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Abstract

In 1983, necessary and su�cient conditions were obtained for an incomplete idempotent latin
square of order n to be embedded in an idempotent latin square of order 2n, providing n¿ 16. In
this paper we consider the case where n616. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A partial latin square of order n on the symbols 1; : : : ; t is an n × n array L in
which each cell contains at most one symbol, and each symbol appears at most once
in each row and at most once in each column of L. An incomplete latin square is a
partial latin square in which each cell contains exactly one symbol; so an incomplete
latin square must have t¿n. An incomplete latin square is said to be a latin square
if t = n. Let L(i; j) denote the symbol in cell (i; j) of L if one exists. A partial latin
square of order n is said to be idempotent if L(i; i) = i for 16i6n. Let NL(i) be the
number of cells in L that contain symbol i.
A partial latin square L is said to be embedded in the latin square M if L(i; j)=M (i; j)

for all �lled cells (i; j) of L. The embedding of partial latin squares with various
additional properties has a long history. For example, �nding necessary and su�cient
conditions for the embedding of a partial latin square of order n on the symbols 1; : : : ; n
in a latin square of order t was solved in 1960 by Evans [3], and such conditions for
the embedding of incomplete latin squares were found by Ryser [8] in 1951 following
the classic embedding theorem by Hall [5] in 1945.
In 1971, Lindner proved that there exists a �nite embedding of a partial idempotent

latin square of order n on the symbols 1; : : : ; n. After two further improvements, this
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Table 1
Empty cells indicate the only unsolved embeddings; the problem is solved for n¿10

� \ n 3 4 5 6 7 8 9

2 Theorem Theorem Theorem Theorem
3.1 3.1 3.1 3.1

3 Theorem Theorem Theorem
3.1 3.1 3.1

4 Theorem Theorem
3.1 3.1

5 Lemma Theorem
3.1 3.1

6 Lemma Lemma
3.1 3.2

problem was �nally completely settled for all t¿2n + 1 by Andersen et al. [1]. The
more general problem of embedding incomplete idempotent latin squares of order n
on the symbols 1; : : : ; t in an idempotent latin square of order t¿2n + 1 was settled
by Rodger [7] in 1984 (where the even more general problem of a prescribed, but not
necessarily idempotent diagonal for the containing latin square was considered).
When embedding an incomplete idempotent latin square L of order n in an idempo-

tent latin square of order t with t¿2n+1, there are no necessary conditions. However,
if t62n, it is necessary that NL(i)¿2n−t+f(i) for 16i6t, where f(i)=0 or 1 if i6n
or i¿n respectively. In 1983, Rodger [6] proved that this condition is su�cient when
t = 2n and n¿ 16. However, if t ¡ 2n then the problem becomes incredibly di�cult,
since numerical necessary conditions are no longer su�cient: the arrangement of the
symbols within L can determine whether or not there exists an idempotent embedding
of L [2]. Thus the case t = 2n is unique.
In this paper, we address the limitation in [6] of requiring n¿ 16 when t = 2n. We

prove that this bound on n can be lowered to n¿ 9 (see Corollary 3.1), and address
many of the cases when n69 (see Theorem 3.1 and Table 1). It should be pointed
out that, although we are only considering ‘small’ values of n, the number of partial
idempotent latin squares of orders at most 16 is astronomical. Indeed, it is not even
known how many complete latin squares of order 11 exist because there are too many
for current computers to count. As is often the case, dealing with ‘small’ values raises
many exceedingly di�cult situations that are avoided once the problem becomes large
enough; it is these problems we consider here.

2. Preliminary results

Throughout this paper, it will help to refer to the symbols in {1; : : : ; n} as small
symbols, the symbols in {n + 1; : : : ; 2n} as BIG symbols, and the symbols in {n +
1; : : : ; 2n−2} as big symbols. Furthermore, without loss of generality it will be assumed
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that NR(j − 1)¿NR(j) for n + 26j62n for any n × n incomplete idempotent latin
square R that is to be embedded in an idempotent latin square of order 2n (for if R
is embedded in a latin square of order 2n with symbols n + 1; : : : ; 2n each occurring
in a diagonal cell, then rows and columns n + 1; : : : ; 2n can be permuted to form the
required idempotent embedding of R).
The following result is essentially the same as those used in [1,6,7] so is presented

without proof here (see [4] for a proof).

Proposition 2.1. Let R be an incomplete idempotent latin square of order n. Sup-
pose a row 0 and two columns −1 and 0 can be added to R to form an (n + 1)×
(n + 2) incomplete latin rectangle R+ that contains two BIG symbols s and t with
the properties that:

(i) NR+(j)¿3 for all small symbols j and BIG symbols j ∈ {s; t};
(ii) NR+(j)¿4 for all BIG symbols j except j ∈ {s; t};
and R+ satis�es either of the following
(iii) cells (0;−1); (a; 0); (0; 0); and (a;−1) are �lled with the two BIG symbols s

and t for some row a; or
(iv) cells (0;−1); (a; 0); (0; 0); and (b;−1) are �lled with the two BIG symbols s

and t; and cells (a;−1) and (b; 0) are �lled with symbol v; for some rows a and b;
and some small symbol v.
Then R can be embedded in an idempotent latin square of order 2n.

So it remains to embed R into an (n+1)× (n+2) incomplete latin rectangle R+ that
satis�es the conditions of Proposition 2.1. This embedding breaks into several cases,
depending upon some properties of R. The next two lemmas deal with some special
cases, and the third lemma deals with the most general case.

Lemma 2.1. For n¿5; let R be an incomplete idempotent latin square of order n
on the symbols 1; : : : ; 2n such that each symbol occurs at least once in R. Suppose
NR(j − 1)¿NR(j) for all j ∈ {n+ 2; : : : ; 2n}. If; in R; there does not exist a row or
column missing two BIG symbols; then there exists an (n+ 1)× (n+ 2) incomplete
latin rectangle R+ with the properties that
(a) R(i; j) = R+(i; j) for all i and j ∈ {1; : : : ; n};
(b) cells (0;−1); (a; 0); (0; 0) and (b;−1) are �lled with BIG symbols 2n − 1 and

2n; and cells (a;−1) and (b; 0) are �lled with symbol s; for some rows a and b; and
some small symbol s;
(c) NR+(j)¿3 for all small symbols j and j ∈ {2n− 1; 2n}; and
(d) NR+(j)¿4 for all big symbols j.

Proof. Let R be an incomplete idempotent latin square satisfying the conditions of the
lemma. Since R is idempotent and no row of R is missing two BIG symbols, each
row of R contains exactly n− 1 BIG symbols and one small symbol. Thus, each small
symbol j occurs only once in R, namely in cell (j; j).
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Now, since R is idempotent, it is impossible for all the n BIG symbols to occur in
every row of R. Furthermore, since each of the 2n symbols must occur at least once
in R, it is impossible for n − 1 BIG symbols to occur in every row of R. Therefore,
at most n− 2 BIG symbols can occur n times in R, so at least two BIG symbols can
each occur at most n− 1 times in R. Since, NR(j− 1)¿NR(j) for j ∈ {n+2; : : : ; 2n},
symbols 2n− 1 and 2n occur at most n− 1 times in R. Hence, symbols 2n− 1 and 2n
are each missing from at least one row. Since R does not contain a row missing two
BIG symbols, symbols 2n− 1 and 2n are missing from di�erent rows; without loss of
generality, we can assume that they are missing from rows 2 and 1 respectively (that
is; a= 1 and b= 2), and we can assume that s= 3.
Note that since each row of R contains n−1 BIG symbols, n2−n cells contain BIG

symbols. Thus, if three BIG symbols each occur less than four times in R, the number
of cells containing BIG symbols would be at most (n− 3)n+ (3)3 = n2 − 3n+ 9. But
n¿5, so n2 − n¿n2 − 3n + 9. Therefore, at most two BIG symbols occur less than
four times in R, namely 2n − 1 and 2n. Hence, n − 2 BIG symbols are �nished; that
is, these symbols satisfy the conditions imposed on them by (a)–(d). Therefore, the
only possible un�nished BIG symbols are 2n− 1 and 2n.
Begin forming R+ by adding row 0, column 0, and column −1. Place symbol 2n−1

(symbol 2n) in cells (0; 0) and (2;−1) (in cells (0;−1) and (1; 0)). Both symbols
2n − 1 and 2n now occur at least three times in R+. Hence, all BIG symbols are
�nished.
For 16j6n−1, �ll the empty cells in row 0 by placing symbol j in cell (0; j+1).

