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Abstract

In this paper we study the rates ofA-statistical convergence of sequences of positive linear operators mapping
the weighted spaceCρ1 into the weighted spaceBρ2.
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1. Introduction

In the classical summability setting rates of summation have been introduced in several ways (see, e.g.,
[1–3]). The concept of statistical rates of convergence, for nonvanishing two null sequences, is studied
in [4]. Unfortunately no single definition seems to have become the “standard” for the comparison
of rates of summability transforms. The situation becomes even more uncharted when one considers
rates ofA-statistical convergence. For this reason various ways of defining rates of convergence in the
A-statistical sense are introduced in [5].

In the present paper, using the concepts of [5], we study rates ofA-statistical convergence of sequences
of positive linear operators defined on weighted spaces. We note that the classical Korovkin-type
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approximation theory may be found in [6–8] while its further extensions studied viaA-statistical
convergence may be viewed in [5,9,10].

Now we turn to introducing some notation and the basic definitions used in this paper. LetA = (a jn)

be an infinite summability matrix. For a given sequencex := (xn), the A-transform ofx , denoted by
Ax := ((Ax) j ), is given by(Ax) j = ∑∞

n=1 a jnxn, provided the series converges for eachj . We say
that A is regular if limj (Ax) j = L whenever limj x j = L [11]. Assume now thatA is a nonnegative
regular summability matrix andK is a subset ofN, the set of all natural numbers. TheA-density ofK
is defined byδA(K ) := lim j

∑∞
n=1 a jnχK (n) provided the limit exists, whereχK is the characteristic

function of K . Then the sequencex := (xn) is said to beA-statistically convergent to the numberL
if, for every ε > 0, δA{n ∈ N : |xn − L| ≥ ε} = 0; or equivalently limj

∑
n:|xn−L|≥ε a jn = 0.

We denote this limit bystA − lim x = L [12–15]. For the case in whichA = C1, the Cesáro
matrix, A-statistical convergence reduces to statistical convergence [16–18]. Also, taking A = I , the
identity matrix,A-statistical convergence coincides with the ordinary convergence. We also note that if
A = (a jn) is a nonnegative regular summability matrix for which limj maxn{a jn} = 0, thenA-statistical
convergence is stronger than convergence [19]. A sequencex = (xn) is said to beA-statistically bounded
provided that there exists a positive numberM such thatδA{n ∈ N : |xn| ≤ M} = 1. Recall that
x = (xn) is A-statistically convergent toL if and only if there exists a subsequence{xn(k)} of x such
that δA{n(k) : k ∈ N} = 1 and limk xn(k) = L (see [15,19]). Note that the concept ofA-statistical
convergence is also given in normed spaces [20].

Now letR denote the set of real numbers. The functionρ is called a weight function if it is continuous
on R and lim|x |→∞ ρ(x) = ∞ andρ(x) ≥ 1 (for all x ∈ R). Then the space of real valued functions
f defined onR and satisfying| f (x)| ≤ M f .ρ(x) (for all x ∈ R) is called weighted space and denoted
by Bρ , whereM f is a constant depending on the functionf . The weighted subspaceCρ of Bρ is given
by Cρ := { f ∈ Bρ : f is continuous overR}. It is known [21] that the spacesBρ andCρ are Banach
spaces with the norm‖ f ‖ρ := supx∈R

| f (x)|
ρ(x)

.
Assume thatρ1 andρ2 are two weight functions and that they satisfy

lim|x |→∞
ρ1(x)

ρ2(x)
= 0. (1.1)

If T is a positive linear operator such thatT : Cρ1 → Bρ2, then the operator norm‖T ‖Cρ1→Bρ2
is given

by ‖T ‖Cρ1→Bρ2
:= sup‖ f ‖ρ1=1 ‖T f ‖ρ2.

Using a functional analytic technique, Duman and Orhan [9] proved the following Korovkin-type
approximation theorem viaA-statistical convergence.

