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SUMMARY

Genes expressing circadian RNA rhythms are en-
riched for metabolic pathways, but the adaptive sig-
nificance of cyclic gene expression remains unclear.
We estimated the genome-wide synthetic and degra-
dative cost of transcription and translation in three
organisms and found that the cost of cycling genes
is strikingly higher compared to non-cycling genes.
Cycling genes are expressed at high levels and
constitute the most costly proteins to synthesize in
the genome. We demonstrate that metabolic cycling
is accelerated in yeast grown under higher nutrient
flux and the number of cycling genes increases
�40%, which are achieved by increasing the ampli-
tude and not the mean level of gene expression.
These results suggest that rhythmic gene expression
optimizes the metabolic cost of global gene expres-
sion and that highly expressed genes have been
selected to be downregulated in a cyclic manner for
energy conservation.
INTRODUCTION

Circadian rhythms are an evolutionary adaptation of living sys-

tems to coordinate behavioral, physiological, and metabolic

functions to the 24-hr cyclic environment (Bass and Takahashi,

2010; Dibner et al., 2010; Green et al., 2008; Mohawk et al.,

2012). They arewidely observed acrossmembers of prokaryotes

and multiple eukaryotic kingdoms, including cyanobacteria,

fungi, insects, mice, and humans (Bell-Pedersen et al., 2005;

Dunlap, 1999). Significant advances have beenmade in the iden-

tification of the molecular mechanisms and genes driving these

rhythms (Lowrey and Takahashi, 2011; Partch et al., 2014; Zhang

and Kay, 2010). In eukaryotes, circadian rhythms are generated

by cell-autonomous transcriptional feedback loops composed

of positive transcriptional activators that drive the expression

of negative feedback elements that repress their own transcrip-

tion (Dunlap, 1999; Lowrey and Takahashi, 2004).
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While the core circadian regulatory pathway includes genes

such as Clock, Bmal1, Cry1/Cry2, and Per1/Per2 (Bass and Ta-

kahashi, 2010; Lowrey and Takahashi, 2011), thousands of tran-

scripts have recently been identified as exhibiting circadian or

cycling expression profiles using genome-wide approaches

(Koike et al., 2012; Menet et al., 2012; Rey et al., 2011; Vollmers

et al., 2012; Zhang et al., 2014). For example, �800 transcripts

have been detected during normal diurnal conditions and

�1,200 transcripts have been detected during continual dark-

ness in the brains of the wild-type fruit fly, Drosophila (Hughes

et al., 2012). In mouse liver, over 1,300 cycling pre-mRNA tran-

scripts and 2,000 mRNA transcripts have been detected during

48 hr of continuous darkness (Koike et al., 2012). Additionally,

more than half of the genes (�3,500) in the yeast genome have

been observed as showing periodic expression duringmetabolic

cycling (Tu et al., 2005).

It has been hypothesized that circadian rhythm/periodic genes

are closely related tometabolic pathways of the cell (Green et al.,

2008; Rutter et al., 2002). Recently, chromatin immunoprecipita-

tion sequencing (ChIP-seq) data suggest that genes that are en-

riched in metabolic pathways are preferentially bound by the

mouse core transcriptional factors, including BMAL1, CLOCK,

CRY1, CRY2, PER1, and PER2 (Koike et al., 2012; Menet

et al., 2012; Rey et al., 2011; Vollmers et al., 2012). Moreover,

genes that are involved in biosynthetic pathways also tend to

be regulated in a periodic fashion, including glycolysis and

gluconeogenesis pathways (Green et al., 2008). Thus, there are

a number of essential cellular features that are driven by periodic

gene expression, but the underlying basis for whether a partic-

ular gene cycles or not is unclear.

