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Abstract

In this paper we study the rates Afstatistical convergence of sequences of positive linear operators mapping
the weighted spadg,, into the weighted spadB,,.
© 2005 Elsevier Ltd. All rights reserved.

MSC: primary 41A25; 41A36; 47B38, secondary 40A05

Keywords: A-density; A-statistical convergence; Sequence of positive linear operators; Weight function; Weighted space;
Modulus of continuity; The Korovkin theorem

1. Introduction

In the classical summability setting rates of summation have been introduced in several ways (see, e.g.,
[1-3). The concept of statistical rates of convergence, for nonvanishing two null sequences, is studied
in [4]. Unfortunately no single definition seems to have become the “standard” for the comparison
of rates of summability transforms. The situation becomes even more uncharted when one considers
rates ofA-statistical convergence. For this reason various ways of defining rates of convergence in the
A-statistical sense are introduced H.[

In the present paper, using the concept$hife study rates oA-statistical convergence of sequences
of positive linear operators defined on weighted spaces. We note that the classical Korovkin-type
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approximation theory may be found %48 while its further extensions studied viA-statistical
convergence may be viewed i5,9,10].

Now we turn to introducing some notation and the basic definitions used in this papé&r- &)
be an infinite summability matrix. For a given sequerce= (xp), the A-transform ofx, denoted by
Ax = ((AX)j), is given by(Ax)j = Y 2 ; ajnXn, provided the series converges for egctwe say
that A is regular if lim; (Ax)j = L whenever lim xj = L [11]. Assume now thafA is a nonnegative
regular summability matrix an{ is a subset oN, the set of all natural numbers. Thedensity ofK
is defined bySa(K) = lim; Yoo ajnxk (n) provided the limit exists, whergg is the characteristic
function of K. Then the sequence := (Xp) is said to beA-statistically convergent to the numbkr
if, for everye > 0,8a{n € N : |y — L| > ¢} = 0O; or equivalently lim > .. | -.ajn = 0.
We denote this limit bysta — limx = L [12-15. For the case in whiclA = Ci, the Cesaro
matrix, A-statistical convergence reduces to statistical converger&elg. Also, taking A = |, the
identity matrix, A-statistical convergence coincides with the ordinary convergence. We also note that if
A = (ajp) is a nonnegative regular summability matrix for which jimax,{ajn} = 0, thenA-statistical
convergence is stronger than converged& [A sequence = (xy) is said to beA-statistically bounded
provided that there exists a positive numitdérsuch thatsa{n € N : |x,| < M} = 1. Recall that
X = (Xn) is A-statistically convergent th if and only if there exists a subsequer{&g)} of x such
thatéaf{n(k) : k € N} = 1 and limkxn) = L (see [L519]). Note that the concept of-statistical
convergence is also given in normed spa@&k [

Now letR denote the set of real numbers. The funciios called a weight function if it is continuous
onR and limy—« p(X) = co andp(x) > 1 (for all x € R). Then the space of real valued functions
f defined onR and satisfying f (x)| < Ms.p(x) (for all x € R) is called weighted space and denoted
by B,, whereM+ is a constant depending on the functibnThe weighted subspa€g, of B, is given
byC, = {f € B, : f iscontinuous oveR}. It is known [21] that the spaceB, andC, are Banach
spaces with the normf |, = sup,cp L.

Assume thap1 andp, are two weight functions and that they satisfy

p1(X) 0
IX|—o00 02(X)

If T is a positive linear operator such tfiat C,, — B,,, then the operator norifT |c,, 8, is given
by ITllc,,~B,, = SUBy £ ,,=1 1T fllp,-

Using a functional analytic technique, Duman and Orhginpfoved the following Korovkin-type
approximation theorem vié-statistical convergence.

(1.1)

Theorem A. Let A = (ajn) be a nonnegative regular summability matrix and let p; and p, be weight
functions satisfying (1.1). Assumethat {T,} is a sequence of positive linear operatorsfromC,, into By,.
Then, for all f € C,, sta —limp || Ta f — f],, = 0ifand onlyif sty — limp || ThF, — Fyllp, =0, (v =

0,1, 2), where Fy(X) = Xli—lxg‘) (v=0,12).

Recall that the classical caseTfieorem Amay be found in21] and [22]. We note that an example
is also presented ir9] so thatTheorem Aholds but the classical Korovkin theorem fails.

2. Ratesof A-statistical convergence

In this section, using the modulus of continuity, we study ratesAedtatistical convergence in
Theorem A
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The concepts of the rates éfstatistical convergence have been introduce&jia$ follows.

