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a b s t r a c t

In this paper, we study the global existence of solutions for second-order fuzzy differential
equations with initial conditions under generalized H-differentiability. Second derivative
of the H-difference of two functions under generalized H-differentiability is obtained. Two
theorems which assure global existence of solutions for second-order fuzzy differential
equations are given and proved. Some examples are given to illustrate these results.
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1. Introduction

Recently, the study of first-order and higher-order fuzzy differential equations (FDEs) has gained much attention. The
most popular method is using the Hukuhara differentiability, or the Seikkala derivative for fuzzy number valued functions.
Gnana Bhaskar et al. revisited the original formulation and provided examples to show a variety of properties of solutions
to the FDE in [1]. The local existence and uniqueness theorems were given in [2]. Song et al. pointed out a variety of results
which assured global existence of solutions to fuzzy differential equations in [3]. Wu and Song obtained the existence
theorems under compactness-type conditions in [4]. Song andWu studied the existence and uniqueness of fuzzy differential
equations under dissipative conditions based on the existence theorem of approximate solutions to the Cauchy problem
in [5]. Wu and Gong defined and discussed the (FH) integral for fuzzy number valued functions in [6]. Gong and Shao
studied the global existence, uniqueness and the continuous dependence of a solution on fuzzy differential equations under
the dissipative-type conditions using the properties of a differential and integral calculus for fuzzy set valued mappings
and completeness of metric space of fuzzy numbers in [7]. Park et al. proved the existence of solutions to fuzzy integral
equations in Banach spaces on [t0, t0 + d] in [8]. Papaschinopoulos et al. studied the existence, the uniqueness and the
asymptotic behavior of the solutions to the fuzzy differential equation in [9]. Lupulescu proved several theorems stating the
existence, uniqueness and boundedness of solutions to fuzzy differential equations with the concept of inner product on the
fuzzy space in [10]. The existence, the uniqueness and the asymptotic behavior of the solutions to fuzzy differential equation
were studied in [9]. In [11], Park et al. proved the existence and uniqueness theorem of a solution to fuzzy Volterra integral
equation on [t0, t0 + a]. Georgiou et al. considered nth-order fuzzy differential equations with initial value conditions and
proved the local existence and uniqueness of solution for nonlinearities satisfying a Lipschitz condition on [t0, T ] in [12].
Bede et al. introduced generalized concepts of differentiability and studied the existence of the solutions to fuzzy differential
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equations involving generalized differentiability in [13,14]. Rosana Rodrĺguez-López developed the monotone iterative
technique to approximate the extremal solutions for the initial value problem relative to a fuzzy differential equation in
a fuzzy functional interval [15]. Based on the results in [12], Allahviranloo et al. proved the local existence and uniqueness
of solutions for second-order fuzzy differential equations with initial conditions under generalized H-differentiability on
[t0, T ] [16].
In this paper, the global existence of solutions for second-order fuzzy differential equations with initial conditions under

generalized H-differentiability is studied. In Section 2, the preliminaries for fuzzy number and the FDEs are introduced. In
Section 3, second derivative of the H-difference of two functions is discussed. Finally, two theorems for global existence of
solutions, which extend the results in [16,12], are given and proved on [t0,∞]. We also give some examples to illustrate
these results.

2. Preliminaries

An arbitrary fuzzy number is represented by an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy the
following requirement.

(i) u(r) is a bounded left continuous nondecreasing function over [0, 1].
(ii) u(r) is a bounded left continuous nondecreasing function over [0, 1].
(iii) u(r) ≤ u(r), 0 < r ≤ 1 (see e.g. [17]).

Let us denote by RF the class of subsets of the real axis u : R −→ [0, 1], satisfying the following properties:

(i) u is normal, i.e. ∃x0 ∈ Rwith u(x0) = 1,
(ii) u is a convex fuzzy set (i.e. u(tx+ (1− t)y) ≥ min{u(x), u(y)},∀t ∈ [0, 1], x, y ∈ R,
(iii) u is upper semicontinuous on R,
(iv) {x ∈ R; u(x) > 0} is compact, where A denotes the closure of A,

Then RF is called the space of fuzzy numbers (see e.g. [18]).
The following properties are well known (see e.g. [18,6]).
LetRF be the set of all upper semicontinuous normal convex fuzzy numbers with bounded r-level intervals. This means

that if v ∈ RF then the r-level set

[v]r = {s|v(s) ≥ r}, 0 < r ≤ 1

is a closed bounded interval which is denoted by

[v]r = [v(r), v(r)].