Then place symbol n in cell (0; 1). Each of the n small symbols have been added to
row 0. So, currently, each small symbol occurs twice in R+.
For 36j6n, �ll the empty cells in column 0 by placing symbol j in cell (j− 1; 0).

Then place symbol 1 in cell (n; 0). Now, all the small symbols except symbol 2 has
been placed in column 0. Hence, each of these small symbols occurs three times in
R+ and are �nished. The only un�nished symbol is symbol 2.
For 56j6n, �ll the empty cells in column −1 by placing symbol j in cell

(j− 2;−1). Now, since we are assuming n¿5, we can place symbol 2 (symbol 4) in
cell (n−1;−1) (in cell (n;−1)). Lastly, completely �ll column −1 by placing symbol
3 in cell (1;−1). Thus, all the small symbols except symbol 1 have been placed in
column −1. Hence, symbol 2 now occurs three times in R+ and is �nished. Therefore,
all symbols are �nished and the (n + 1) × (n + 2) incomplete latin rectangle R+ has
been formed.

Lemma 2.2. For n¿5; let R be an incomplete idempotent latin square of order n
on the symbols 1; : : : ; 2n such that each symbol occurs at least once in R. Suppose
NR(j−1)¿NR(j) for all j ∈ {n+2; : : : ; 2n}. If R contains an n×(n−1) latin rectangle
de�ned on n − 1 small symbols and one BIG symbol; then there exists a row; say
row a; missing two BIG symbols; and there exists an (n + 1) × (n + 2) incomplete
latin rectangle R+ with the properties that:
(a) R(i; j) = R+(i; j) for all i and j ∈ {1; : : : ; n};
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(b) cells (0;−1); (a; 0); (0; 0); and (a;−1) are �lled with two BIG symbols s and t;
(c) NR+(j)¿3 for all small symbols j and BIG symbols j ∈ {s; t}; and
(d) NR+(j)¿4 for all BIG symbols j; except BIG symbols j ∈ {s; t}.

Proof. Let R be an incomplete idempotent latin square satisfying the conditions of the
lemma. Since NR(j − 1)¿NR(j) for all j ∈ {n + 2; : : : ; 2n}, each of the BIG symbols
except symbol n + 1 occurs only once in R and all must occur in the same column,
say column n, while symbol n + 1 occurs n − 1 times in R in all columns except
column n. Thus, since n¿5, symbol n+1 is �nished; that is, this symbol satis�es the
conditions imposed on it by (a)–(d). Furthermore, each of the small symbols except
symbol n occurs n − 1 times in R, occurring in all columns except column n, while
symbol n occurs only once in R in column n. Again, since n¿5, all small symbols
except symbol n are �nished.
Now, since n+1 occurs exactly n−1 times in R, symbol n+1 is missing from one

row, which we can assume is the �rst; so we can let a= 1 and t = n+ 1. Let symbol
s be the BIG symbol in cell (n − 1; n). Since s occurs only once in R, symbol s is
also missing from row 1. Begin forming R+ by adding row 0, column 0, and column
−1. Place symbol s (symbol t= n+1) in cells (0; 0) and (1;−1) (in cells (0;−1) and
(1; 0)). Now, symbol s occurs three times in R+ and is �nished. Therefore, the set of
un�nished symbols is precisely the set S = {n; : : : ; 2n}\{s; t}. Note, the small symbol
n must be added twice in any of row 0, column 0, or column −1, while BIG symbols
in S must be added in each of row 0, column 0, and column −1.
To �ll the empty cells in row 0, start by placing symbol 1 in cell (0; n). The

remaining n− 1 empty cells in row 0 can be greedily �lled with the n− 1 un�nished
symbols from column n. Therefore, since these symbols occurred once in R they now
occur twice in R+.
To �ll columns −1 and 0, de�ne:

R(2; 0) = R(3;−1) = n;
R(2;−1) = R(n− 2; n);
R(j; 0) = R(j − 2; n) for 36j6n;

R(j;−1) = R(j − 3; n) for 46j6n:

Then clearly all symbols are �nished and the (n+1)×(n+2) incomplete latin rectangle
R+ has been formed.

We now present the most general situation. In the following lemma, symbols are
placed in row 0, column 0, and column −1 in such a way to satisfy the conditions
of Proposition 2.1 except that not all cells are completely �lled (that is, a partial
latin rectangle is produced). Lemma 2.4 then �lls all these empty cells to produce the
desired incomplete latin rectangle R+. Lemma 2.3 also introduces the extremely useful
parameter � = NR(2n − 1) + NR(2n). This parameter allows much to be said of the
cases where n69 (see Table 1).
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Lemma 2.3. Let R be an incomplete idempotent latin square of order n on the
symbols 1; : : : ; 2n such that each symbol occurs at least once in R. Suppose
NR(j − 1)¿NR(j) for all j ∈ {n + 2; : : : ; 2n}; and suppose some row; say row a;
of R is missing two BIG symbols s and t. Let � = NR(2n− 1) + NR(2n). If
(i) �66 and n¿� + 4; or
(ii) �¿ 6;
then there exists R∗=R∪ �0 ∪ c0 ∪ c−1; an (n+1)× (n+2) partial latin rectangle

on the symbols 1; : : : ; 2n; with the following properties:
(a) the only empty cells occur in row 0; column 0; or column −1;
(b) each symbol occurs at least once in R− ∪ c−0 ;
(c) cells (0;−1); (a; 0); (0; 0) and (a;−1) are �lled with two BIG symbols s and t;
(d) NR∗(j)¿3 for all small symbols j and BIG symbols j ∈ {s; t}; and
(e) NR∗(j)¿4 for all BIG symbols j except BIG symbols j ∈ {s; t}.

Proof. Let R be an incomplete latin square of order n on the symbols 1; : : : ; 2n
satisfying the conditions of the lemma.
Case (i): First, suppose �66 and n¿� + 4. Then symbols 2n− 1 and 2n are both

missing from some row, which for notational convenience we assume is the �rst (that
is, a= 1). So, we can let s= 2n− 1 and t = 2n. Begin forming R∗ by adding row 0,
column 0, and column −1. Place symbol 2n−1 (symbol 2n) in cells (0; 0) and (1;−1)
(cells (0;−1) and (1; 0)). Both symbols 2n− 1 and 2n now occur at least three times
in R∗. Hence, these symbols are �nished; that is, these symbols satisfy the conditions
imposed on them by (a)–(e) in the statement of this lemma.
To prove case (i), it will be necessary to investigate subcases:
(ia) at most n− 3 of the n− 2 big symbols occur exactly three times in R, and
(ib) all big symbols occur exactly three times in R.

Subcase (ia): Suppose at most n− 3 of the n− 2 big symbols occurs exactly three
times in R. To �ll some empty cells in row 0, start by creating a bipartite graph
G = (C; S) with vertex sets C = {c1; c2; : : : ; cn; c∗} and S = {1; 2; : : : ; 2n − 2}. Let
E(G) = {{ci; j}: column i in R is missing the symbol j}. Then, in the graph G, for
each i ∈ {1; : : : ; n} and each j ∈ {1; : : : ; 2n− 2}, we have the following:

dG(ci) = n− 2; if column i contains neither 2n− 1 nor 2n;
dG(ci) = n− 1; if column i contains either 2n− 1 or 2n;
dG(ci) = n; if column i contains both 2n− 1 and 2n;
dG(c∗) = 0;

dG(j) = n− NR(j)6n− 1:
Let Ni represent the number of big symbols occurring i times in R. Then, our

