

}
.

Proof. Plug bounds (49) and (48) in (43), taking into account that∥∥(Φ∗nΦn − Φ∗PΦP)(βλ − βε)∥∥2 ≤ ∥∥Φ∗nΦn − Φ∗PΦP∥∥HS ∥∥βλ − βε∥∥2 . �

By inspecting the proof, one sees that the constant κ0 in (43) can be replaced by any constant κλ
such that

κ0 ≤ κλ ≤ inf
β∈`2|‖β‖2=1

∥∥∥∥∥∑
γ∈Γλ

βγϕγ

∥∥∥∥∥
2

n

with probability 1,

where Γλ is the set of active features given by Corollary 4. If κ0 = 0 and κλ > 0, i.e. when Γλ is finite
and the active features are linearly independent, one can improve bound (52) below. Since wemainly
focus on the case of linearly-dependent dictionaries we will not discuss this point any further.
The following proposition shows that the approximation error

∥∥βλ − βε∥∥2 tends to zero when λ
tends to zero.

Proposition 8. If ε > 0 then

lim
λ→0

∥∥βλ − βε∥∥2 = 0.
Proof. It is enough to prove the result for an arbitrary sequence (λj)j∈N converging to 0. Putting
β j = βλj , since ‖ΦPβ − Y‖2P = ‖ΦPβ − f

∗(X)‖2P + ‖f
∗(X)− Y‖2P , by the definition of β

j as the
minimizer of (37) and the fact that βε solvesΦPβ = f ∗, we get∥∥ΦPβ j − f ∗(X)∥∥2P + λjpε(β j) ≤ ∥∥ΦPβε − f ∗(X)∥∥2P + λjpε(βε) = λjpε(βε).
Condition (7) of Assumption 1 ensures that pε(βε) is finite, so that∥∥ΦPβ j − f ∗(X)∥∥2P ≤ λjpε(βε) and pε(β j) ≤ pε(βε).

Since ε > 0, the last inequality implies that (β j)j∈N is a bounded sequence in `2. Hence, possibly
passing to a subsequence, (β j)j∈N converges weakly to some β∗. We claim that β∗ = βε . Since
β 7→ ‖ΦPβ − f ∗(X)‖2P is l.s.c.∥∥ΦPβ∗ − f ∗(X)∥∥2P ≤ lim infj→∞

∥∥ΦPβ j − f ∗(X)∥∥2P ≤ lim infj→∞
λjpε(βε) = 0,

that is β∗ ∈ B. Since pε(·) is l.s.c.,

pε(β∗) ≤ lim inf
j→∞

pε(β j) ≤ pε(βε).

By the definition of βε , it follows that β∗ = βε and, hence,

lim
j→∞

pε(β j) = pε(βε). (51)

To prove that β j converges to βε in `2, it is enough to show that limj→∞
∥∥β j∥∥2 = ‖βε‖2. Since ‖·‖2

is l.s.c., lim infj→∞
∥∥β j∥∥2 ≥ ‖βε‖2. Hence we are left with proving that lim supj→∞ ∥∥β j∥∥2 ≤ ‖βε‖2.

Assume the contrary. This implies that, possibly passing to a subsequence,

lim
j→∞

∥∥β j∥∥2 > ‖βε‖2
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and, using (51),

lim
j→∞

∑
γ∈Γ

wγ |β
j
γ | <

∑
γ∈Γ

wγ |β
ε
|.

However, since β 7→
∑

γ∈Γ wγ |βγ | is l.s.c.

lim inf
j→∞

∑
γ∈Γ

wγ |β
j
γ | ≥

∑
γ∈Γ

wγ |β
ε
|. �

From (50) and the triangular inequality, we easily deduce that

∥∥βλn − βε∥∥2 ≤ c
√
δ

√
n(κ0 + ελ)

(
1+

∥∥βλ − βε∥∥2)+ ∥∥βλ − βε∥∥2 (52)

with probability greater than 1 − 4e−δ . Since the tails are exponential, the above bound and the
Borel–Cantelli lemma imply the following theorem, which states that the estimator βλn converges to
the solution βε , for a suitable choice of the regularization parameter λ.