Here, we assess the role of energy needed to synthesize and

degrade mRNAs and proteins in three species (yeast,

Drosophila, and mouse) and find that the expression of cycling

genes costs as much as two times more than other genes. We

further show that the cycling expression of these expensive

genes likely plays an important evolutionary function. For

example, in genome-wide simulation experiments, we find that

the periodic expression of empirically observed cycling gene

sets leads to the least amount of energy consumed. Importantly,

in yeast, we find that increasing nutrient flux leads to an increase

in the number and amplitude of cycling genes. Because the
hors
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Figure 1. Cycling Genes Have an Increased Total Cost

(A) Schematic formula demonstrating that the cost of transcription and translation contribute to the overall cost of a gene.

(B) The distribution of the cost for each genomic feature.

(C) The distribution of the cost for each genomic feature after incorporation of gene expression data (only one time point from the transcriptomic experiment was

plotted; however, all other time points are similar). Protein synthesis costs more energy than gene synthesis after taking into account the expression data.

(D) Cycling genes have approximately a four times higher total mean cost than other expressed genes.

(E and F) The cost of cycling is increased at both the transcriptional (E) and the translational (F) levels (p < 2.2E-16 for all comparisons). Red line, cycling genes;

black line, other genes. Two lines for red and black represent the two circadian cycles analyzed.

In (D), significance levels are shown in the heatmap. See also Figure S1.
amplitude increase of cycling genes was achieved without an

overall increase in the average expression level, these results

reveal a previously unappreciated and efficient mode for

increasing peak gene expression levels without an overall in-

crease in energy expenditure. Thus, these results demonstrate

that cyclic gene expression is an efficient strategy for optimizing

metabolic cost.

RESULTS

Cycling Genes Are More Expensive Than Other Genes
in Mice
To identify potential mechanisms driving the expression of genes

to be expressed in a cyclic manner, we evaluated the cost during

mRNAandprotein synthesis anddegradation ofwhole-transcrip-

tome data from the mouse liver (Koike et al., 2012). The synthetic

cost of eachmRNA and protein was calculated first based on the
Cell Re
synthetic cost of each nucleotide or amino acid, which is deter-

mined from the number of activated phosphate bonds (�P)

required for synthesizing each precursor (Wagner, 2005). The

mRNA and protein cost per unit time was calculated by taking

into account genome-wide mRNA abundance, protein abun-

dance, mRNA and protein degradation rates, and other costs

such as amino acid charging of tRNA, translation initiation, and

translocation of ribosomes along the mRNA during elongation

and termination (Wagner, 2005) (Figure 1A). This total ‘‘cost’’ for

eachgene, gene feature, andprotein sequence that takes into ac-

count all of the synthetic and degradative parameters listed

abovewas then calculated for each circadian timepoint (Wagner,

2005). Similar to that described previously in yeast (Wagner,

2005), we find that translation rather than transcription of genes

requires the greatest cost in mouse liver (Figures 1B and 1C).

We next asked whether circadian RNA cycling genes in the

mouse liver (2,037 exon RNA cycling genes) require more energy
ports 13, 1868–1880, December 1, 2015 ª2015 The Authors 1869



for synthesis than other expressed genes in the liver (12,680 ex-

pressed genes minus 2,037 cycling genes based on RNA

sequencing [RNA-seq] experiments) (Koike et al., 2012). We first

examined the cost of a single mRNA and protein generation

independently. The cost of protein generation of cycling genes

has a small but significant decrease compared to other genes

(0.41%; p = 9.00E-03), and there is no difference in the cost of

mRNA generation between cycling genes and non-cycling genes

(p = 3.53E-01). However, since the range of gene expression can

vary by several orders of magnitude and contribute to energy

costs, calculating the cost of mRNA sequences alone is not suf-

ficient for estimating the total cost of genes. Thus, we calculated

the total cost of expression using the magnitude of mRNA levels

for both cycling and non-cycling genes. Strikingly, at each time

point we examined, the total cost of cycling genes is approxi-

mately four times higher than other genes (Figure 1D; see Table

S1 for detailed information). Analysis using 1,371 intron RNA

cycling genes from the liver (Koike et al., 2012) also showed

that cycling genes were more costly than non-cycling genes.