For arbitrary u = (u, u), v = (v, v) and k ≥ 0, addition and multiplication by k are defined as follows:

(u+ v)(r) = u(r)+ v(r),

(u+ v)(r) = u(r)+ v(r),
(ku)(r) = ku(r), (ku)(r) = ku(r).

Let D : RF × RF −→ R+
⋃
{0},D(u, v) = supγ∈[0,1]max

{
|u(r)− v(r)|, |u(r)− v(r)|

}
, be the Hausdorff distance

between fuzzy numbers, where [u]r = [u(r), u(r)], [v]r = [v(r), v(r)]. The following properties are well known:

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ RF ,

D(k · u, k · v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,

D(u+ v,w + e) ≤ D(u, w)+ D(v, e),∀u, v, w, e ∈ RF and (RF ,D) is a complete metric space.
The following results and concepts are also known.

Definition 2.1 ([19]). Let x, y ∈ RF . If there exists z ∈ RF such that x = y+ z, then z is called the Hukuhara difference of
x and y and it is denoted by xΘy.

Definition 2.2 ([16]).We define the nth-order differential of f as follows: f : (a, b) → RF and x0 ∈ (a, b). We say that f
is strongly generalized differentiable of the nth order at x0. If there exists an element f (s)(x0) ∈ E,∀s = 1, . . . , n, such that
∀s = 1, . . . , n

(i) for all h > 0 sufficiently small, ∃f (s−1)(x0 + h)Θf (s−1)(x0), f (s−1)(x0)Θf (s−1)(x0 − h) and the following limits hold (in
the metric d∞):

lim
h→0

f (s−1)(x0 + h)Θf (s−1)(x0)
h

= lim
h→0

f (s−1)(x0)Θf (s−1)(x0 − h)
h

= f (s)(x0),

or
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(ii) for all h > 0 sufficiently small, ∃f (s−1)(x0)Θf (s−1)(x0 + h), f (s−1)(x0 − h)Θf (s−1)(x0) and the limits (in the metric D)

lim
h→0

f (s−1)(x0)Θf (s−1)(x0 + h)
−h

= lim
h→0

f (s−1)(x0 − h)Θf (s−1)(x0)
−h

= f (s)(x0),

or
(iii) for all h > 0 sufficiently small, ∃f (s−1)(x0 + h)Θf (s−1)(x0), f (s−1)(x0 − h)Θf (s−1)(x0) and the following limits hold (in

the metric d∞):

lim
h→0

f (s−1)(x0 + h)Θf (s−1)(x0)
h

= lim
h→0

f (s−1)(x0 − h)Θf (s−1)(x0)
h

= f (s)(x0),

or
(iv) for all h > 0 sufficiently small, ∃f (s−1)(x0)Θf (s−1)(x0 + h), f (s−1)(x0)Θf (s−1)(x0 − h) and the limits (in the metric D)

lim
h→0

f (s−1)(x0)Θf (s−1)(x0 + h)
−h

= lim
h→0

f (s−1)(x0)Θf (s−1)(x0 − h)
−h

= f (s)(x0).

Lemma 2.1 ([16]). For arbitrary (u, v) ∈ RF × RF , we have

D(uΘw, uΘv) = D(w, v), ∀u, v, w ∈ RF .

Lemma 2.2 ([15]). For arbitrary (u, v) ∈ RF × RF we have

D(uΘv,wΘe) ≤ D(u, w)+ D(v, e), ∀u, v, w, e ∈ RF .

Lemma 2.3 ([14]). Let F : (a, b) → RF be Hukuhara differentiable and denote [F(t)]r = [F r−(t), F
r
+
(t)]. Then the boundary

functions F r
−
(t) and F r

+
(t) are differentiable and [F ′(t)]r = [(F r

−
(t))′, (F r

+
(t))′], r ∈ [0, 1].