Theorem 2. Assume that ε > 0 and κ0 = 0. Let λn be a choice of λ as a function of n such that
limn→∞ λn = 0 and limn→∞ nλ2n − 2 log n = +∞. Then

lim
n→∞

∥∥βλnn − βε∥∥2 = 0 with probability 1.
If κ0 > 0, the above convergence result holds for any choice of λn such that limn→∞ λn = 0.

Proof. The only non-trivial statement concerns the convergence with probability 1. We give the
proof only for κ0 = 0, the other one being similar. Let (λn)n≥1 be a sequence such that
limn→∞ λn = 0 and limn→∞ nλ2n − 2 log n = +∞. Since limn→∞ λn = 0, Proposition 8 ensures
that limn→∞

∥∥βλn − βε∥∥2 = 0. Hence, it is enough to show that limn→∞ ∥∥βλnn − βλn∥∥2 = 0 with
probability 1. Let D = supn≥1 ε−1c(1 +

∥∥βλn − βε∥∥2), which is finite since the approximation error
goes to zero if λ tends to zero. Given η > 0, let δ = nλ2n

η2

D2
≤ n for n large enough, so that bound (50)

holds providing that

P
[∥∥βλnn − βλn∥∥2 ≥ η] ≤ 4e−nλ2n η2D2 .

The condition that limn→∞ nλ2n − 2 log n = +∞ implies that the series
∑
∞

n=1 e
−nλ2n

η2

D2 converges and
the Borel–Cantelli lemma gives the thesis. �

Remark 4. The two conditions on λn in the above theorem are clearly satisfied with the choice
λn = (1/n)r with 0 < r < 1

2 . Moreover, by inspecting the proof, one can easily check that to
have the convergence of βλnn to β

ε in probability, it is enough to require that limn→∞ λn = 0 and
limn→∞ nλ2n = +∞.

Let fn = fβλnn . Since f
∗
= fβε and E

[
|fn(X)− f ∗(X)|2

]
=
∥∥ΦP(βλnn − βε)∥∥2P , the above theorem

implies that

lim
n→∞

E
[
|fn(X)− f ∗(X)|2

]
= 0

with probability 1, that is, the consistency of the elastic-net regularization schemewith respect to the
square loss.
Let us remark that we are also able to prove such consistency without assuming (7)

in Assumption 2. To this end, we need the following lemma, which is of interest by itself.
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Lemma 5. Instead of Assumption 2, assume that the regression model is given by

Y = f ∗(X)+W ,

where f ∗ : X → Y is a bounded function and W satisfies (8) and (9). For fixed λ and ε > 0, with
probability greater than 1− 2e−δ we have

∥∥Φ∗n (f λ − f ∗)− Φ∗P (f λ − f ∗)∥∥2 ≤
(√

κDλδ
n
+

√
2κδ

∥∥f λ − f ∗∥∥P
√
n

)
, (53)

where f λ = fβλ and Dλ = supx∈X |f λ(x)− f ∗(x)|.

Wenotice that in (53), the function f λ− f ∗ is regarded both as an element of L2Y(Pn) and as an element
of L2Y(P).

Proof. Consider the `2-valued random variable

Z = Φ∗X (f
λ(X)− f ∗(X)) Zγ =

〈
f λ(X)− f ∗(X), ϕγ (X)

〉
.

A simple computation shows that E [Z] = Φ∗P (f
λ
− f ∗) and

‖Z‖2 ≤
√
κ|f λ(X)− f ∗(X)|.

Hence, for anym ≥ 2,

E
[
‖Z − E [Z]‖m2

]
≤ E

[
‖Z − E [Z]‖22

] (
2
√
κ sup
x∈X
|f λ(x)− f ∗(x)|

)m−2
≤ κE

[
|f λ(X)− f ∗(X)|2

] (
2
√
κ sup
x∈X
|f λ(x)− f ∗(x)|

)m−2
≤
m!
2 (
√
κ
∥∥f λ − f ∗∥∥P)2(√κDλ)m−2.