We next wanted to understand whether this increase in the to-

tal cost of cycling genes was being driven by either transcrip-

tional or translational cost. We observed a �4-fold increase in

the cost of cycling genes at both the transcriptional and transla-

tional levels compared to the non-cycling genes (Figures 1E and

1F; Table S1). Thus, the increased cost of cycling genes is

derived from an increase in cost at both the transcriptional and

translational levels.

To explore whether the results found in the mouse liver apply

generally to other tissues in the body, we analyzed recent circa-

dian RNA-seq data from 12 different mouse tissues (Zhang et al.,

2014). We find that cycling genes have increased cost in all 12

tissues, implying that this feature is conserved (Figures 2A–2L).

Due to the lack of empirical protein measurement for every

potential protein in our dataset, we estimated the protein abun-

dance of genes lacking these data based on the mRNA expres-

sion data (see Experimental Procedures). To validate these esti-

mates, we used the abundance of proteins from a mouse

fibroblast proteomic dataset (Figure 2M) or from a mouse liver

proteomic dataset (Figure 2N) that overlapped with the mouse

liver cycling genes to calculate the transcriptional and transla-

tional costs of these two subsets of proteins (Schwanhäusser

et al., 2011; Shi et al., 2007). (Quantitative data from two recent

circadian proteomics datasets [Mauvoisin et al., 2014; Robles

et al., 2014] were not available for this analysis.) We found that

cycling genes have an increased cost of 42% or 10% using

both empirical datasets (p = 1.88E-38 and 2.09E-03, respec-

tively; Table S1) consistent with our estimates based on mRNA

expression levels alone. The difference in increased cost be-

tween the two empirical dataset is likely due to the different sub-

set of proteins measured, as just 39% of the liver proteomic data

and 10% of the fibroblast proteomic data overlap (764 genes).

The Increased Cost of Cycling Genes Can Be Extended
to Drosophila and Yeast
To address whether our observation in mouse is a conserved

feature of circadian and metabolic cycling gene networks in

other organisms, we performed cost analysis in Drosophila

(Hughes et al., 2012) and yeast (Tu et al., 2005). As seen in
1870 Cell Reports 13, 1868–1880, December 1, 2015 ª2015 The Aut
mouse, we observed an increase in the total cost of cycling

genes both for circadian genes inDrosophila (�5.5-fold increase)

and for metabolic cycling genes in yeast (�2.5-fold increase)

(Figures 3A and 3B, left panels). The increase in cost of cycling

genes was seen at both the transcriptional and translational

levels in these organisms (Figures 3A and 3B, middle and right

panels; see Table S1 for more details). Thus, the increased en-

ergy requirement for cycling genes is conserved across both

circadian and metabolic cycles as well as widely divergent

species.

The Increased Cost of Cycling Genes Cannot Be
Explained by a Detection Artifact in Lowly Expressed
Genes
Because it is possible that the detection of cycling genes may be

influenced by expression level, where low levels of gene expres-

sion may compromise detection of cycling genes, we performed

our cost analysis on subsets of the data that were partitioned by

the level of gene expression. We first examined whether cycling

genes have higher cost among the most highly expressed genes

in all of the datasets. Figure S1 shows that cycling genes have

significantly higher cost than non-cycling genes in the mouse

and yeast datasets (p < 0.05) when only the genes with the high-

est expression are included (Figure S1A). In fact, regardless of

whether the subset of genes have high, medium, or low expres-

sion, cycling genes have a significantly higher cost than other

genes in most of the datasets (Figure S1A). In addition, the

mean cost of cycling genes remains higher than other genes

even after removing the 20% lowest expressed genes (2,583

genes in mouse liver, 3,925 genes in Drosophila, and 1,355

genes in the yeast microarray dataset; Figure S1B; 3,480 genes

in 12 tissues in mouse; Figure S2; Experimental Procedures).