The space of continuous function x : [t0, T ] → RF by C([t0, T ],RF ) is denoted in [12]. C([t0, T ],RF ) is a complete
metric space with the distance

H(x, y) = sup
t∈[t0,T ]

{D(x(t), y(t))e−ρt}

where ρ ∈ R. Also, by C1([t0, T ],RF ), we denote the set of continuous functions x : [t0, T ] → RF whose derivative
x′ : [t0, T ] → RF exists as a continuous function. For x, y ∈ C1([t0, T ],RF ), we consider the following distance:

H1 = H(x, y)+ H(x′, y′).

Lemma 2.4 ([12]). (C1(I, E),H1) is a complete metric space.

Theorem 2.1 ([16]). Let t0 ∈ [a, b], and assume that f : [a, b] × RF → RF is continuous. A mapping x : [a, b] → RF is a
solution to the initial value problem x′′ = f (t, x, x′), x(t0) = k1, x′(t0) = k2, if and only if x and x′ are continuous and satisfy
one of the following conditions:

(a) x(t) = k2(t − t0)+
∫ t

t0

(∫ t

t0
f (s, x(s), x′(s))ds

)
ds+ k1

where x and x′ are (i)-differentials, or

(b) x(t) = k1Θ(−1)
(
k2(t − t0)Θ(−1)

∫ t

t0

(∫ t

t0
f (s, x(s), x′(s))ds

)
ds
)

where x and x′ are (ii)-differentials.

(c) x(t) = Θ(−1)
(
k2(t − t0)+

∫ t

t0

(∫ t

t0
f (s, x(s), x′(s))ds

)
ds
)
+ k1

where x′ is the (i)-differential and x′′ is (ii)-differential, or

(d) x(t) = k2(t − t0)Θ(−1)
∫ t

t0

(∫ t

t0
f (s, x(s), x′(s))ds

)
ds+ k1

where x′ is the (ii)-differential and x′′ is (i)-differential.
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Theorem 2.2 ([16]). Let f : [t0, T ] × RF × RF → En be continuous, and suppose that there exist M1, M2 > 0 such that

d(f (t, x1, x2), f (t, y1, y2)) ≤ M1d(x1, x2)+M2d(y1, y2)

for all t ∈ [t0, T ], x1, x2, y1, y2 ∈ RF . Then the initial value problem x′′ = f (t, x, x′), x(t0) = k1, x′(t0) = k2 has a unique
solution on [t0, T ] for each case.

Theorem 2.3 ([14]). Let f , g : (a, b)→ RF be strongly generalized differentiable such that f is (i)-differentiable and g is (ii)-
differentiable or f is (ii)-differentiable and g is (i)-differentiable on an interval (α, β). If the H-difference f (x) 	 g(x) exists for
x ∈ (α, β) then f (x)	 g(x) is strongly generalized differentiable and

(f (x)	 g(x))′ = f ′(x)+ (−1)g ′(x)

for all x ∈ (α, β).

3. Main result

Let us consider the second-order fuzzy initial value problem (FIVP){x′′ = f (t, x, x′)
x(t0) = k1
x′(t0) = k2

(1)

where we assume that f ∈ C(J × RF × RF ,RF ), J = [t0,∞).

Theorem 3.1. Let f , g : (a, b)→ RF be strongly generalized differentiable such that

(a) If f , f ′ are (i)-differentiable and g, g ′ are (ii)-differentiable on an interval (α, β). If the H-difference f (x) 	 g(x) and
f ′(x)	 g ′(x) exist for x ∈ (α, β) then f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = f ′′(x)	 g ′′(x)

for all x ∈ (α, β).
(b) If f , g ′ are (i)-differentiable and f ′, g are (ii)-differentiable on an interval (α, β). If the H-difference f (x) 	 g(x) and
f ′(x)	 g ′(x) exist for x ∈ (α, β) then f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = g ′′(x)	 (−1)f ′′(x)

for all x ∈ (α, β).
(c) If f is (i)-differentiable and f ′, g, g ′ are (ii)-differentiable on an interval (α, β). If theH-difference f (x)	g(x) and f ′(x)	g ′(x)
exist for x ∈ (α, β) then f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = (−1)f ′′(x)+ g ′′(x)

for all x ∈ (α, β).
(d) If f , f ′, g ′ are (i)-differentiable and g is (ii)-differentiable on an interval (α, β). If theH-difference f (x)	g(x) and f ′(x)	g ′(x)
exist for x ∈ (α, β) then f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = f ′′(x)+ (−1)g ′′(x)

for all x ∈ (α, β).