immediate goal is to form a new graph G∗ from G with maximum degree n − 2 in
such a way that all vertices in S with corresponding symbols occurring only once or
twice in R have maximum degree, and min{n−(�+3); N3} vertices with corresponding
big symbols occurring three times in R also have maximum degree.
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Form G∗ from G as follows. If dG(j)=n−1, remove any one edge incident with j.
Furthermore, if dG(j)=n−3 and j ∈ {n+1; : : : ; 2n−2}, then for an arbitrarily chosen
set of min{n − (� + 3); N3} such vertices, add an edge {c∗; j}. It follows that all the
vertices j mentioned above now have degree n− 2. Lastly, for any ci in the set C, if
dG(ci) = n− 1 or n, remove one or two edges, respectively, that are incident with ci,
and for each such edge {ci; j} add the edge {c∗; j} (so G∗ may be multigraph). This
last step leaves the degree of vertex j unchanged, and results in the degree of each
vertex ci being at most n− 2. It should also be noted that since dG(ci)¿n− 2 only
for those vertices corresponding to columns containing 2n − 1 and=or 2n, and since
�=NR(2n−1)+NR(2n), at most � additional edges were added to vertex c∗ in this last
step. So, G∗ has maximum degree n−2, and dG∗(c∗)6�+[n−(�+3)]=n−3¡n−2.
Properly edge-color the graph G∗ with n − 2 colors (K�onig showed in 1916 that

every bipartite graph has a �-edge-coloring; see [9]). Let k be a color not occurring
on an edge incident with vertex c∗. Fill the cells in row 0 of R∗ by placing symbol j in
cell (0; i) if and only if edge {ci; j} is colored k. Thus, all symbols with corresponding
vertices of maximum degree have been placed in row 0 of R∗.
Note, small symbols occurring twice in R were placed in row 0 and are �nished.

Small symbols occurring only once in R were also placed in row 0, so must be placed
at least once more in either column 0 or column −1. Big symbols occurring twice or
once in R were also placed in row 0, so must be placed once or twice more respectively
in either column 0 or column −1. Lastly, since N36n − 3 in this subcase, and since
min{n − (� + 3); N3} big symbols occurring three times in R were placed in row 0
(and are �nished), at most max{N3− (n− (�+3)); 0}6� big symbols occurring three
times in R have to occur once more in either column 0 or column −1. Therefore,
since both symbols 2n− 1 and 2n are �nished, the set of un�nished symbols consists
of small symbols occurring once in R, big symbols occurring once or twice in R and
at most � big symbols occurring three times in R. Note, in this case n¿� + 4, so
n− (�+3)¿1. Hence, if there exists at least one big symbol occurring three times in
R then min{n− (� + 3); N3}¿1 (that is, one such big symbol would be �nished).
Next, recall that R− represents the (n − 1) × n latin rectangle formed from R by

deleting its �rst row. To �ll some empty cells in column 0, start by creating a bipartite
graph H = (P; S) with vertex sets P = {�2; : : : ; �n; �∗} and S = {1; 2; : : : ; 2n − 2}. Let
E(H)={{�; j}: row i in R− is missing the symbol j}. Then, in the graph H , for each
i ∈ {2; : : : ; n} and each j ∈ {1; 2; : : : ; 2n− 2}, we have the following:

dH (�i) = n− 2; if row i contains neither 2n− 1 nor 2n;

dH (�i) = n− 1; if row i contains either 2n− 1 or 2n;

dH (�i) = n; if row i contains both 2n− 1 and 2n;

dH (�∗) = 0;

dH (j) = (n− 1)− NR−(j)6n− 1:
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Now, the immediate goal is to form a new graph H∗ from H with maximum degree
n − 2 in such a way that all vertices in S with corresponding symbols occurring at
most once in R− have maximum degree.
Form H∗ from H as follows. If dH (j)=n−1, remove any one edge incident with j.

All these vertices now have degree n−2. Next, if for any �i in the set P, dH (�i)=n−1
or n, then remove one or two edges, respectively, that are incident with �i and for each
such edge {�i; j} add the edge {�∗; j} (so H∗ may be a multigraph). This last step
leaves the degree of vertex j unchanged and results in the degree of each vertex �i
being at most n− 2. Now, since dH (�i)¿n− 2 only for those vertices corresponding
to rows containing 2n − 1 and=or 2n, and since � = NR(2n − 1) + NR(2n), at most �
edges were added to vertex �∗ in this last step. So, H∗ has maximum degree n − 2,
and dH∗(�∗)6�6n− 4¡n− 2.
Properly edge-color the graph H∗ with n−2 colors. Let k be a color not occurring on

an edge incident with vertex �∗. Fill the cells in column 0 of R∗ by placing symbol j in
cell (i; 0) if and only if edge {�i; j} is colored k. Thus, all symbols with corresponding
vertices of maximum degree have been placed in column 0 of R∗.
Note, if symbol j occurred once in R, then it was added to both row 0 and column

0 and now occurs three times in R∗. Furthermore, if symbol j occurred twice in R
then it was added to row 0 (and possibly added to column 0) and now occurs at least
three times in R∗. Therefore, all symbols currently occur at least three times in R∗.
Hence all small symbols and the BIG symbols 2n − 1 and 2n are �nished. Thus, the
set of un�nished symbols contains only big symbols from the set {n+ 1; : : : ; 2n− 2}.
Notice further that if a symbol j did not occur in R− then the corresponding vertex

had maximum degree, so such a symbol was placed in column 0, and so all symbols
in {1; 2; : : : ; 2n− 2} occur at least once in R− ∪ c−0 . Also symbols 2n− 1 and 2n occur
in R−, so all symbols occur at least once in R− ∪ c−0 ; that is, all symbols satisfy
condition (b).
Therefore, after placing symbols in column 0, we have an (n+ 1)× (n+ 2) partial

latin rectangle with the only empty cells occurring in any of row 0, column 0, and
column −1, each symbol occurs at least once in R− ∪ c−0 , and cells (0; 1); (1; 0); (0; 0),
and (1;−1) are �lled with the BIG symbols 2n − 1 and 2n. Thus, R− ∪ c−0 satis�es
the conditions of Lemma 2.4. Using Lemma 2.4, completely �ll all empty cells in
row 0, column 0, and column −1. Next, remove the symbols in cells (i;−1) for all
i ∈ {2; : : : ; n}. This last step leaves the cells of column −1 empty except for the cells
(0;−1) and (1;−1) which contains symbols 2n − 1 and 2n, and leaves row 0 and
column 0 with no empty cells.
To �nish all the symbols (and �ll some cells of column −1), it will be necessary to

consider two separate situations. Suppose �rst that at least one big symbol is �nished.
Then at most n− 3 symbols must be placed in column −1.
Recall, R− ∪ c−0 represents the (n − 1) × (n + 1) latin rectangle formed by rows

2; : : : ; n of R∪ c0. To �ll some empty cells in column −1, start by creating a bipartite
graph F = (P; S) with vertex sets P = {�2; : : : ; �n; �∗} and S = {n+ 1; : : : ; 2n− 2}. Let
E(F) = {{�i; j}: row i in R− ∪ c−0 is missing symbol j}. Then, in the graph F , for
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each i ∈ {2; : : : ; n} and each j ∈ {n+ 1; : : : ; 2n− 2}, we have the following:
dF(�i)6n− 2 = |S|;
dF(�∗) = 0;

dF(j) = (n− 1)− NR−∪c−0 (j)6n− 2:
Now, the immediate goal is to form a new graph F∗ from F of maximum degree

n− 3 in such a way that all vertices corresponding to big symbols occurring less than
four times in R∗ have maximum degree.
Form F∗ from F as follows. If dF(j) = n − 2, remove an edge incident with j.

Furthermore, if dF(j) = n − 4 and if the corresponding symbol j occurs only three
times in R∗, add an edge {�∗; j}. Since at most � big symbols occurring three times
in R are un�nished, we have at most � vertices j satisfying the previous condition.
It follows that all the vertices j mentioned above now have degree n − 3 and the
degree of �∗ is at most �. Next, if dF(�i) = n − 2 for any �i in the set P, then
there exists an edge {�i; j} for all �i in the set P and j in the set S. Let f be a
vertex from the set S corresponding to a �nished big symbol (one such symbol exists
by assumption). Remove the vertex f and all edges incident with f. This last step
leaves the degree of each �i at most n − 3. So, F∗ has maximum degree n − 3, and
dF∗(�∗) = �6n− 4¡n− 3.
Properly edge-color the graph F∗ with n−3 colors. Let k be a color not occurring on

an edge incident with vertex �∗. Fill the cells in column −1 of R∗ by placing symbol
j in cell (i;−1) if and only if edge {�i; j} is colored k. Thus, all the symbols with
corresponding vertices of maximum degree have been placed in column −1 of R∗.
Note, all big symbols occurring three times in R∗ were added to column −1. So, all

symbols are �nished. Therefore, in the case when �66 and n¿� + 4, if there exists
one �nished big symbol after �lling column 0, then a partial idempotent latin rectangle
R∗ has been formed satisfying conditions (a)–(e) of the Lemma.
Otherwise, it must be that no big symbol from the set {n+1; : : : ; 2n−2} is �nished.