Cycling of Expensive Genes Minimizes
Genome-Wide Cost
To explore the potential benefit of generating energetically

expensive genes in a cycling manner, we evaluated how pertur-

bations in the composition of cycling gene sets would affect the

overall cost of the system. We randomized which genes were

cycling compared to other genes in a series of 10,000 simula-

tions for each circadian time point and calculated the resultant

mean cost of all of the genes. As shown in Figure 4A, the exper-

imentally defined transcriptional and translational system results

in one of the lowest energy cost usage combinations compared

to the simulated genomes. In fact, none of the 120,000 simula-

tions performed in total for the 12 circadian time points in mouse

have a lower energy usage than the experimentally observed

transcriptome (Table S1). Similar findings were observed in

both Drosophila and yeast (Figures 4B and 4C; Table S1).

Thus, the cycling expression of the more expensive genes is a

conserved strategy for minimizing overall cellular energy usage.

Cycling Gene Paralogs Exhibit Increased Cost
As an independent test of the utility of cycling genes, we lever-

aged whole-genome duplication information, which has been

shown to be integral for protein interaction networks and meta-

bolic functions in yeast (DeLuna et al., 2008; Presser et al.,

2008), to compare the cost of paralogous genes. We observed
hors
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Figure 2. Validation of Increased Cost in 12 Mouse Tissues and Using Proteomics Datasets

(A–L) Cost was calculated from all expressed genes in the mouse 12 tissue RNA-seq dataset from (Zhang et al., 2014). Eight time points (two cycles) from adrenal

gland, aorta, brainstem, brown fat, cerebellum, heart, hypothalamus, kidney, liver, lung, skeletal muscle, and white fat were plotted, and only the first time unit

is shown for the two cycles (CT22, CT28, CT34, and CT40). Red lines indicate cycling genes, and black lines indicate other genes. The two lines for red and

black represent the two cycling cycles analyzed. In all cases, the cycling genes exhibit significantly greater cost than non-cycling genes (p < 1E-04 in all

comparisons).

(legend continued on next page)
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Figure 3. Cycling Genes Have an Increased Cost in Drosophila and Yeast

The increased cost of cycling genes in both (A) Drosophila and (B) yeast. The red lines indicate the cycling genes, whereas the black lines are non-cycling genes.

Two and three lines for red and black in fruit fly and yeast represent the two circadian cycles and three yeast metabolic cycles analyzed. Only the time unit for the

first cycle is shown for the radar plot.
that for duplicated genes that originated from whole-genome

duplication in yeast, themean cost of the cycling copies is higher

than the cost of the non-cycling copies (p = 2.4E-02). Moreover,

there is an enrichment of cases where the copy with the higher

cost is regulated by the metabolic cycle (108 versus 94, p =

4.1E-02). This effect is stronger in mouse, as there were two

rounds of whole-genome duplication: 240 cases with a higher

cost for the cycling copy and only 116 cases for the reverse

(p = 4.97E-11). The mean cost of the cycling copies is higher

than that of the non-cycling copies as well (p = 1.24E-20). These

results further support evolutionary mechanisms for cyclical

regulation of higher-cost genes.

Increased Expression Level Is a Conserved Feature of
Cyclical Gene Expression
We next examined the contribution of specific molecular factors

driving synthetic and degradative costs that could be respon-

sible for the increased cost of cycling genes. We examined

gene cost, protein cost, gene length, protein length, cost per
(M) Using only the overlap of the cycling gene dataset with empirical proteomic da

(right panel) cost of cycling genes is increased in mouse.

(N) Again, using only the overlap of the cycling gene dataset with empirical prote

cycling genes is increased in mouse.