Proof. From Theorem 2.3 we have

(f (x)	 g(x))′ = f ′(x)+ (−1)g ′(x).

(a) Since f ′ is (i)-differentiable it follows that f ′(x+ h)	 f ′(x) exists i.e. there exists u′1(x, h) such that

f ′(x+ h) = f ′(x)+ u′1(x, h).

Analogously since g ′ is (ii)-differentiable there exists v′1(x, h) such that

g ′(x) = g ′(x+ h)+ v′1(x, h)

and we get

f ′(x+ h)+ (−1)g ′(x) = f ′(x)+ u′1(x, h)+ (−1)g
′(x+ h)+ (−1)v′1(x, h).

Since the H-difference (f ′(x+ h)+ (−1)g ′(x+ h))	 (f ′(x)+ (−1)g ′(x)) exists for h > 0 such that x+ h ∈ (α, β), we get

(f ′(x+ h)+ (−1)g ′(x+ h))	 (f ′(x)+ (−1)g ′(x)) = u′1(x, h)	 (−1)v
′

1(x, h).
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By similar reasoning we get that there exist u′2(x, h) and v
′

2(x, h) such that

f ′(x) = f ′(x− h)+ u′2(x, h),
g ′(x− h) = g ′(x)+ v′2(x, h) and so
(f ′(x)+ (−1)g ′(x))	 (f ′(x− h)+ (−1)g ′(x− h)) = u′2(x, h)	 (−1)v

′

2(x, h).

We observe that

lim
h→0

u′1(x, h)
h
= lim
h→0

u′2(x, h)
h
= f ′′(x)

and

lim
h→0

v′1(x, h)
h
= lim
h→0

v′2(x, h)
h
= (−1)g ′′(x).

So we have

(f (x)	 g(x))′′ = f ′′(x)	 g ′′(x)

and

(f (x)	 g(x))′ is (i)-differentiable.

(b) The proof of (b) is similar to (a) and (f (x)	 g(x))′ is (i)-differentiable.
(c) Since f ′ is (ii)-differentiable it follows that f ′(x)	 f ′(x+ h) exists i.e. there exists u′1(x, h) such that

f ′(x) = f ′(x+ h)+ u′1(x, h).

Analogously since g ′ is (ii)-differentiable there exists v′1(x, h) such that

g ′(x) = g ′(x+ h)+ v′1(x, h)

and we get

f ′(x)+ (−1)g ′(x) = f ′(x+ h)+ u′1(x, h)+ (−1)g
′(x+ h)+ (−1)v′1(x, h).

Since the H-difference (f ′(x)+ (−1)g ′(x))	 (f ′(x+ h)+ (−1)g ′(x+ h)) exists for h > 0 such that x+ h ∈ (α, β), we get

(f ′(x)+ (−1)g ′(x))	 (f ′(x+ h)+ (−1)g ′(x+ h)) = u′1(x, h)+ (−1)v
′

1(x, h).

By similar reasoning we get that there exist u′2(x, h) and v
′

2(x, h) such that

f ′(x− h) = f ′(x)+ u′2(x, h),
g ′(x− h) = g ′(x)+ v′2(x, h) and so
(f ′(x− h)+ (−1)g ′(x− h))	 (f ′(x)+ (−1)g ′(x)) = u′2(x, h)	 (−1)v

′

2(x, h).

We observe that

lim
h→0

u′1(x, h)
−h

= lim
h→0

u′2(x, h)
−h

= (−1)f ′′(x)

and

lim
h→0

v′1(x, h)
−h

= lim
h→0

v′2(x, h)
−h

= g ′′(x).

So we have

(f (x)	 g(x))′′ = (−1)f ′′(x)+ g ′′(x)

and

(f (x)	 g(x))′ is (ii)-differentiable.