Let A = (ajn) be a nonnegative regular summability matrix andégb be a positive nonincreasing
sequence of real numbers. Then a sequence (Xp) is A-statistically convergent to the number
L with the rate ofo(ay) if for every ¢ > 0, lim; a_ljZn:\xn— ajn = 0. In this case we write

L|>e
Xnp — L = sta — o(an), (@sn — o0). If for everye > 0, sup a_l, Zn:‘anzg ajn < oo, thenx is A-
statistically bounded with the rate @(a,) and it is denoted by, = sta — O(an), (asn — o0). In
the above two definitions the “rate” is controlled more by the entries of the summability method than by
the terms of the sequenge= (xp). For instance, when one takes the identity makti¥ a,n = o(an)
thenx, — L = sta — o(an) for any convergent sequen¢g, — L) regardless of how slowly it goes to
zero. To avoid such an unfortunate situation we may consider the concept of convergence in measure
from measure theory to define the rate of convergence as folbows(x,) is A-statistically convergent
to L with the rate ofo,(an), denoted byx, — L = sta — o, (an), (@asn — oo), if for everye > O,
iMj > . x,—L|>a, @in = 0. Finally, the sequence = (xn) is A-statistically bounded with the rate of
O, (an) provided that there is a positive numbdrsuch that liny 3., - ma, @jn = 0. In this case we
write X, = sta — O, (an), (asn — o0).

Throughout the paper the weight functipa will be defined byp1(x) = 1+ x? onR. Also, we
consider the following weighted modulus of continuity;, ( f, §) = Sup,_y<; 2 (Xf)(x)' wheres is a
positive constant andl € C,, (see R3J)). Itis easy to see that, for ay> 0 and aID eC,,

wp, (f,c8) < (14 [chw,, (T, 6), (2.1)

where[c] is defined to be the greatest integer less than or equal to
To obtain our main result we need the following two lemmas.

Lemma2l. Let A = (ajn) be a nonnegative regular summability matrix. Assume that {Tn} is a
sequence of positive linear operators defined on C,, such that the sequence {IMnllc,,—8,,} is A-
dtatistically bounded, i.e., §a(K) = 1with K .= {n € N : ”T””Cpl—>5p1 < M} for some M > 0.

Let Thox and ThFo bein C,, for each n, where o (y) = (y — x)2 and Fo(y) = 1. Then, for anys > 0
and all n € K, theinequality

sup (sup|Tn(f; X) — f(X)|> <C { sup (wp, (f, an)) + IThFo — Foll5, (2.2)

Ifllp,=1 \IXI<s If1lpy=1
holds, where an == /I Taex I, and C is a positive constant depending on s.
Proof. Using linearity and positivity off,, for alln € N and anys > 0, we get
ITa(f:%) = £OO1 = Ta(1F(y) = F0OL %) + [ T OOl T (Fo; X) — Fo(X)]

<T, (m(x)wm (f, a'ygx') ; x) 1 0ONITa(Fo: ) — Fo(0)l
From @.1) it follows that
ITa(F:X) = £ < P wp (£, )Ty (1+ ['yg—x'] : x)
+ 11001 Ta(Fo: X) — Fo(0)|

2
< p1(X)w,, (f,8)Th (1+ y 32 X) X)
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+ 1 GOl Ta(Fo; X) — Fo(X)|
1
< p1(Xwp, (f,8) {Tn(pl; X) + yTn(wx; X)}

+ 1 01T (Fo; X) — Fo(X)|. (2.3)
Sincegy € C,,, for anys > 0 and alln € N, (2.3) yields that

C
sup [Ta(f;x) — f(X)| < Caw,, (f, ) (ClllTnmllpl + 5—21||Tn<px||pl) + C2lITaFo — Follpy» (2.4)
[X|<s

whereCy = supy<s p1(X) = 14 andCyz = supy s (| f ()| p1(X)). Since[ Tnp1llp, = ITnllc,,—>B,,
by the hypothesis, for afi € K, we obtain

IThotllp, <= M. (2.5)
Now puttingé := an = /[ Thex |l ,, @nd combiningZ.4) and @.5), we conclude, for alh € K, that

sup [ Tn(f5 %) — F(X)| < (14 M)C2w,, (f, an) + Cal TaFo — Foll ;.