Hence, each of these n − 2 big symbols must be placed in one of the n − 1 empty
cells of column −1.
Recall, if there exists at least one big symbol occurring three times in R then at least

one such big symbol has been placed in row 0 and, hence, is �nished. Thus, since in
this case not one of the symbols n + 1; : : : ; 2n − 2 is �nished, all these big symbols
must occur once or twice in R. A big symbol occurring once in R was placed in both
row 0 and column 0, so occurs at most twice in R− ∪ c−0 . A big symbol occurring
twice in R was placed in row 0 and possibly column 0. If such a symbol was placed
in column 0, then it would occur four times in R∗ and would be �nished. Thus no big
symbols occurring twice in R were placed in column 0, so these symbols also occur
at most twice in R− ∪ c−0 . Therefore, each of the big symbols n+ 1; : : : ; 2n− 2 occurs
at most twice in R− ∪ c−0 .
To �ll some empty cells in column −1, start by creating a bipartite graph F=(P; S)

with vertex sets P= {�2; : : : ; �n; �∗} and S = {1; : : : ; 2n− 2}. Let E(F) = {{�i; j}: row
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i in R− ∪ c−0 is missing symbol j}. Now, since the n+1 cells in each row of R− ∪ c−0
are �lled, each of these rows is missing exactly n−1 symbols. Therefore, in the graph
F , for each i ∈ {2; : : : ; n} and each j ∈ {1; : : : ; 2n− 2}, we have the following:

dF(�i) = n− 3 if row i contains neither 2n− 1 nor 2n;
dF(�i) = n− 2 if row i contains either 2n− 1 or 2n;
dF(�i) = n− 1 if row i contains both 2n− 1 and 2n;
dF(�∗) = 0;
dF(j) = (n− 1)− NR−∪c−0 (j)6n− 2:

Now, the immediate goal is to form a new graph F∗ from F of maximum degree
n − 3 in such a way that all vertices corresponding to big symbols have maximum
degree.
Form F∗ from F as follows. If dF(j)=n−2, remove an edge incident with j. Thus,

all these vertices now have degree n−3. Next, if for any �i in the set P; dF(�i)=n−2
or n − 1, then remove one or two edges, respectively, that are incident with �i and
for each such edge {�i; j} add the edge {�∗; j} (so F may be a multigraph). This
last step leaves the degree of vertex j unchanged and results in the degree of each �i
being at most n− 3. Now, since dF(�i)¿n− 3 only for those vertices corresponding
to rows containing 2n − 1 and=or 2n, and since � = NR(2n − 1) + NR(2n), at most �
edges were added to vertex �∗ in this last step. So, F∗ has maximum degree n − 3,
and dF∗(�∗)6�6n− 4¡n− 3.
Properly edge-color the graph F∗ with n− 3 colors. Let k be a color not occurring

on an edge incident with vertex �∗. Fill the cells in column −1 of R∗ by placing
symbol j in cell (i;−1) if and only if edge {�i; j} is colored k. Thus, all the sym-
bols with corresponding vertices of maximum degree have been placed in column −1
of R∗.
Note, each of the big symbols n + 1; : : : ; 2n − 2 was added to column −1. So, all

symbols are �nished. Therefore, in the case when �66 and n¿�+4 if each of the n−2
big symbols n+1; : : : ; 2n− 2 must be placed in column −1, then a partial idempotent
latin rectangle R∗ has been formed satisfying conditions (a)–(e) of the Lemma.
Subcase (ib): Suppose all of the n− 2 big symbols occur exactly three times in R.

Then exactly 3(n−2)+�=3n−6+� cells in R are �lled with BIG symbols. Since we are
under the assumption that n¿�+4; �6n−4 and 3n−6+�63n−6+(n−4)=4n−10.
That is, the number of cells in R �lled with BIG symbols is at most 4n− 10. If only
two small symbols are �nished, then at most 2(n − 2) + 2n = 4n − 4 cells in R are
�lled with small symbols. So at most (4n − 10) + (4n − 4) = 8n − 14 cells in R are
�lled. Now since n¿6; n2¿ 8n − 14, so there must be at least three small symbols
that are �nished. Therefore, in this case, the set of un�nished symbols consists of the
n− 2 big symbols and at most n− 3 small symbols.
Each of the n − 2 big symbols must be added once to any of row 0, column 0,

or column −1. We will place n − 3 of these symbols in row 0. To �ll some cells in
row 0, start by creating a bipartite graph G = (C; S) with vertex sets C = {c1; : : : ; cn}
and S = {n+ 2; : : : ; 2n− 2}. Let E(G) = {{ci; j}: column i in R is missing symbol j}.
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Then in the graph G, for each i ∈ {1; : : : ; n} and j ∈ {n+ 2; : : : ; 2n− 2}, we have the
following:

dG(ci)6n− 3 = |S|;
dG(j) = n− NR(j) = n− 3:

Properly edge-color the graph G with n− 3 colors. Let k be any color. Fill the cells
in row 0 of R∗ by placing symbol j in cell (0; i) if and only if edge {ci; j} is colored
k. Thus, all of the symbols with corresponding vertices of maximum degree have been
placed in row 0 of R∗. That is, big symbols n + 2; : : : ; 2n − 2 have been placed in
row 0 and are �nished. Hence, the set of un�nished symbols consists of only one big
symbol, symbol n+ 1, and at most n− 3 small symbols.
To �ll some empty cells in columns 0 and −1, start by creating a bipartite graph

H = (P; S) with vertex sets P = {�2; : : : ; �n} and S = {1; : : : ; n}\{f1; f2; f3}; where
f1; f2; f3 represent three �nished small symbols. Let E(H) = {{�i; j}: row i in R−

is missing the symbol j}. Then, in the graph H , for each i ∈ {2; : : : ; n} and each
j ∈ {1; : : : ; n} \ {f1; f2; f3}, we have the following:

dH (�i) =6n− 3 = |S|;
dH (j) = (n− 1)− NR−(j)6n− 1:

Now, our immediate goal is to form a new graph H∗ from H with maximum degree
n − 3 in such a way that all vertices in S with corresponding symbols occurring at
most two times in R− have maximum degree.
Form H∗ from H as follows. If dH (j) = n − 2 or n − 1, remove an edge or two,

respectively, so that the resulting degree is n− 3. Properly color the graph with n− 3
colors. Let k1 and k2 be two colors. Fill the cells in column 0 (column −1) of R∗ by
placing symbol j in cell (i; 0) (in cell (i;−1)) if and only if edge {ci; j} is colored
k1 (colored k2). Thus, all the symbols with corresponding vertices of maximum degree
have been placed in both column 0 and column −1 of R∗.
Note, if a small symbol occurred less than three times in R− then the corresponding

vertex had maximum degree. Such a symbol was placed in both columns 0 and −1
and is �nished. Therefore, the only un�nished symbol is the big symbol n + 1. This
symbol must be placed once in any of row 0, column 0, or column −1.
Notice further that if a small symbol j did not occur in R− then it was added to

column 0, so all small symbols occur at least once in R− ∪ c−0 . Each of the n − 2
big symbols occur three times in R so must occur at least once in R−. Also, symbols
2n− 1 and 2n occur in R−, so all symbols occur at least once in R− ∪ c−0 ; that is, all
symbols satisfy condition (b).
To �nish all the symbols, notice that no big symbols occur in either column 0 or