(d) The proof of (d) is similar to (c), but (f (x)	 g(x))′ is (i)-differentiable. �

Example 3.1. Let f , g :
(
π
6 ,

π
4

)
→ RF be strongly generalized differentiable and [f (x)]r = [−3+ r,−1− r]x2, [g(x)]r =

[3+ r, 5− r] sin x. Then we have

(a) If f , f ′ are (i)-differentiable and g, g ′ are (ii)-differentiable. If the H-difference f (x) 	 g(x) and f ′(x) 	 g ′(x) exist, then
f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = [−6+ 2r,−2− 2r] 	 (−1)[3+ r, 5− r] sin x, for all x ∈
(π
6
,
π

4

)
.
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(b) If f , g ′ are (i)-differentiable and f ′, g are (ii)-differentiable. If the H-difference f (x) 	 g(x) and f ′(x) 	 g ′(x) exist, then
f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = (−1)[3+ r, 5− r] sin x	 (−1)[−6+ 2r,−2− 2r], for all x ∈
(π
6
,
π

4

)
.

(c) If f is (i)-differentiable and f ′, g, g ′ are (ii)-differentiable. If the H-difference f (x) 	 g(x) and f ′(x) 	 g ′(x) exist, then
f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = (−1)[−6+ 2r,−2− 2r] + (−1)[3+ r, 5− r] sin x, for all x ∈
(π
6
,
π

4

)
.

(d) If f , f ′, g ′ are (i)-differentiable and g is (ii)-differentiable. If the H-difference f (x) 	 g(x) and f ′(x) 	 g ′(x) exist, then
f (x)	 g(x) is second-order strongly generalized differentiable and

(f (x)	 g(x))′′ = [−6+ 2r,−2− 2r] + [3+ r, 5− r] sin x, for all x ∈
(π
6
,
π

4

)
.

In the following we only show that the result (a) is correct, since the procedure is similar for all four cases.
In fact, we show that f (x) is (i)-differentiable.
Let f (x+ h) = f (x)+ u(x), f (x) = f (x− h)+ v(x), then [f (x+ h)]r = [f (x)]r + [u(x)]r , [f (x)]r = [f (x− h)]r + [v(x)]r .

So {
u(r) = (−3+ r)(x+ h)2 − (−3+ r)x2 = (−3+ r)(2hx+ h2)
u(r) = (−1− r)(x+ h)2 − (−1− r)x2 = (−1− r)(2hx+ h2)

and {
v(r) = (−3+ r)x2 − (−3+ r)(x− h)2 = (−3+ r)(2hx− h2)
v(r) = (−1− r)x2 − (−1− r)(x− h)2 = (−1− r)(2hx− h2)

that is
lim
h→0

u
h
= 2x(−3+ r)

lim
h→0

u
h
= 2x(−1− r)

lim
h→0

v

h
= 2x(−3+ r)

lim
h→0

v

h
= 2x(−1− r).

So limh→0
f (x+h)Θf (x)

h = limh→0
f (x)Θf (x−h)

h = 2[−3+ r,−1− r]x,
Secondly, with the same method, we have f ′(x) is (i)-differentiable and g(x), g ′(x) is (ii)-differentiable.
From Theorem 3.1(i), we have (f 	 g)′′ = [−6+ 2r,−2− 2r] 	 (−1)[3+ r, 5− r] sin x. �

Theorem 3.2. Assume that

(i) f (t, x, x′) is locally Lipschitzian in x, x′ for (t, x, x′) ∈ J × RF × RF ;
(ii) g ∈ C[J × [0,∞) × [0,∞), [0,∞)], g(t, u, v) is nondecreasing in u, v ≥ 0 for each t ∈ J , and the maximal solution
r(t, t0, u0, v0) of the scalar initial value problem

u′′ = g(t, u, u′), u(t0) = u0, u′(t0) = u1 (2)

exists throughout J .
(iii) D(f (t, x, x′), 0̂) ≤ g(t,D(x, 0̂),D(x′, 0̂)),∀(t, x, x′) ∈ J × RF × RF ;
(iv) D(x(t, t0, x0, x′0), 0̂) ≤ r(t, t0, x0, x

′

0),D(x0, 0̂) ≤ u0 and D(x
′

0, 0̂) ≤ u1.

Then the largest interval of existence of any solution x(t, t0, u0, v0) of (1)with D(x, 0̂) ≤ u0 is J . In addition, If r(t, t0, u0, u′0)
is bounded on J, then limt→∞ x(t, t0, x0, x′0) exists in (RF ,D).

Proof. By hypothesis (i), there exists a T > t0 such that the uniqueness solution of problem (1) exists on [t0, T ]. Let

V = {x(t)|x(t)is defined on[t0, βx)and is the solution to (1)}.