[X|<s

This implies that

sup (wp, (f, an)) + CallThFo — Foll5;- (2.6)

I1f1lo,=

sup ( sup|Ta(f:x) — fOI) < @+ M)CE
I fllpp=1 \IxI<s

Hence, takingC := max{((1+ M)C?2, C,}, (2.2) follows from (2.6) immediately, which completes the
proof. O

Lemma2.2. Let A = (ajn) beanonnegativeregular summability matrix, and let p; and p; satisfy (1.1).
Assumethat {T,} isa sequence of positive linear operatorsfromC,, into B, suchthat || Tn || Cp =By} is
A-statistically bounded. Assumefurther that (c,) isa positive nonincreasing sequence. If, for any s € R,

sup (sup|Tn(f; X) — f(x)|> = sta — 0o(Cp), asn — oo,
I fllp,=1 \IXI<s

then | T, f — fJl,, = sta — o(cy), asn — oo. Furthermore, similar results hold when little “0” is
replaced by big “ O, little“0,,” or big “O,,”, respectively.

Proof. Using the same technique as in the proof of Lemma 29jn ¢gne can get the result imme-
diately. O

Theorem 2.3. Let A = (ajn), p1 and p2 be the same asin Lemma 2.2 and let {T,} be a sequence of
positivelinear operatorsfromC,, into B,, suchthat {||Tn lc,,— Bol} is A-statistically bounded. Let Trox
and T,Fo bein C,, for each n where px(y) = (y — x)2 and Fo(y) = 1. Assume that the operators Ty,
satisfy the conditions

(i) ITnFo — Follp, = sta — o(an), asn — oo _
(") Sup” f ”0121 (U)pl( f, O[n)) = StA — O(bn), asn— oo Wlth On = / ||Tn(px||pl,

where (a,) and (bn) are positive nonincreasing sequences. Then, for all f € C,, [[Taf — fll,, =
sta —0(Cn), asn — oo, wherec, := maxXan, b,}. Smilar results hold when little “0” is replaced by big
“O".
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Proof. Let

Up:= Sup (sup|Tn(f; X) — f(x)|) ,Un = SUp (wy, (f,an)) andz, = || ThFo — Foll ;-

I llpy=1 \IXI<s I llpp=1

Then, by 2.2), we haveu, < C(v, + z,) for someC > 0 and alln € K, whereK is the
same as inLemma 2.1 Givene > 0, define the following setsD = {n € K : vq + 2z, > &},
Di={neK:v > 5}andDz = {n e K : 2z, > 5=}. Then clearly we hav® C D; U Da. Hence
observe that the mequallty

S Y ansoYansg Yanto Y ar @7
neK:up>¢e ) neD neD; neDy

holds for allj € N. Sincecj = maxa;, bj} we get from R.7) that

> ajnf— Zajn+ > ajn,  foralljeN. (2.8)

CJ nekK:un>¢ J neD; a; neD,

Letting j — oo in (2.8), and using (i) and (i), for ang > 0, we conclude that

sup (sup|Tn(f; X) — f(x)|> = Sta — 0(Cp), asn — oo.

I1fllp,=1 \IxI<s
So, the result follows frombemma 2.2 O
Replacing 0" by “0,,” one can get the following result immediately.

Theorem 2.4. Let A = (ajn), p1, p2 be the same as in Lemma 2.2 and let {T,} be the same as in
Theorem 2.3. Assume that the operators T, satisfy the conditions

() ITnFo — Follp, = Sta — 04 (an), asn — oo _
(i) supy ¢y, =1 (wp, (f, an)) = sta — 0u(bn), asn — oo withan = /I Thexllp,

where (a,) and (bn) are positive nonincreasing sequences. Then, for all f € C,, [Taf — fll,, =
sta — 0,(Ch), asn — oo, where ¢y := max{an, bn, azbn}. Smilar conclusions hold when little “o,,” is
replaced by big“O,,”.

Now, specializing the sequenceés,) and(by) in Theorem 2.3r 2.4, we can easily getheorem A
So, Theorems 2.2nd2.4 give the rates ofA-statistical convergence of the operatdgsfrom C,, into
B,,. Of course, wherA = (ajn) is replaced by the identity matrix, we get the following ordinary rate
of convergence of these operators.

Corollary 2.5. Let p1 and p» bethe same asin Lemma 2.2and let {T,} be a sequence of positive linear
operators from C,, into B,, such that the sequence {|| Ty ||c o= Boy ) is bounded. Let Thpx and T, Fg be
in C,, for each n where gx(y) = (y — x)2 and Fo(y) = 1. Assume that the operators Ty, satisfy the
conditions

(I) I_imn I ThFo — Foll,, = O with Fo(y). =1,

(”) I|m n(sugl f ”pl:l wpl( f, (Xn)) = 0 W|th on = 4/ ||Tn(pxl|p1.

Then, for all f € C,,, wehave limp [T, f — ||, =0.
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