Theorem A. Let A = (a jn) be a nonnegative regular summability matrix and let ρ1 and ρ2 be weight
functions satisfying (1.1). Assume that {Tn} is a sequence of positive linear operators from Cρ1 into Bρ2.
Then, for all f ∈ Cρ1, stA − limn ‖Tn f − f ‖ρ2 = 0 if and only if stA − limn ‖Tn Fv − Fv‖ρ1 = 0, (v =
0, 1, 2), where Fv(x) = xvρ1(x)

1+x2 , (v = 0, 1, 2).

Recall that the classical case ofTheorem Amay be found in [21] and [22]. We note that an example
is also presented in [9] so thatTheorem Aholds but the classical Korovkin theorem fails.

2. Rates of A-statistical convergence

In this section, using the modulus of continuity, we study rates ofA-statistical convergence in
Theorem A.
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The concepts of the rates ofA-statistical convergence have been introduced in [5] as follows.
Let A = (a jn) be a nonnegative regular summability matrix and let(an) be a positive nonincreasing

sequence of real numbers. Then a sequencex = (xn) is A-statistically convergent to the number
L with the rate ofo(an) if for every ε > 0, lim j

1
a j

∑
n:|xn−L|≥ε a jn = 0. In this case we write

xn − L = stA − o(an), (as n → ∞). If for every ε > 0, supj
1
a j

∑
n:|xn |≥ε a jn < ∞, thenx is A-

statistically bounded with the rate ofO(an) and it is denoted byxn = stA − O(an), (as n → ∞). In
the above two definitions the “rate” is controlled more by the entries of the summability method than by
the terms of the sequencex = (xn). For instance, when one takes the identity matrixI , if ann = o(an)

thenxn − L = stA − o(an) for any convergent sequence(xn − L) regardless of how slowly it goes to
zero. To avoid such an unfortunate situation we may consider the concept of convergence in measure
from measure theory to define the rate of convergence as follows:x = (xn) is A-statistically convergent
to L with the rate ofoµ(an), denoted byxn − L = stA − oµ(an), (as n → ∞), if for every ε > 0,
lim j

∑
n:|xn−L|≥εan

a jn = 0. Finally, the sequencex = (xn) is A-statistically bounded with the rate of
Oµ(an) provided that there is a positive numberM such that limj

∑
n:|xn |≥Man

a jn = 0. In this case we
write xn = stA − Oµ(an), (asn → ∞).

Throughout the paper the weight functionρ1 will be defined byρ1(x) = 1 + x2 on R. Also, we
consider the following weighted modulus of continuity:wρ1( f, δ) = sup|x−y|≤δ

| f (y)− f (x)|
ρ1(x)

, whereδ is a
positive constant andf ∈ Cρ1 (see [23]). It is easy to see that, for anyc > 0 and all f ∈ Cρ1,

wρ1( f, cδ) ≤ (1 + [c])wρ1( f, δ), (2.1)

where[c] is defined to be the greatest integer less than or equal toc.
To obtain our main result we need the following two lemmas.

Lemma 2.1. Let A = (a jn) be a nonnegative regular summability matrix. Assume that {Tn} is a
sequence of positive linear operators defined on Cρ1 such that the sequence {‖Tn‖Cρ1→Bρ1

} is A-
statistically bounded, i.e., δA(K ) = 1 with K := {n ∈ N : ‖Tn‖Cρ1→Bρ1

≤ M} for some M > 0.

Let Tnϕx and Tn F0 be in Cρ1 for each n, where ϕx(y) = (y − x)2 and F0(y) = 1. Then, for any s > 0
and all n ∈ K , the inequality

sup
‖ f ‖ρ1=1

(
sup
|x |≤s

|Tn( f ; x) − f (x)|
)

≤ C

{
sup

‖ f ‖ρ1=1
(wρ1( f, αn)) + ‖Tn F0 − F0‖ρ1

}
(2.2)

holds, where αn := √‖Tnϕx‖ρ1 and C is a positive constant depending on s.