Then V 6= φ. Taking β = sup{βx|x(t) ∈ V }, clearly, there exists a uniqueness solution of (1) which is defined on [t0, β)with
D(x0, 0̂) ≤ u0 and D(x′0, 0̂) ≤ u1. If β = +∞, obviously, the theorem is proved. Hence we suppose β < +∞ and define

m(t) = D(x(t, t0, x0, x′0), 0̂), t0 ≤ t < β. (3)
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Then we have

D+m′(t) = lim inf
h→+0

D(x′(t + h, t0, x0, x′0), 0̂)− D(x
′(t, t0, x0, x′0))

h

≤ lim inf
h→+0

D(x′(t + h, t0, x0, x′0), x
′(t, t0, x0, x′0))

h

= lim inf
h→+0

D
(
x′(t + h, t0, x0, x′0)− x

′(t, t0, x0, x′0)
h

, 0̂
)

= D(x′′(t, t0, x0, x′0), 0̂)

= D(f (t, x(t, t0, x0, x′0), x
′(t, t0, x0, x′0)), 0̂)

≤ g(t,m(t),m′(t)), t0 ≤ t < β

andm(t0) = D(x0, 0̂) ≤ u0, further, by (iv), it follows that

m(t) ≤ r(t, t0, u0, v0), t0 ≤ t < β.

Next we deduce that limt→β−0 x(t, t0, x0, x′0) exists in (RF ,D). In fact, for any t1, t2 such that t0 ≤ t1 < t2 < β , we have

D(x(t1, t0, x0, x′0), x(t2, t0, x0, x
′

0)) = D

(
k1Θ(−1)

(
k2(t1 − t0)Θ(−1)

∫ t1

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz
)
,

k1Θ(−1)
(
k2(t2 − t0)Θ(−1)

∫ t2

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz
))

= D

(
(−1)

(
k2(t1 − t0)Θ(−1)

∫ t1

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz
)
,

(−1)
(
k2(t2 − t0)Θ(−1)

∫ t2

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz
))

≤ D
(∫ t1

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz,

∫ t2

t0

(∫ z

t0
f (s, x(s), x′(s))ds

)
dz
)

≤

∫ t2

t1

∫ z

t0
D(f (s, x(s), x′(s)), 0̂)dsdz

≤ r(t2)− r(t1)− k2|t2 − t1|. (4)

Since limt→β−0 r(t) exists and is finite, taking the limits as t1, t2 → β − 0, and using the completeness of (RF ,D), it
follows from (4) that limt→β−0 x(t) exists in (RF ,D). Now we define x(β) = limt→β−0 x(t) and consider the initial value
problem

x′′ = f (t, x, x′), x(β) = lim
t→β−0

x(t).

By assumption (i) and Theorem 2.2, It follows that x(t) can be extended beyond β , this is contradicting with our
assumption.
In addition, since r(t, t0, u0, u′0) is bounded and nondecreasing on J , it follows that limt→∞ x(t, t0, x0, x

′

0) exists and is
finite. This and (3) and (4) and Lemma 2.2 yield the last part of the theorem. �

Example 3.2. Consider the second-order fuzzy differential equations{x′′ = a(t)x′ + b(t)x
x(t0) = k1
x′(t0) = k2

(5)

where we assume that a(t), b(t) : R+ → R+ are continuous functions, then the solutions of (5) are on [t0,+∞).
In fact, a(t)x′ + b(t)x is locally Lipschitzian. If we let g(t, u, u′) = a(t)u′ + b(t)u then u(t) ≡ 0 is only solution of{u′′ = g(t, u, u′)

u(t0) = 0
u′(t0) = 0
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on [t0,∞). Moreover

D(a(t)x′ + b(t)x, 0̂) ≤ a(t)D(x′, 0̂)+ b(t)D(x, 0̂) = g(t,D(x, 0̂),D(x′, 0̂)).

Therefore, the solutions of problem (5) are on [t0,∞).