Applying (47) with H =
√
κDλ andM =

√
κ
∥∥f λ − f ∗∥∥P , we obtain bound (53). �

Observe that under Assumption (7) and by the definition of βε one has that Dλ ≤
√
κ
∥∥βλ − βε∥∥2, so

that (53) becomes∥∥(Φ∗nΦn − Φ∗PΦP)(βλ − βε)∥∥2 ≤
(
κδ
∥∥βλ − βε∥∥2
n

+

√
2κδ

∥∥ΦP(βλ − βε)∥∥P
√
n

)
.

Since ΦP is a compact operator this bound is tighter than the one deduced from (49). However, the
price we pay is that the bound does not hold uniformly in λ. We are now able to state the universal
strong consistency of the elastic-net regularization scheme.

Theorem 3. Assume that (X, Y ) satisfy (8) and (9) and that the regression function f ∗ is bounded. If the
linear span of features (ϕγ )γ∈Γ is dense in L2Y(P) and ε > 0, then

lim
n→∞

E
[
|fn(X)− f ∗(X)|2

]
= 0 with probability 1,

provided that limn→∞ λn = 0 and limn→∞ nλ2n − 2 log n = +∞.

Proof. As above we bound separately the approximation error and the sample error. As for the first
term, let f λ = fβλ . We claim that E

[
|f λ(X)− f ∗(X)|2

]
goes to zero when λ goes to zero. Given η > 0,

the fact that the linear span of the features (ϕγ )γ∈Γ is dense in L2Y(P) implies that there is β
η
∈ `2

such that pε(βη) <∞ and

E
[
|fβη (X)− Y |2

]
≤ E

[
|f ∗(X)− Y |2

]
+ η.
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Let λη =
η

1+pε(βη)
, then, for any λ ≤ λη ,

E
[
|f λ(X)− f ∗(X)|2

]
≤
(
E
[
|f λ(X)− Y |2

]
− E

[
|f ∗(X)− Y |2

])
+ λpε(βλ)

≤
(
E
[
|fβη (X)− Y |2

]
− E

[
|f ∗(X)− Y |2

])
+ λpε(βη)

≤ η + η.

As for the sample error, we let f λn = fβλn (so that fn = f
λn
n ) and observe that

E
[
|f λ(X)− f λn (X)|

2]
=
∥∥ΦP(βλn − βλ)∥∥2P ≤ κ ∥∥βλn − βλ∥∥22 .

We bound
∥∥βλn − βλ∥∥2 by (53) observing that

Dλ = sup
x∈X
|f λ(x)− f ∗(x)| ≤ sup

x∈X
|fβλ(x)| + sup

x∈X
|f ∗(x)|

≤
√
κ
∥∥βλ∥∥2 + supx∈X |f ∗(x)| ≤ D 1√λ

where D is a suitable constant and where we used the crude estimate

λε
∥∥βλ∥∥22 ≤ Eλ(βλ) ≤ Eλ(0) = E

[
|Y |2

]
.

Hence (53) yields

∥∥Φ∗n (f λ − f ∗)− Φ∗P (f λ − f ∗)∥∥2 ≤
(√

κδD
√
λn
+

√
2κδ

∥∥f λ(X)− f ∗(X)∥∥P
√
n

)
. (54)

Observe that the proof of (43) does not depend on the existence of βε provided that we replace both
ΦPβ

λ
n ∈ L

2
Y(P) and Φnβ

λ
n ∈ L

2
Y(Pn) with f

∗, and we take into account that both ΦPβλ ∈ L2Y(P) and
Φnβ

λ
∈ L2Y(Pn) are equal to f

λ. Hence, plugging (54) and (48) in (43) we have that with probability
greater than 1− 4e−δ

∥∥βλn − βλ∥∥2 ≤ D
√
δ

κ0 + ελ

(
1
√
n
+

1
√
λn
+

∥∥f λ(X)− f ∗(X)∥∥P
√
n

)
where D is a suitable constant and δ ≤ n. The thesis now follows by combining the bounds on the
sample and approximation errors and repeating the proof of Theorem 2. �

To have an explicit convergence rate, one needs an explicit bound on the approximation error∥∥βλ − βε∥∥2, for example of the form ∥∥βλ − βε∥∥2 = O(λr). This is out of the scope of the paper.
We report only the following simple result.