column −1, so we can place symbol n+ 1 in either column. If there exists an empty
cell contained in a row missing n + 1, place the symbol n + 1 in such a cell. Thus,
we can assume that all the rows with empty cells contain the symbol n + 1. Since
symbol n + 1 occurs three times in R, at least (n − 1) − 3 = n − 4 cells in column
−1 are �lled. Since n¿6 and at least n − 4¿2 cells of column −1 are �lled, say
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cells (n− 1; 1) and (n;−1). Now, since exactly n− 3 big symbols have been placed in
row 0, row 0 has three empty cells and contains no small symbols. If R∗(n − 1;−1)
does not occur in one of the columns, say column x, with an empty cell in row 0,
move symbol R∗(n− 1; 1) to cell (0; x). Otherwise, if R∗(n− 1;−1) occurs in all three
columns with an empty cell, R∗(n − 1;−1) is �nished, so remove this symbol from
column −1. In either case, cell (n − 1;−1) is now empty, so we can place symbol
n+ 1 in cell (n− 1;−1). So, all symbols are �nished.
Therefore, in the case when �¿6 and n¿� + 4, if all n − 2 big symbols occur

exactly three times in R, then a partial idempotent latin rectangle R∗ has been formed
satisfying the conditions (a)–(e) of the Lemma.
Case (ii): Secondly, suppose �¿ 6. Among all rows missing two BIG symbols, if

possible, choose row a to be one that is missing symbol 2n.
Since NR(j − 1)¿NR(j) for all j ∈ {n + 2; : : : ; 2n} and since �=2¿ 3, at least 3n

cells of R are �lled with BIG symbols. Furthermore, since row a is missing two BIG
symbols, at most n2−n−1 cells can be �lled with BIG symbols. Hence, we must have
3n6n2−n−1. Therefore, if �¿ 6, it must be that n¿5. Also, since NR(j−1)¿NR(j)
for all j ∈ {n + 2; : : : ; 2n} and since NR(2n − 1)¿�=2¿ 3, all BIG symbols with
the possible exception of 2n occur at least four times in R. That is, at least n − 1
BIG symbols are �nished; leaving at most one BIG symbol, 2n, un�nished. Again we
consider two cases.
Subcase (iia): Suppose �rst that NR(2n)¿4, or that NR(2n)63 and t = 2n (that

is, one of the two BIG symbols missing from row a is symbol t = 2n). Again, for
notational convenience (and without loss of generality) we assume a=1. Begin forming
R∗ by adding row 0, column 0, and column −1. Place symbol s (symbol t) in cells
(0; 0) and (1;−1) (cells (0;−1) and (1; 0)).
Therefore, in either case, all BIG symbols are �nished and only small symbols

occurring less than three times in R need to be placed in any of row 0, column 0, and
column −1.
To �ll some empty cells in row 0, start by creating a bipartite graph G=(C; S) with

vertex sets C = {c1; c2; : : : ; cn; c∗} and S = {1; 2; : : : ; n}. Let E(G) = {{ci; j}: column i
in R is missing the symbol j}. Then, in the graph G, for each i ∈ {1; : : : ; n} and each
j ∈ {1; : : : ; n}, we have the following:

dG(ci)6n− 1 = |S \ {i}|;
dG(c∗) = 0;

dG(j) = n− NR(j)6n− 1:

Let ni represent the number of small symbols occurring exactly i times in R. Then,
our immediate goal is to form a new graph G∗ from G with maximum degree n − 1
in such a way that all vertices in S with corresponding symbols occurring only once
in R have maximum degree and all but at most two vertices in S with corresponding
symbols occurring twice in R also have maximum degree.
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Form G∗ from G as follows. If dG(j) = n − 2, add the edge {c∗; j} for exactly
min{n− 2; n2} such vertices. If min{n− 2; n2}= n− 2, arbitrarily choose these n− 2
such vertices except in the case when dG(1) = n− 2. In this special case, include the
edge {c∗; 1}. It follows that all the vertices j mentioned above now have degree n−1.
So, G∗ has maximum degree n− 1, and dG∗(c∗) = min{n− 2; n2}¡n− 1.
Properly edge-color the graph G∗ with n− 1 colors. Let k be a color not occurring

on an edge incident with vertex c∗. Fill the cells in row 0 of R∗ by placing symbol j in
cell (0; i) if and only if edge {ci; j} is colored k. Thus, all symbols with corresponding
vertices of maximum degree have been placed in row 0 of R∗.
Note, min{n − 2; n2} small symbols (including symbol 1, if NR(1) = 2) occurring

twice in R were placed in row 0 and are �nished, so at most 2 such symbols need to
be placed once more in either column 0 or column −1. Small symbols occurring only
once in R were also placed in row 0, so these symbols must also be placed once more
in either column 0 or column −1. Therefore, since all BIG symbols are �nished, the
set of un�nished symbols consists of small symbols occurring once in R and at most
2 small symbols occurring twice in R.
Since all BIG symbols with the possible exception of 2n occur at least four times

in R and since if NR(2n)63, symbol 2n is missing from row 1, all BIG symbols
occur at least once in R−. Furthermore, since R is idempotent, symbols 2; : : : ; n also
occur at least once in R−. Therefore, symbol 1 is the only symbol that may not occur
in R−.
To �ll some empty cells in column 0, start by creating a bipartite graph H = (P; S)

with vertex sets P = {�2; : : : ; �n; �∗} and S = {2; : : : ; n}. Let E(H) = {{�i; j}: row i in
R− is missing the symbol j}. Then, in the graph H , for each i ∈ {2; : : : ; n} and each
j ∈ {2; : : : ; n}, we have the following:

dH (�i)6n− 2 = |S \ {i}|;
dH (�∗) = 0;

dH (j) = (n− 1)− NR(j)6n− 2:
Now, the immediate goal is to form a new graph H∗ from H with maximum degree

n − 2 in such a way that all vertices with corresponding symbols occurring once or
twice in R− have maximum degree.
Form H∗ from H as follows. If dH (j) = n− 3 and j does not occur in row 0, add

the edge {�∗; j}. Since there are at most two such vertices, at most two edges were
added at this step. It follows that the vertices j mentioned above now have degree
n − 2 and the degree of �∗ is at most 2. So, H∗ has maximum degree n − 2, and
dH∗(�∗)62¡n− 2.
Properly edge-color the graph H∗ with n − 2 colors. Let k be a color not oc-

curring on an edge incident with vertex �∗. Fill the cells in column 0 of R∗ by
placing symbol j in cell (i; 0) if and only if edge {�i; j} is colored k. Thus, all the
symbols with corresponding vertices of maximum degree were placed in column 0
of R∗.
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Note, small symbols, except symbol 1, occurring once in R were placed in both row
0 and column 0, and are �nished. Small symbols occurring twice in R were placed in
either row 0 or column 0, and also are �nished. So, all small symbols except symbol 1
are �nished. Therefore, since BIG symbols are �nished, symbol 1 is the only possible
un�nished symbol, and the only symbol that may not occur in R− ∪ c−0 .
Recall, if symbol 1 occurs twice in R it occurs once in R− and was added to row

0; so it would be �nished. Hence, in this case, all symbols would occur in R− ∪ c−0
and would be �nished.
Otherwise, we can suppose symbol 1 occurs only once in R (in row 1). Then it does

not occur in R−, but was added to row 0. Thus, symbol 1 occurs only twice in R∗

and is un�nished. Now, to satisfy the conditions imposed by (a)–(e), symbol 1 must
be placed in column 0.
If column 0 has an empty cell, say cell (x; 0). Certainly, x is neither 1 nor 0. Thus,

since symbol 1 does not occur in R−, it does not occur in row x. Place symbol 1 in
cell (x; 0).
So, we can suppose column 0 has no empty cells. Then, by construction, the n− 1

cells of column 0 in R− ∪ c−0 contain exactly the symbols 2; : : : ; n. Now, since row 1
is missing two BIG symbols it must contain at least two small symbols; symbol 1 and
some other small symbol, say symbol v. Since R is idempotent, symbol v also occurs
in cell (v; v). Thus, v occurs at least once in R− and at least twice in R−∪c−0 . Let cell
(y; 0) be the cell containing v in column 0. Move symbol v to cell (y;−1) and then
place symbol 1 in cell (y; 0). After this last step, symbol v and symbol 1 both occur
once in R− ∪ c−0 and are both �nished. Therefore, all symbols occur at least once in
R− ∪ c−0 and all symbols are �nished.
Thus, the partial the partial idempotent latin rectangle R∗ has been formed satisfying