See also Figure S2.
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nucleotide, cost per amino acid, mRNA half-life, protein half-

life, and translation ratio across the three species. The only factor

that we find consistently positively contributes to the high cost of

the cycling genes in the three species examined is expression

level (Figures 5A and S3). For all of the 36 metabolic time points

in yeast, 8 circadian time points in Drosophila, and 12 circadian

times points in mouse, the expression level of cycling genes is

significantly higher than other genes (Figures 5A and 5B; see Ta-

ble S1 for details), which is consistent with recent findings (Wu

et al., 2012). To summarize, expression levels always contribute

positively to an increased cost of cycling genes, however, other

genomic features such as the use of more expensive building

blocks or the length of sequences can also contribute to the

increased cost of cycling genes in a species-dependent manner.

High Glucose Results in Increased Numbers of Cycling
Genes in Yeast
To test the hypothesis that differential energy requirements lead

to alterations in cyclical gene expression, we designed a
ta frommouse fibroblasts, both the transcriptional (left panel) and translational

omic data from mouse liver, both the transcriptional and translational cost of

hors
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Figure 4. Cycling Gene Expression Yields an Optimized Overall Cost

Simulation experiments were performed by randomly switching the cycling genes with other genes andmeasuring themean cost of all the genes in (A) mouse, (B)

Drosophila, or (C) yeast. The red lines indicate the experimentally observed results, whereas the blue lines are the simulations.
genome-scale experiment to manipulate the yeast metabolic cy-

cle. We compared the effects of low and high steady-state

glucose infusion rates on cyclic gene expression by changing

the chemostat dilution rate of glucose-limited cells (Figure 6A;

see Experimental Procedures for more details). Although both

conditions are energy restricted, high glucose accelerated the

speed of the metabolic cycle from �6 hr (slow cycling in low

glucose) to�2 hr (fast cycling in high glucose) and led to an over-

all increase in oxygen consumption, as reflected in significantly

lower mean dissolved oxygen (dO2) levels (Figure 6A; p < 5.0E-

04; TableS1).We thenconductedRNA-seqover twoconsecutive

cycles from equally spaced samples from each group (24 sam-

ples from the low-glucose condition and 20 samples from the

high-glucose conditions, respectively (Figure S4A)]. We found

genes that are periodically expressed in both low- and high-

glucose conditions (e.g., YLR069C, Figure 6B, adjusted p =

1.93E-08 for the low condition and adjusted p = 8.97E-07 for

the high condition) and genes that only showed periodic expres-

sion in one condition (e.g., YBR284W, Figure 6B, adjusted p = 1

for the low condition and adjusted p = 4.56E-07 for the high con-

dition). Surprisingly, there are over 1,000moregeneswith cyclical

expression under high-glucose conditions compared to low (Fig-

ures 6C and 6D, adjusted p < 0.05 and p < 0.01). In total, we de-

tected more than 4,500 genes with periodic gene expression,

which accounts for greater than 70% of the transcribed yeast

genome (Table S1). To control for the sensitivity of detection of

cycling genes between the low- and high-glucose conditions,

we also display heatmaps for expression of all �6,000 genes in

yeast (Figure 6E). At all levels of significance, the number of

cycling genes is much greater in the high-glucose condition

(note p values to the right of each heatmap in Figure 6E).

To assess whether the higher number of cycling genes in the

high-glucose condition could be due to misclassification of

cycling genes by the algorithm (JTK_CYCLE), we evaluated the

performance of JTK_CYCLE on the highly and lowly expressed

genes using permutation tests. We asked whether JTK_CYCLE

preferentially calls highly expressed genes as cycling. To deter-

mine this, we randomly shuffled the order of the time points while

maintaining the mean gene expression values. We then deter-
Cell Re
mined the frequency of occurrence of cycling genes at six

different levels of gene expression from high to low expression

in either glucose condition. As shown in Figure S4B, there is a

significant increase of ‘‘artificial cycling genes’’ only in the lowest

1,000 expressed genes in both high- and low-glucose conditions

(approximately the bottom 20%; p < 1E-04 for both datasets),

which goes against the expectation that JTK_CYCLE would

detect fewer cycling genes at low expression levels. Finally, after

removing the bottom 20% of all expressed genes (1,339 genes),

we found that there are still more cycling genes in the high-

glucose condition than in the low-glucose condition (Figure S4C).