Proposition 9. Assume that the features ϕγ are in finite number and linearly independent. Let N∗ =
|supp(βε)| andw∗ = supγ∈supp(βε)

{
wγ
}
, then∥∥βλ − βε∥∥2 ≤ DN∗λ.

With the choice λn = 1
√
n , for any δ > 0 and n ∈ N with δ ≤ n

∥∥βλnn − βε∥∥2 ≤ c
√
δ

√
nκ0

(
1+

DN∗
√
n

)
+
DN∗
√
n
, (55)

with probability greater than 1− 4e−δ , where D =
w∗+2ε‖βε‖

∞

2κ0
and c = max

{√
2κ(σ + L), 3κ

}
.
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Proof. Observe that the assumption on the set of features is equivalent to assuming that κ0 > 0. First,
we bound the approximation error

∥∥βλ − βε∥∥2. As usual, with the choice τ = κ0+κ
2 , (36) gives

βλ − βε =
1

τ + ελ

[
Sλ
(
(τ I − Φ∗PΦP)β

λ
+ Φ∗PΦPβ

ε
)
− Sλ (τβε)+ Sλ (τβε)− τβε

]
−

ελ

τ + ελ
βε.

Property (30) implies that∥∥βλ − βε∥∥2 ≤ 1
τ + ελ

(∥∥(τ I − Φ∗PΦP)(βλ − βε)∥∥2 + ‖Sλ (τβε)− τβε‖2)+ ελ

τ + ελ
‖βε‖2 .

Since ‖τ I − Φ∗PΦP‖ ≤
κ−κ0
2 , ‖β

ε‖2 ≤ N
∗ ‖βε‖∞ and

‖Sλ (τβε)− τβε‖2 ≤ w
∗N∗

λ

2
,

one has∥∥βλ − βε∥∥2 ≤ κ + κ0 + 2ελ
2(κ0 + ελ)

(
2

κ + κ0 + 2ελ
w∗N∗

λ

2
+

2ελ
κ0 + κ + 2ελ

‖βε‖2

)
≤

(
w∗ + 2ε ‖βε‖∞

2κ0

)
N∗λ = DN∗λ.

Bound (55) is then a straightforward consequence of (52). �

4.3. Adaptive choice

In this section, we suggest an adaptive choice of the regularization parameter λ. The main advan-
tage of this selection rule is that it does not require any knowledge of the behavior of the approxima-
tion error. To this end, it is useful to replace the approximation error with the following upper bound

A(λ) = sup
0<λ′≤λ

∥∥∥βλ′ − βε∥∥∥
2
. (56)

The following simple result holds.

Lemma 6. Given ε > 0,A is an increasing continuous function and∥∥βλ − βε∥∥2 ≤ A(λ) ≤ A <∞
lim
λ→0+

A(λ) = 0.

Proof. First of all, we show that λ 7→ βλ is a continuous function. Fix λ > 0; for any h such that
λ+ h > 0, (36) with τ = κ0+κ

2 and Corollary 1 give∥∥βλ+h − βλ∥∥2 ≤ ∥∥Tλ+h(βλ+h)− Tλ+h(β
λ)
∥∥
2 +

∥∥Tλ+h(βλ)− Tλ(β
λ)
∥∥
2

≤
κ − κ0

κ + κ0 + 2ε(λ+ h)

∥∥βλ+h − βλ∥∥2
+

∥∥∥∥ 1
τ + ε(λ+ h)

Sλ+h
(
β ′
)
−

1
τ + ελ

Sλ
(
β ′
)∥∥∥∥
2

where β ′ = (τ I − Φ∗PΦP)β
λ
+ Φ∗P Y does not depend on h and we wrote Tλ to make explicit the

dependence of the map T on the regularization parameter. Hence∥∥βλ+h − βλ∥∥2
≤
τ + ε(λ+ h)
κ0 + ε(λ+ h)

(∣∣∣∣ 1
τ + ε(λ+ h)