Theorem 3.3. Assume that

(i) f ∈ C[J × RF × RF ], f is bounded on bounded sets and for any point in J × RF × RF , there exists a local solution for
problem (1);

(ii) V ∈ C[J×RF×RF , [0,∞)], V is locally Lipschitzian in x, x′, V (t, x, x′)→∞ asmax{D(x, 0̂),D(x′, 0̂)} → ∞ uniformly
for t ∈ [t0, T ], for every T > 0 and for (t, x, x′) ∈ J × RF × RF . We have

lim inf
h→+0

1
h
[V (t + h, x+ hf (t, x, x′))− V (t, x, x′)] ≤ g(t, V (t, x), V ′(t, x)),

where g ∈ C[J × [0,+∞)× [0,+∞), (−∞,+∞)];
(iii) the maximal solution r(t) = r(t, t0, u0) of problem (1) exists on [t0,∞) and is positive if u0 > 0;
(iv) V (t, x, x′) ≤ r(t, t0, x0, x′0).

Then for every x0 ∈ En and x′0 ∈ E
n such that V (t0, x0, x′0) ≤ max{u0, u

′

0}, problem (1) has a solution x(t) on [t0,∞) which
satisfies the estimate

V (t, x(t), x′(t)) ≤ r(t), t ≥ t0.

Proof. Let S denote the set of all functions x defined on Ix = [t0, cx) with values in En such that x(t) is a solution of (1)
on IX . We define a partial order ≤ on S as follows: the relation x ≤ y implies that Ix ⊆ Iy and y(t) ≡ x(t) on Ix. We
shall firstly show that S is nonempty. By assumption (i), there exists a solution x(t) of (1) defined on Ix = [t0, cx). Setting
m(t) = V (t, x(t), x′(t)) for t ∈ Ix and using assumption (ii), it is easy to obtain the differential inequality

D+m(t) ≤ g(t,m(t),m′(t)), t ∈ Ix.

From assumption (iv), we have

V (t, x, x′) ≤ r(t, t0, x0, x′0)

where r(t) is the maximal solution of (2). This shows that x ∈ S and so S is nonempty. If (xβ)β is a chain (S,≤), then there
is uniquely defined mapping y on Iy = [t0, supβ cxβ ] that coincides with xβ on Ixβ . Clearly y ∈ S and hence y is an upper
bounded of (xβ)β in (S,≤). The proof of the theorem is complete if we show that cz <∞. Suppose that it is not true, so that
cz <∞. Since r(t) is assumed to exist on [t0,∞), r(t) is bounded on Iz and there is anM > 0 such that

D(f (t, z(t), z ′(t)), 0̂) ≤ M, t ∈ Iz .

Then, for all t1, t2 ∈ Iz, t1 ≤ t2,

D(z(t2, t0, z0, z ′0), z(t1, t0, z0, z
′

0))

= D

(
k1Θ(−1)

(
k2(t2 − t0)Θ(−1)

∫ t2

t0

(∫ w

t0
f (s, z(s), z ′(s))ds

)
dw

)
,

k1Θ(−1)

(
k2(t1 − t0)Θ(−1)

∫ t1

t0

(∫ w

t0
f (s, z(s), z ′(s))ds

)
dw

))

≤ D(k2(t1 − t0), k2(t2 − t0))+ D

(∫ t2

t0

(∫ w

t0
f (s, x(s), x′(s))ds

)
ds,
∫ t1

t0

(∫ w

t0
f (s, x(s), x′(s))ds

)
ds

)

≤

∫ t2

t1

∫ w

t0
D(f (s, x(s), x′(s)), 0̂)dsds

≤ M|t2 − t1|
∣∣∣∣ t1 + t2 − t02

∣∣∣∣ .
That is to say limt→T− x(t, t0, x0, x′0) exists and is finite. Now let x1 = limt→T− x(t, t0, x0, x

′

0), x
′

1 = limt→T− x
′(t, t0, x0) and

consider the initial problem{x′′ = f (t, x, x′)
x(T ) = x1
x′(T ) = x′1.
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According to Theorem 2.2, its solution exists on [T , T1] and we define

x∗(t) =
{
x(t, t0, x0, x′0), t0 ≤ t < T ,
x1(t) T ≤ t < T1.

Obviously, x∗(t) is a solution of the initial value problem (1) on [t0, T1]. This contradicts with the definition of T . �

4. Conclusions

In this paper, the global existence of solutions for second-order fuzzy differential equations with initial conditions under
generalized H-differentiability is studied. Two theorems for global existence of solutions are given and proved on [t0,∞].
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