In addition, cycling genes have higher cost than other genes

regardless of whether the bottom 20% expressed genes are

removed or not (Figures S1B and S2). Thus, counter to expecta-

tion, the detection of cycling genes by JTK_CYCLE does not

decrease but rather increases at low expression levels, providing

additional evidence that cycling gene expression is not biased

toward highly expressed genes.

Increased Glucose Leads to Increased Cyclical
Amplitude without Increasing Expression
In addition to an increase in the number of cycling genes, the

amplitude of the expression of the cycling genes in high glucose

was higher than in low glucose even though their mean expres-

sion levels were similar (p < 1E-50; Figures 7A, 7B, S5A, and

S5B). This is exemplified in Figure 6B, where we show the ampli-

tude (calculated from JTK_CYCLE; see Experimental Proce-

dures) of the YBR284W gene is 3.5 in high glucose compared

to 0.3 in low glucose. Additional examples are presented in Fig-

ures 7C–7H. Thus, under higher metabolic conditions, the num-

ber of cycling genes increases as well as the amplitude of these

oscillations. Because themean expression level of cycling genes

does not increase, increasing theamplitude of cycling genes is an

extremely efficient mode of increasing peak expression levels.

Surprisingly, our data suggest that increasing amplitude

without increasing mean expression is an energy-saving

behavior in high glucose. When more nutrients/resources are

available to yeast in high glucose, moremolecules are expressed

to ‘‘consume’’ those nutrients, and expression levels are thus
ports 13, 1868–1880, December 1, 2015 ª2015 The Authors 1873



A B

Figure 5. Expression Levels Positively Contribute to the Increased Cost of Cycling Genes

(A) Factors that contribute to the increased cost of cycling genes. Among the factors examined, only expression level positively contributes to the increased cost

of the cycling genes in all three genomes. Red, positive contributions; blue, negative contributions; black, no significant changes. Significance levels are shown in

the blue-yellow heatmap with p > 0.05 indicated by black (Wilcoxon rank-sum test).

(B) Cycling genes have increased gene expression in all three species. Cycling genes are indicated by red bars in histograms (left panels) and red lines in density

plots (right panels).

See also Figure S3.
increased. However, this increase in expression is offset by a

concomitant downregulation in expression during another time

period of the cycle. As such, themedian of the peak (75th percen-

tile) of gene expression in high glucose is significantly higher than

in low glucose (p = 4.49E-05), which leads to an increased cost

(p = 0.011). In line with this, we found that the median of the

trough (25th percentile) of gene expression in high glucose is

significantly lower than in low glucose (p = 0.003), and the cost
1874 Cell Reports 13, 1868–1880, December 1, 2015 ª2015 The Aut
is lower as well (p = 0.019) (Figure S5C). Therefore, it is cost-

effective to reduce the expression of these cycling genes during

the metabolic cycle when they are not needed. Interestingly, we

observed 1,162 out of 1,673 genes following this pattern at the

peak of the cycle and 1,151 out of 1,673 genes following this

pattern at the trough of the cycle, which is greater than expected

by chance (p = 7.83E-57 and p = 2.3E-53, respectively). These

data suggest a mechanism for why more cycling genes are
hors
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(A) Differential nutrient content leads to either slow

(low glucose) or fast (high glucose) metabolic

cycling in yeast.

(B) Individual genes show differential periodic

expression patterns within the low- and high-

glucose conditions. Expression of YBR284W is

only cyclical in the high-glucose condition, while

YLR069C is cyclically expressed under both con-

ditions. AMP indicates amplitude values.