Proof. Using linearity and positivity ofTn, for all n ∈ N and anyδ > 0, we get

|Tn( f ; x) − f (x)| ≤ Tn(| f (y) − f (x)|; x) + | f (x)||Tn(F0; x) − F0(x)|
≤ Tn

(
ρ1(x)wρ1

(
f, δ

|y − x |
δ

)
; x

)
+ | f (x)||Tn(F0; x) − F0(x)|.

From (2.1) it follows that

|Tn( f ; x) − f (x)| ≤ ρ1(x)wρ1( f, δ)Tn

(
1 +

[ |y − x |
δ

]
; x

)
+ | f (x)||Tn(F0; x) − F0(x)|

≤ ρ1(x)wρ1( f, δ)Tn

(
1 + (y − x)2

δ2
; x

)
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+ | f (x)||Tn(F0; x) − F0(x)|
≤ ρ1(x)wρ1( f, δ)

{
Tn(ρ1; x) + 1

δ2
Tn(ϕx ; x)

}
+ | f (x)||Tn(F0; x) − F0(x)|. (2.3)

Sinceϕx ∈ Cρ1, for anys > 0 and alln ∈ N, (2.3) yields that

sup
|x |≤s

|Tn( f ; x) − f (x)| ≤ C1wρ1( f, δ)

(
C1‖Tnρ1‖ρ1 + C1

δ2
‖Tnϕx‖ρ1

)
+ C2‖Tn F0 − F0‖ρ1, (2.4)

whereC1 = sup|x |≤s ρ1(x) = 1+ s2 andC2 = sup|x |≤s (| f (x)|ρ1(x)). Since‖Tnρ1‖ρ1 = ‖Tn‖Cρ1→Bρ1
,

by the hypothesis, for alln ∈ K , we obtain

‖Tnρ1‖ρ1 ≤ M. (2.5)

Now puttingδ := αn = √‖Tnϕx‖ρ1 and combining (2.4) and (2.5), we conclude, for alln ∈ K , that

sup
|x |≤s

|Tn( f ; x) − f (x)| ≤ (1 + M)C2
1wρ1( f, αn) + C2‖Tn F0 − F0‖ρ1.

This implies that

sup
‖ f ‖ρ1=1

(
sup
|x |≤s

|Tn( f ; x) − f (x)|
)

≤ (1 + M)C2
1 sup

‖ f ‖ρ1=1
(wρ1( f, αn)) + C2‖Tn F0 − F0‖ρ1. (2.6)

Hence, takingC := max{(1 + M)C2
1, C2}, (2.2) follows from (2.6) immediately, which completes the

proof. �
Lemma 2.2. Let A = (a jn) be a nonnegative regular summability matrix, and let ρ1 and ρ2 satisfy (1.1).
Assume that {Tn} is a sequence of positive linear operators from Cρ1 into Bρ2 such that {‖Tn‖Cρ1→Bρ1

} is
A-statistically bounded. Assume further that (cn) is a positive nonincreasing sequence. If, for any s ∈ R,

sup
‖ f ‖ρ1=1

(
sup
|x |≤s

|Tn( f ; x) − f (x)|
)

= stA − o(cn), as n → ∞,

then ‖Tn f − f ‖ρ2 = stA − o(cn), as n → ∞. Furthermore, similar results hold when little “o” is
replaced by big “ O” , little “oµ” or big “ Oµ” , respectively.

Proof. Using the same technique as in the proof of Lemma 2 in [9], one can get the result imme-
diately. �
Theorem 2.3. Let A = (a jn), ρ1 and ρ2 be the same as in Lemma 2.2, and let {Tn} be a sequence of
positive linear operators from Cρ1 into Bρ2 such that {‖Tn‖Cρ1→Bρ1

} is A-statistically bounded. Let Tnϕx

and Tn F0 be in Cρ1 for each n where ϕx (y) = (y − x)2 and F0(y) = 1. Assume that the operators Tn
satisfy the conditions

(i) ‖Tn F0 − F0‖ρ1 = stA − o(an), as n → ∞
(ii) sup‖ f ‖ρ1=1

(
wρ1( f, αn)