the conditions (a)–(e) of this lemma in the case where �¿ 6 and either there exists a
row missing the symbol 2n and some other BIG symbol or all BIG symbols occur at
least four times in R.
Subcase (iib): Finally, we can assume that NR(2n)63, and that every row missing

symbol 2n contains every other BIG symbol. Thus, in this special case, row a cannot
be chosen to be missing symbol 2n (that is, row a contains symbol 2n). Again, for
notational convenience (and without loss of generality) we assume a=1. Begin forming
R∗ by adding row 0 and column 0, and column −1. Place symbol s (symbol t) in
cells (0; 0) and (1;−1) (cells (0;−1) and (1; 0)).
Thus, the only un�nished BIG symbol, 2n, must be placed exactly 4−NR(2n) times

in any of row 0, column 0, and column −1. Furthermore, all small symbols occurring
once or twice in R need to be placed twice or once respectively in any of row 0,
column 0, and column −1.
Again, since row 1 is missing two BIG symbols, it must contain at least two small

symbols; symbol 1 and some other small symbol, which we have called symbol v. This
symbol v occurs at least twice in R (in rows 1 and v).
To �ll some empty cells in row 0, start by creating a bipartite graph G=(C; S) with

vertex sets C = {c1; c2; : : : ; cn; c∗} and S = {1; 2; : : : ; n; 2n}\{v}. Let E(G) = {{ci; j}:
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column i in R is missing the symbol j}. Then, in the graph G, for each i in the set
{1; : : : ; n} and each j in the set {1; : : : ; n; 2n}\{v}, we have the following:

dG(ci)6n− 1 = |S \ {i}| for all i di�erent from v;
dG(cv)6n= |S|;
dG(c∗) = 0;
dG(j) = n− NR(j)6n− 1:

Now, the immediate goal is to form a new graph G∗ from G with maximum degree
n−1 in such a way that vertex 2n has maximum degree, all vertices with corresponding
symbols occurring only once in R have maximum degree, and min{n−(NR(2n)+2); n2}
vertices with corresponding symbols occurring twice in R have maximum degree.
Form G∗ from G as follows. Add exactly NR(2n) − 1 edges of the form {c∗; 2n}

so that the resulting degree of 2n is n− 1 (so G∗ may be a multigraph). Note, since
NR(2n) is at most three, at most two edges were added to c∗. Next, if dG(cv) = n,
then vertex cv is adjacent to all vertices in the set S; remove the edge {cv; v − 1}
and add an edge {c∗; v− 1}. This last step leaves the degree of v− 1 unchanged, and
results in the degree of cv being at most n − 1 and the degree of c∗ being at most
NR(2n). Lastly, if the dG(j)=n−2, add an edge {c∗; j} for exactly min{n− (NR(2n)+
2); n2} such vertices. It follows that the vertices j mentioned above now have degree
n − 1 and that at most an additional n − (NR(2n) + 2) edges are added to c∗. Thus,
dG∗(c∗)6(NR(2n)− 1) + 1 + (n− (NR(2n) + 2)) = n− 2¡n− 1.
Properly edge-color the graph G∗ with n− 1 colors. Let k be a color not occurring

on an edge incident with vertex c∗. Fill the cells in row 0 of R∗ by placing symbol j in
cell (0; i) if and only if edge {ci; j} is colored k. Thus, all symbols with corresponding
vertices of maximum degree have been placed in row 0 of R∗.
Note, small symbols occurring once in R were placed in row 0, so must be placed

once more in either column 0 or column −1. Furthermore, min{n− (NR(2n) + 2); n2}
small symbols occurring twice in R were also placed in row 0 and are �nished; so at
most NR(2n) + 2 such small symbols, including v, have to occur once more in either
column 0 or column −1. Therefore, all small symbols occur at least twice in R∗, so
each must be added at most once in column 0 or column −1. Lastly, the BIG symbol
2n was placed in row 0, so it must be added exactly 3 − NR(2n)62 times in any
of column 0 and column −1. This is the only symbol that may need to be added to
both column 0 and column −1. Therefore, since symbol 2n is the only un�nished BIG
symbol, the set of un�nished symbols consists of small symbols occurring once in R
the BIG symbol 2n, and at most NR(2n) + 2 small symbols occurring twice in R.
Now, there are 2n − 2 empty cells in columns 0 and −1 and, at most n + 2 not

necessarily distinct symbols (n small symbols and two copies of symbol 2n) still to
be placed in these cells in order that all symbols satisfy conditions (a)–(e). Assuming
n¿5; 2n − 2¿n + 2; so there are enough cells to accommodate all of these n + 2
symbols.
Since, in this case, every row missing symbol 2n contains every other BIG symbol,

symbols n+1; : : : ; 2n− 1 are all contained in R−. Furthermore, since R is idempotent,
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symbols 2; : : : ; n also occur at least once in R−. Therefore, symbols 2; : : : ; 2n−1 satisfy
condition (b), while symbols 1 and 2n may not satisfy this condition.
Suppose NR(2n) = 1. Then row 1 is the only row in R containing symbols 2n and

1, so each of the rows i for i ∈ {2; : : : ; n}, contain the symbols i; n + 1; : : : ; 2n − 1.
Fill empty cells of column 0 and column −1 by �rst placing symbol 2n (symbol 1) in
cell (n; 0) (cell (2; 0)). Thus all symbols now occur at least once in R−∪c−0 (that is, all
symbols satisfy condition (b)). Next, place symbol 2n (symbol 2) in cell (2;−1) (cell
(3;−1)). Lastly, we can place symbol j in cell (j− 1; 0) for j ∈ {3; : : : ; n}. Therefore,
all symbols are �nished.
Secondly, suppose NR(2n) = 2. Then row 1 and some other row, say row b, in

R contain symbol 2n. Hence, symbol 2n occurs in R− and satis�es condition (b). If
symbol 1 does not occur in row b, then it is the only symbol not occurring in R−, and
we can place symbol 1 in cell (b; 0). Otherwise, if symbol 1 occurs in row b, then all
symbols occur in R−. Thus, in either case, all symbols satisfy condition (b). Next, to
�ll some empty cells of columns 0 and −1 start by placing symbol j in cell (j− 1; 0)
for j ∈ {3; : : : ; n} \ {b+1}. Since row b is di�erent from row 1, we can place symbol
b + 1 in cell (2;−1). Lastly, since n¿5; n − 2¿3, and since the three symbols 1,2,
and 2n do not occur in any of the rows i for i ∈ {3; : : : ; n} \ {b}, these symbols can
be greedily placed in column −1. Therefore, all symbols are �nished.
Lastly, suppose NR(2n) = 3. Then row 1 and two other rows, say rows b and c, in

R contain symbol 2n. Hence, symbol 2n occurs in R− and satis�es condition (b). Fur-
thermore, symbol 2n has been placed in row 0, so symbol 2n is �nished. If symbol 1
does not occur in one of these two rows, say row b, then it is the only symbol not
occurring in R−, and we can place symbol 1 in cell (b; 0). Otherwise, if symbol 1 oc-
curs in both rows b and c, then NR(1) = 3 and this symbol is �nished. Thus, in either
case, all symbols satisfy condition (b). Next, to �ll some empty cells of columns 0
and −1 start by placing symbol j in cell (j − 1; 0) for j ∈ {3; : : : ; n} \ {b+ 1; c + 1}.
Since row b is di�erent from row 1, we can place symbol b + 1 in cell (2;−1). If
symbol c + 1 does not occur in one of the rows b and c, say row b, place sym-
bol c + 1 in cell (b;−1). Otherwise, if symbol c + 1 occurs in both rows b and
c, then NR(c + 1) = 3 and this symbol is �nished. Lastly, since n¿5; n − 3¿2,
and since the symbol 2 does not occur in any of the rows i for i ∈ {3; : : : ; n} \
{b; c}, this symbol can be greedily placed in column −1. Therefore, all symbols are
�nished.
Therefore, when NR(2n)63 and every row missing symbol 2n contains every other

BIG symbol, the partial idempotent latin rectangle R∗ has been formed satisfying the
conditions (a)–(e) of the Lemma.

The following lemma address the di�culty of �lling the empty cells of R+ formed
in Lemma 2:3.