−
1

τ + ελ

∣∣∣∣ ∥∥β ′∥∥2 + 1
τ + ελ

∥∥Sλ+h (β ′)− Sλ
(
β ′
)∥∥
2

)
.
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The claim follows by observing that (assuming for simplicity that h > 0)∥∥Sλ+h (β ′)− Sλ
(
β ′
)∥∥2
2 =

∑
wγ λ≤|β

′
γ |<wγ (λ+h)

|β ′γ − sgn(β
′

γ )wγλ|
2
+

∑
|β ′γ |≥wγ (λ+h)

w2γ h
2

≤ h2
∑

|β ′γ |≥wγ λ

w2γ ≤ h
2

∑
|β ′γ |≥wγ λ

(β ′γ /λ)
2
≤ h2

∥∥β ′∥∥22 /λ2 ,
which goes to zero if h tends to zero.
Now, by the definition of βλ and βε

ελ
∥∥βλ∥∥22 ≤ E

[
|ΦPβ

λ
− f ∗(X)|2

]
+ λpε(βλ) ≤ E

[
|ΦPβ

ε
− f ∗(X)|2

]
+ λpε(βε) = λpε(βε),

so that∥∥βλ − βε∥∥2 ≤ ‖βε‖2 + 1
√
ε
pε(βε) =: A.

Hence A(λ) ≤ A for all λ. Clearly A(λ) is an increasing function of λ; the fact that
∥∥βλ − βε∥∥2 is

continuous and goes to zero with λ ensures that the same holds true forA(λ). �

Notice that we replaced the approximation error with A(λ) just for a technical reason, namely to
deal with an increasing function of λ. If we have a monotonic decay rate at our disposal, such as∥∥βλ − βε∥∥2 � λa for some a > 0 and for λ→ 0, then clearlyA(λ) � λa.
Now, we fix ε > 0 and δ ≥ 2 and we assume that κ0 = 0. Then we simplify bound (52) observing

that ∥∥βλn − βε∥∥2 ≤ C ( 1
√
nελ
+A(λ)

)
(57)

where C = c
√
δ(1 + A); the bound holds with probability greater than 1 − 4e−δ uniformly for all

λ > 0.
When λ increases, the first term in (57) decreases whereas the second increases; hence to have a

tight bound a natural choice of the parameter consists of balancing the two terms in the above bound,
taking

λoptn = sup
{
λ ∈]0,∞[| A(λ) =

1
√
nελ

}
.

SinceA(λ) is continuous, 1
√
nελoptn

= A(λ
opt
n ) and the resulting bound is

∥∥βλn − βε∥∥2 ≤ 2C
√
nελoptn

. (58)

This method for choosing the regularization parameter clearly requires the knowledge of the
approximation error. To overcome this drawback, we discuss a data-driven choice for λ that allows
achieving the rate (58)without requiring any prior information onA(λ). For this reason, such a choice
is said to be adaptive. The procedure we present is also referred to as an a posteriori choice since it
depends on the given sample and not only on its cardinality n. In other words, the method is purely
data-driven.
Let us consider a discrete set of values for λ defined by the geometric sequence

λi = λ02i i ∈ N λ0 > 0.

Notice that wemay replace the sequence λ02i by any other geometric sequence λi = λ0qi with q > 1;
this would only lead to a more complicated constant in (60). Define the parameter λ+n as follows

λ+n = max
{
λi|

∥∥∥βλjn − βλj−1n

∥∥∥
2
≤

4C
√
nελj−1

for all j = 0, . . . , i
}

(59)
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(with the convention that λ−1 = λ0). This strategy for choosing λ is inspired by a procedure originally
proposed in [40] for Gaussian white noise regression and which has been widely discussed in the
context of deterministic as well as stochastic inverse problems (see [26,41]). In the context of non-
parametric regression from randomdesign, this strategy has been considered in [42] and the following
proposition is a simple corollary of a result contained in [42].