) = stA − o(bn), as n → ∞ with αn = √‖Tnϕx‖ρ1,

where (an) and (bn) are positive nonincreasing sequences. Then, for all f ∈ Cρ1, ‖Tn f − f ‖ρ2 =
stA − o(cn), as n → ∞, where cn := max{an, bn}. Similar results hold when little “o” is replaced by big
“ O” .
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Proof. Let

un := sup
‖ f ‖ρ1=1

(
sup
|x |≤s

|Tn( f ; x) − f (x)|
)

, vn := sup
‖ f ‖ρ1=1

(wρ1( f, αn)) andzn := ‖Tn F0 − F0‖ρ1.

Then, by (2.2), we haveun ≤ C(vn + zn) for someC > 0 and all n ∈ K , where K is the
same as inLemma 2.1. Given ε > 0, define the following sets:D = {n ∈ K : vn + zn ≥ ε

C },
D1 = {n ∈ K : vn ≥ ε

2C } andD2 = {n ∈ K : zn ≥ ε
2C }. Then clearly we haveD ⊆ D1 ∪ D2. Hence,

observe that the inequality

1

c j

∑
n∈K :un≥ε

a jn ≤ 1

c j

∑
n∈D

a jn ≤ 1

c j

∑
n∈D1

a jn + 1

c j

∑
n∈D2

a jn (2.7)

holds for all j ∈ N. Sincec j = max{a j , b j }, we get from (2.7) that

1

c j

∑
n∈K :un≥ε

a jn ≤ 1

b j

∑
n∈D1

a jn + 1

a j

∑
n∈D2

a jn, for all j ∈ N. (2.8)

Letting j → ∞ in (2.8), and using (i) and (ii), for anys > 0, we conclude that

sup
‖ f ‖ρ1=1

(
sup
|x |≤s

|Tn( f ; x) − f (x)|
)

= stA − o(cn), asn → ∞.

So, the result follows fromLemma 2.2. �

Replacing “o” by “ oµ” one can get the following result immediately.

Theorem 2.4. Let A = (a jn), ρ1, ρ2 be the same as in Lemma 2.2 and let {Tn} be the same as in
Theorem 2.3. Assume that the operators Tn satisfy the conditions

(i) ‖Tn F0 − F0‖ρ1 = stA − oµ(an), as n → ∞
(ii) sup‖ f ‖ρ1=1

(
wρ1( f, αn)

) = stA − oµ(bn), as n → ∞ with αn = √‖Tnϕx‖ρ1,

where (an) and (bn) are positive nonincreasing sequences. Then, for all f ∈ Cρ1, ‖Tn f − f ‖ρ2 =
stA − oµ(cn), as n → ∞, where cn := max{an, bn, anbn}. Similar conclusions hold when little “oµ” is
replaced by big “ Oµ” .

Now, specializing the sequences(an) and(bn) in Theorem 2.3or 2.4, we can easily getTheorem A.
So,Theorems 2.3and2.4 give the rates ofA-statistical convergence of the operatorsTn from Cρ1 into
Bρ2. Of course, whenA = (a jn) is replaced by the identity matrixI , we get the following ordinary rate
of convergence of these operators.

Corollary 2.5. Let ρ1 and ρ2 be the same as in Lemma 2.2and let {Tn} be a sequence of positive linear
operators from Cρ1 into Bρ2 such that the sequence {‖Tn‖Cρ1→Bρ1

} is bounded. Let Tnϕx and Tn F0 be

in Cρ1 for each n where ϕx(y) = (y − x)2 and F0(y) = 1. Assume that the operators Tn satisfy the
conditions

(i) limn ‖Tn F0 − F0‖ρ1 = 0 with F0(y) = 1,
(ii) lim n(sup‖ f ‖ρ1=1 wρ1( f, αn)) = 0 with αn = √‖Tnϕx‖ρ1.

Then, for all f ∈ Cρ1, we have limn ‖Tn f − f ‖ρ2 = 0.
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