Lemma 2.4. For n¿5; let R∗=R∪ �0 ∪ c0 ∪ c−1 be an (n+1)× (n+2) partial latin
rectangle on the symbols 1; : : : ; 2n in which:
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(i) the only empty cells occur in row 0; column 0; or column −1;
(ii) each symbol occurs at least once in R− ∪ c−0 and at least once in R;
(iii) R is an incomplete idempotent latin square of order n on the symbols 1; : : : ; 2n,

and
(iv) cells (0;−1); (a; 0); (0; 0); and (a;−1) are �lled with two BIG symbols s and t

for some row a in R.

Then there exists an (n+1)×(n+2) incomplete latin rectangle R+ with the properties
that:
(a) R(i; j) = R+(i; j) for all i; j ∈ {1; : : : ; n} and for (i; j) ∈ {(0;−1); (0; 0); (a;−1);

(a; 0)}; and
(b) NR+( j)¿NR∗(j) for all j ∈ {1; : : : ; 2n}.

Proof. Let R∗ be a partial latin rectangle satisfying the conditions of the lemma. The
incomplete latin rectangle R+ will be formed from R∗ by �rst �lling any empty cells
in row 0, then any in column 0, and lastly any in column −1.
If row 0 has three or more empty cells then one of the empty cells (0; j) can be

greedily �lled. That is, since column j contains n symbols and row 0 currently contains
n− 1 symbols, at least one symbol occurs in neither column j nor row 0.
Suppose row 0 has two empty cells, say cells (0; n − 1) and (0; n). If row 0 and

column n − 1 of R have at least one common symbol, then cell (0; n − 1) can be
greedily �lled. So, suppose cells (0; n−1) and (0; n) are empty and row 0 and column
n − 1 have no common symbols. Now, since each symbol occurs at least once in R,
symbol s must occur in some column, say column x of R. Hence, row 0 and column x
have at least one symbol in common, namely symbol s. Furthermore, since row 0 and
column n − 1 have no common symbols, symbol R∗(0; x) is not contained in column
n − 1. Thus, symbol R∗(0; x) can be moved to cell (0; n − 1). The empty cell (0; x)
can then be greedily �lled.
Lastly, suppose exactly one cell of row 0 is empty, say cell (0; n). Then row 0

contains exactly n+1 symbols. Since each of these n+1 symbols must occur at least
once in the n columns of R there must be at least one column in R with two symbols
in common with row 0. Furthermore, since there are 2n + 1 �lled cells within row 0
and each column of R and only 2n available symbols, row 0 has at least one symbol
in common with each of the columns of R. In particular, row 0 and column n have at
least one common symbol.
Now, if row 0 and column n have at least two common symbols, then cell (0; n)

can be greedily �lled. Thus, suppose row 0 and column n have exactly one common
symbol. If there are two columns of R with at least two symbols in common with row
0, say columns y and z, then at least one of the symbols R∗(0; y) or R∗(0; z) does not
occur in column n, say R∗(0; y). Thus, symbol R∗(0; y) can be moved to cell (0; n).
The empty cell (0; y) can then be greedily �lled.
Furthermore, if there is a column y, with at least two symbols in common with row

0 and if the symbol R∗(0; y) does not occur in column n, then symbol R∗(0; y) can
be moved to cell (0; n) and the empty cell (0; y) can then be greedily �lled.
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Thus, we can suppose column y is the only column in R with at least two symbols in
common with row 0 and we can suppose symbol R∗(0; y) is the only symbol common
to both row 0 and column n. In this case, each column of R other than column y, has
exactly one symbol in common with row 0.
If there exists a column q of R that does not contain symbol R∗(0; y), then certainly

symbol R∗(0; q) does not occur in column n. Thus, symbol R∗(0; q) can be moved to
cell (0; n) and then symbol R∗(0; y) can be moved to cell (0; q). The empty cell (0; y)
can then be greedily �lled.
Otherwise, suppose each column of R other than column y contains the symbol

R∗(0; y). Then symbol R∗(0; y) is the only symbol common to row 0 and each of
the columns of R except column y. Thus no symbol in row 0 other than R∗(0; y)
occurs in any column of R other than column y. That is, the n symbols in row 0,
excluding R∗(0; y), occur only once in R and that occurrence is in column y. Hence,
each of the other columns in R contain exactly the same set of n symbols. Now,
since R is idempotent, each column i contains the symbol i. Thus, column y contains
exactly one small symbol, namely symbol y, and each of the other columns contain
all the other n−1 small symbols. Therefore, there is exactly one big symbol in the set
of n symbols contained in each of the columns of R excluding column y. Hence R
satis�es the conditions of Lemma 2.2 and can be embedded into the incomplete latin
rectangle R+.
Therefore, row 0 has been completely �lled. Next, we show how to �ll the empty

cells of column 0.
If column 0 has two or more empty cells, then one of the empty cells can be greedily

�lled. Thus, suppose only one cell of column 0 is empty, say cell (n; 0). If row n and
column 0 have at least one common symbol, then this cell can be greedily �lled.
So, we can suppose column 0 and row n have no common symbols. Recall that

symbol s or t, say s, occurs in cell (1; 0). Hence, symbol s does not occur in row 1
of R. Now, since every symbol occurs at least once in R it must be that symbol s
occurs in some row x of R with x di�erent from 1. So, row x and column 0 have at
least one symbol in common, namely symbol s. Furthermore, since row n and column
0 have no common symbols, symbol R∗(x; 0) is not contained in row n. Thus, symbol
R∗(x; 0) can be moved to cell (n; 0). The empty cell (x; 0) can then be greedily �lled.
Therefore, column 0 has been completely �lled. Lastly, we will �ll the empty cells

of column −1.
If column −1 has three or more empty cells, then one of the empty cells can be

greedily �lled. Thus, we �rst suppose exactly two cells of column −1 are empty, say
cells (n− 1;−1) and (n;−1). If row n− 1 and column −1 have at least one common
symbol, then cell (n− 1;−1) can be greedily �lled.
So, suppose column −1 and row n − 1 have no common symbols. Since symbol

s occurs at least once in R−, then there exists a row of R− containing the symbol
s, say row x. Hence column −1 and row x of R− ∪ c−0 have at least one common
symbol, namely symbol s. Furthermore, since we are assuming column −1 and row
n− 1 have no common symbols, symbol R∗(x;−1) does not occur in row n− 1. Thus,
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symbol R∗(x;−1) can be moved to cell (n− 1;−1). The empty cell (x;−1) can then
be greedily �lled.
Lastly, suppose exactly one cell of column −1 is empty, say cell (n;−1). Then

column −1 contains exactly n symbols. Since each of these n symbols must occur at
least once in the n−1 rows of R−∪c−0 , there must be at least one row in R−∪c−0 with
at least two symbols in common with column −1. Furthermore, since there are 2n+1
�lled cells within column −1 and each row of R− ∪ c−0 , and since there are only 2n
available symbols, each of the rows in R−∪c−0 has at least one symbol in common with
column −1. In particular, column −1 and row n have at least one common symbol.
Now, if column −1 and row n have at least two common symbols, then cell (n;−1)

can be greedily �lled. So, we can suppose column −1 and row n have exactly one
common symbol.
If there are two rows of R−∪c−0 with at least two symbols in common with column

−1, say row y and row z, then one of the symbols R∗(y;−1) or R∗(z;−1) does not
occur in row n of R− ∪ c−0 , say R∗(y;−1). Thus, symbol R∗(y;−1) can be moved to
cell (n;−1). The empty cell (y;−1) can then be greedily �lled.
Furthermore, if there is a row of R− ∪ c−0 , say row y, with at least two symbols

in common with column −1 and if the symbol R∗(y;−1) does not occur in row n
of R− ∪ c−0 , then symbol R∗(y;−1) can be moved to cell (n;−1) and the empty cell
(y;−1) can then be greedily �lled.
Thus, we can suppose: that row y is the only row of R− ∪ c−0 with at least two

symbols in common with column −1; that symbol R∗(y;−1) is the only symbol com-
mon to both column −1 and row n; and that each row of R− ∪ c−0 , other than row y,
has exactly one symbol in common with column −1.
If there exists a row q of R−∪ c−0 , that does not contain the symbol R∗(y;−1), then

certainly symbol R∗(q;−1) does not occur in row n. Thus, symbol R∗(q;−1) can be
moved to cell (n;−1) and then symbol R∗(y;−1) can be moved to cell (q;−1). The
empty cell (y;−1) can now be greedily �lled.
Therefore, we can suppose each row of R−∪c−0 other than row y contains the symbol