Proposition 10. Provided that λ0 < λ
opt
n , the following bound holds with probability greater than

1− 4e−δ∥∥∥βλ+nn − βε∥∥∥2 ≤ 20C
√
nελoptn

. (60)

Proof. The proposition results from Theorem 2 in [42]. For completeness, we report here a proof
adapted to our setting. Let Ω be the event such that (57) holds for any λ > 0; we have that
P[Ω] ≥ 1− 4e−δ and we fix a sample point inΩ .
The definition of λoptn and the assumption λ0 < λ

opt
n ensure that A(λ0) ≤ 1

√
nελ0
. Hence the set{

λi | A(λi) ≤
1
√
nελi

}
is not empty and we can define

λ∗n = max
{
λi | A(λi) ≤

1
√
nελi

}
.

The fact that (λi)i∈N is a geometric sequence implies that

λ∗n ≤ λ
opt
n < 2λ∗n, (61)

while (57) with the definition of λ∗n ensures that∥∥∥βλ∗nn − βε∥∥∥
2
≤ C

(
1

√
nελ∗n

+A(λ∗n)

)
≤

2C
√
nελ∗n

. (62)

We show that λ∗n ≤ λ
+
n . Indeed, for any λj < λ∗n , using (57) twice, we get∥∥∥βλ∗nn − βλjn ∥∥∥

2
≤

∥∥∥βλjn − βε∥∥∥
2
+

∥∥∥βλ∗nn − βε∥∥∥
2

≤ C
(

1
√
nελj
+A(λj)+

1
√
nελ∗n

+A(λ∗n)

)
≤

4C
√
nελj

,

where the last inequality holds since λj < λ∗n ≤ λ
opt
n and A(λ) ≤ 1

√
nελ for all λ < λ

opt
n . Now

2mλ0 ≤ λ∗n ≤ λ
+
n = 2

m+k for somem, k ∈ N, so that∥∥∥βλ+nn − βλ∗nn ∥∥∥2 ≤ k−1∑
`=0

∥∥βm+1+`n − βm+`n

∥∥
2 ≤

k−1∑
`=0

4C
√
nελm+`

≤
4C
√
nελ∗n

∞∑
`=0

1
2`
=

4C
√
nελ∗n

2.

Finally, recalling (61) and (62), we get bound (60):∥∥∥βλ+nn − βε∥∥∥2 ≤ ∥∥∥βλ+nn − βλ∗nn ∥∥∥2 + ∥∥∥βλ∗nn − βε∥∥∥2 ≤ 8C
√
nελ∗n

+
2C
√
nελ∗n

≤ 20C
1

√
nελoptn

. �

Notice that the a priori condition λ0 < λ
opt
n is satisfied, for example, if λ0 < 1

Aε
√
n .

To illustrate the implications of the last proposition, let us suppose that∥∥βλ − βε∥∥2 � λa (63)
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for some unknown a ∈]0, 1]. One has then that λoptn � n
−

1
2(a+1) and

∥∥∥βλ+nn − βε∥∥∥
2
� n−

a
2(a+1) .

We end noting that, if we specialize our analysis to least squares regularized with a pure `2-
penalty (i.e. setting wγ = 0, ∀γ ∈ Γ ), then our results lead to the error estimate in the norm of the
reproducing kernel spaceH obtained in [43,44]. Indeed, in such a case, βε is the generalized solution
βĎ of the equationΦPβ = f ∗ and the approximation error satisfies (63) under the a priori assumption
that the regression vector βĎ is in the range of (Φ∗PΦP)

a for some 0 < a ≤ 1 (the fractional power

makes sense sinceΦ∗PΦP is a positive operator). Under this assumption, it follows that
∥∥∥βλ+nn − βε∥∥∥

2
�

n−
a

2(a+1) . To compare this bound with the results in the literature, recall that both fn = f
β
λ
+
n
n
and

f ∗ = fβĎ belong to the reproducing kernel Hilbert space H defined in Proposition 3. In particular,

one can check that βĎ
∈ ran(Φ∗PΦP)

a if and only if f ∗ ∈ ran L
2a+1
2

K , where LK : L2Y(P) → L2Y(P) is the
integral operator whose kernel is the reproducing kernel K [45]. Under this condition, the following
bound holds∥∥fn − f ∗∥∥H

≤

∥∥∥βλ+nn − βε∥∥∥2 � n− a
2(a+1) ,

which gives the same rate as in Theorem 2 of [43] and Corollary 17 of [44].
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