(C) Expression pattern of cycling genes in the low-

and high-glucose conditions across the time

points sampled. Red, high expression; blue, low

expression.

(D) More cycling genes are observed in the high-

glucose condition than in the low-glucose

condition. Left, p < 0.05; right, p < 0.01. At both

significance levels, more than 1,000 genes have

periodic expression in the high-glucose condition.

(E) Expression pattern of all genes in the low- and

high-glucose conditions. Red, high expression;

blue, low expression. Genes were phase adjusted

and ranked by p values.

See also Figures S4 and S7.
observed in the high-glucose condition, as more genes are using

this strategy to reduce cost. Finally, a strong positive correlation

is observed between the amplitude and the expression of genes

(r = 0.838 for high glucose and r = 0.784 for low glucose, p < 2E-

16 for both; Figure S5D). This indicates that for genes that are

increasing their amplitude (experimental conditions from low to

high glucose), overall expression levels are upregulated. How-

ever, we have observed unchanged mean expression levels for

those cycling genes in the experimental data, which additionally

indicates that this is an energy-saving behavior.

Increased Glucose Alters Yeast Metabolic Pathway
Costs
Previous work has shown that there are three major phases

of the yeast metabolic cycle: oxidative (Ox), reductive/building

(R/B), and reductive/charging (R/C) (Tu et al., 2005). We also
Cell Reports 13, 1868–1880, D
find the same three major clusters of

genes in these new analyses (Table S1).

We also find an enrichment of genes in

different cellular pathways among the

cycling genes in the two conditions, and

the genes periodically expressed in both

glucose conditions are strongly enriched

in mitochondrial and ribosomal functions

(Table S1).

Because cycling genes can express

higher peak levels without an increase in

the overall mean level of expression, we

asked whether this was also the case for

the three metabolic phases of the cycle.

We calculated the total amount of gene

expression (reads per Kilobase per million

mapped reads [RPKM]) for proteins that
are involved in the metabolic cycle in each condition. We found

that there is less gene expression of mitochondrial ribosomal

genes (e.g., MRPL10 and related genes; Figure S6A; 28.5%

less, p = 2.2E-09), the large (60S) ribosomal subunit and related

genes (e.g., RPL17B; Figure S6A; 15.1% less, p = 6.2E-07), or

genes encoding nuclear-encoded mitochondrial ribosomal pro-

teins (Figure S6A; 24.9% less, p = 6.8E-13) under high- versus

low-glucose conditions. We next investigated whether each of

the yeast metabolic phases have different molecular require-

ments. As expected, in each of the three phases (Ox, R/B, and

R/C), there is less of a change in gene expression (from highly ex-

pressed to lowly expressed) observed in each of these phases in

the high-glucose condition compared to the low-glucose condi-

tion (7.3%, 2.3%, and 13.0% less, p = 4.4E-06, 4.5E-11 and

6.8E-18, respectively; Figure S6A). We also observed that the

Ox and R/B phases contain more genes with conserved cycling
ecember 1, 2015 ª2015 The Authors 1875
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Figure 7. Differential Cycling Amplitude and Cost of Genes with Differential Metabolic Cycling in Yeast

(A and B) Amplitude (A) and RPKM (B) comparisons of cycling genes in the low- and high-glucose conditions. (A) Red indicates genes whose amplitude is greater

in high glucose compared to low glucose, whereas black indicates genes whose amplitude is smaller in high glucose than in low glucose. (B) Red points indicate

genes with mean RPKM greater in high glucose compared to low glucose, whereas black points indicate genes with mean RPKM smaller in high glucose

compared to low glucose.

(C–H) Examples of genes with higher cycling amplitude, but not significantly higher RPKM, in high- compared to low-glucose conditions. Amplitude strength and

average RPKM in the two conditions are indicated in red.