R∗(y;−1). Then for each row j of R− ∪ c−0 other than y, the symbol in common to
row j and column −1 is R∗(y;−1). Thus, no symbol in column −1 of R∗ other than
R∗(y;−1) occurs in any row of R− ∪ c−0 other than row y. That is, the n− 1 symbols
in column −1, other than R∗(y;−1), occur only once in R− ∪ c−0 , namely in row y.
Hence, each of the other rows in R− ∪ c−0 contain exactly the same set S of n + 1
symbols which includes R∗(y;−1). Furthermore, since there are n−2 rows of R−∪c−0
containing the symbols in the set S, column 0 contains at least n − 2 of the symbols
in S. Symbols R∗(0; 0), R∗(1; 0), and R∗(y; 0) may not be in the set S.
Now, let v ∈ {2; : : : ; n − 1}\{y}. Note, v exists since n¿ 4. Choose w from the

set {n; v} in such a way that R∗(w; 0) is not the same symbol as R∗(y;−1). Hence,
R∗(w; 0) has been chosen from the set S\R∗(y;−1).
First, suppose w= v. Then, since no symbol in column −1 except symbol R∗(y;−1)

is an element of the set S, symbol R∗(w;−1) is not in S. Hence, R∗(w;−1) is not in
row n of R− ∪ c−0 . Thus, symbol R∗(w;−1) can be moved to the empty cell (n;−1).
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Furthermore, since the symbol R∗(w; 0) from the set S\R∗(y;−1) is not contained in
column −1, it can be moved to the empty cell (w;−1). Otherwise, if w = n, then
symbol R∗(w; 0)=R∗(n; 0) is not contained in column −1, so R∗(w; 0) can be directly
moved to cell (n;−1). In either case, column 0 contains at least n − 3 symbols from
the set S. So, column 0 and row w have at least n − 3 symbols in common. Thus,
since n¿5, the remaining empty cell (w; 0) can then be greedily �lled.
Therefore, column −1 has been completely �lled, and the incomplete latin rectangle

R+ has been formed satisfying the conditions of the lemma.

3. The main result

We are �nally ready to present the main result of this paper.

Theorem 3.1. For n¿5; let R be an incomplete idempotent latin square of order n
on the symbols 1; : : : ; 2n such that each symbol occurs at least once in R. Suppose
NR(j − 1)¿NR(j) for all j ∈ {n+ 2; : : : ; 2n} and let �= NR(2n− 1) + NR(2n). If any
of the following is true:

(i) there does not exist a row or column in R missing two BIG symbols; or
(ii) R contains an n × (n − 1) latin rectangle de�ned on n − 1 small and 1 BIG

symbols; or
(iii) there exists a row in R missing two BIG symbols when �66 and n¿� + 4;

or
(iv) there exists a row in R missing two BIG symbols when �¿ 6;
then R can be embedded in an idempotent latin square T of order 2n.

Proof. Let R be an incomplete idempotent latin square of order n on the symbols
1; : : : ; 2n such that each symbol occurs at least once in R. Suppose NR(j − 1)¿NR(j)
for all j ∈ {n+ 2; : : : ; 2n} and let � = NR(2n− 1) + NR(2n).
In case (i), apply Lemma 2.1 to R to form an (n+1)× (n+2) incomplete latin rect-

angle R+. In case (ii), apply Lemma 2.2 to R to form R+. Lastly in cases (iii) and (iv),
�rst apply Lemma 2.3 and then Lemma 2.4 to form R+. Finally apply Proposition 2.1
to obtain the desired result.

An immediate consequence of Theorem 3.1 is the following corollary.

Corollary 3.1. Let n¿ 9. An incomplete idempotent latin square R of order n on 2n
symbols can be embedded in an idempotent latin square T of order 2n if and only if
NR(j)¿1 for all j ∈ {1; : : : ; 2n}.

It is also worth noting that Theorem 3.1 addresses many of the cases where n69
(see Table 1). Some of the smallest values of n can be handled separately by the
following lemmas.
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Lemma 3.1. Suppose R is an incomplete idempotent latin square of order 3
on the symbols 1; : : : ; 6 such that each symbol occurs at least once in R and suppose
NR( j − 1)¿NR( j) for all j ∈ {4; 5; 6}. Let � = NR(5) + NR(6). Then �64.

Proof. Let R be an incomplete idempotent latin square satisfying the conditions of the
lemma. Suppose �¿ 4. Then NR(6)¿2 and NR(5) = 3, so NR(4)¿3. Therefore the
number of cells containing BIG symbols is at least 8; but since R is idempotent, at
most 6 cells in R can contain BIG symbols. Therefore, this is a contradiction to the
original assumption. So, �64.

Lemma 3.2. Let R be an incomplete idempotent latin square of order n on the
symbols 1; : : : ; 2n such that each symbol occurs at least once in R. Suppose
NR(j − 1)¿NR(j) for all j ∈ {n+ 2; : : : ; 2n}. Let � = NR(2n− 1) + NR(2n). If

(i) n= 2; or
(ii) n= 4 and � = 6;

then R can be embedded into an idempotent latin square T of order 2n.

Proof. Case (i): Let R be an incomplete idempotent latin square of order 2 satisfying
the conditions of the lemma. The latin square R is of the following form (or is the
transpose):

R can be embedded in the following idempotent latin square T .

Case (ii): Let R be an incomplete idempotent latin square of order 4 on the symbols
1; : : : ; 8 satisfying the conditions of the lemma. We will �rst add row 0 and columns
0 and −1 to R to form and 5 × 6 latin rectangle R+ satisfying the conditions of
Proposition 2.1. Then using Proposition 2.1, R will be embedded into an idempotent
latin square T of order 8.
Now, since R is idempotent, at most 12 cells in R can contain BIG symbols. Further-

more, since NR(5)¿NR(6)¿NR(7)¿NR(8) and since �= 6, NR(5) =NR(6) =NR(7) =
NR(8)=3 and NR(1)=NR(2)=NR(3)=NR(4)=1. Thus, each row in R contains exactly
three BIG symbols and one small symbol. So, since each BIG symbol occurs three
times in R and since each row of R is missing exactly one BIG symbol, symbols 5; 6; 7,
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and 8 are missing from di�erent rows. Without loss of generality, we can assume that
symbol 7 (symbol 8) is missing from row 2 (row 1) and we can assume that v=3 (v
is de�ned in Proposition 2.1 (iv)).
Begin forming R+ by adding row 0, column 0, and column −1. Place symbol 7

(symbol 8) in cells (0; 0) and (2;−1) (in cells (0;−1) and (1; 0)). Next, since symbol
3 occurs only in cell (3; 3), 3 is missing from both rows 1 and 2. Place symbol 3 in
cells (1;−1) and (2; 0). So, symbols 7 and 8 both occur four times in R+ and symbol
3 occurs three times in R+. Hence, each of these symbols is �nished.
Now, since each BIG symbol is missing from exactly one column, let symbol 5 be

missing from column x. Place symbol 5 in cell (0; x). Then the small symbols 1; 2, and
4 can easily be placed in the remaining empty cells of row 0. Symbol 5 now occurs
four times in R+ and is �nished. Small symbols 1; 2, and 4 each occur two times in
R+ so must be added once more in any of column 0 and column −1.
Lastly, the four remaining empty cells in columns 0 and −1 will be �lled. Since

each of the symbols 5; 6; 7 and 8 is missing from a di�erent row and since symbol 7
(symbol 8) is missing from row 2 (row 1), symbol 6 must be missing from either row
3 or row 4. First, place symbol 4 in cell (3; 0) and place symbol 6 in cell (3;−1) or
cell (4;−1). Then, the symbols 1 and 2 can be greedily placed in empty cells. Symbol
6 now occurs four times in R+ and is �nished. Small symbols 1; 2, and 4 now occur
three times in R+ and is �nished. Therefore, a 5×6 latin rectangle R+ has been formed
satisfying the conditions of Proposition 2.1. Apply Proposition 2.1 to obtain the desired
embedding.

The Table 1 indicates the cases that remain to be studied. The unsolved cases are
represented by empty cells.
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