(I and J) Differential cost of genes with differential metabolic cycling in yeast. The cost of cycling genes and non-cycling genes in low-glucose (I) compared to high-

glucose (J) conditions. Blue, cycling genes; black, non-cycling genes; red, genes with periodic expression in only one condition. Two lines for red and black

represent the two metabolic cycles analyzed. Only the time unit for the first cycle is shown for the radar plot.

(K) Schematic representation of cost of cycling genes during protein synthesis.

See also Figures S5 and S6.
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across the two cycling conditions compared to genes in the R/C

phase (65% and 62% versus 33%), and the overall phase distri-

bution of the cycling genes is likely determined by the Ox and R/

B phases (Figures S6B and S6C). As the Ox phase is enriched for

genes involved in ribosome synthesis and the R/B phase is en-

riched for genes involved in mitochondria biogenesis (Cai and

Tu, 2012; Tu et al., 2005), these results indicate that the costs

related to gene expression in yeast metabolic pathways are

reduced in the high-glucose condition compared to the low-

glucose condition.

Cycling Genes in Both Nutrient Conditions Have the
Highest Cost
To further distinguish the genes with periodic expression in each

condition, we estimated the cost at each time point (Figures 7I

and 7J; Table S1). We found that the periodically expressed

genes have a higher cost on average in both the high- and

low-glucose conditions (Figures 7I and 7J). More importantly,

the genes with periodic expression in both the high- and low-

glucose conditions have a higher cost than the genes with peri-

odic expression in only one condition (Figures 7I and 7J). These

results strongly suggest that the yeast metabolic cycle promotes

the periodic expression of genes with a higher cost, consistent

with the prediction of our hypothesis. Figure 7K illustrates the

model of our calculations, demonstrating that the cost of a

gene from DNA to protein determines the cyclical expression

of that gene.

DISCUSSION

Cycling genes, whether circadian or metabolic, define an evolu-

tionarily conserved mechanism for cellular energy conservation

in three divergent eukaryotic organisms. Empirically we find

that cycling genes are expressed at high levels and constitute

the most costly proteins to transcribe and translate in the

genome. The essence of the strategy for utilizing cycling genes

is that peak cycling gene expression (amplitude) can be elevated

relative to constitutive expression without an increase in overall

mean levels of expression. The peak is offset by the trough.

Thus, abundant proteins that are required at one time can be

downregulated at other times to economize on overall produc-

tion. In testing this hypothesis using the yeast metabolic cycle,

we discover the non-intuitive result that when metabolic rate in-

creases under higher-glucose conditions, the number of cycling

genes increases dramatically. This result is in line with previous

work demonstrating that yeast grown under higher-glucose con-

ditions exhibit altered gene expression patterns that correspond

to growth rates (Slavov and Botstein, 2011). However, our sam-

pling time period under high glucose was within a 2-hr period

(Figure S4A), making effects of cell cycling less likely to be

involved. This is supported by studies demonstrating that meta-

bolic cycling in yeast occurs in the absence of cell division (Sla-

vov et al., 2011). Paradoxically, in our study, the mean levels of

the cycling genes do not increase and in some cases actually de-

creases. Thus, in yeast and in cells, cyclic gene expression is a

potent mechanism for energy conservation. If a protein is not

needed at a particular time, its production is shut down. In

turn, if higher expression is needed, cyclic expression is efficient
Cell Re
and thus increases in metabolic demand would be expected to

lead to additional cycling genes under this scenario, as we

have observed in yeast.

As translation requires a greater cost compared to transcrip-

tion, we speculate that the cycling of proteins might be greater

than for transcripts. However, such comparisons require compa-

rable quantitative proteomic datasets to what is currently avail-

able for mRNA. It is possible that cost is not as relevant for direct-

ing cyclical expression of genes that are core components of the

regulatory network of cycling behavior and biosynthetic path-

ways, such as Bmal1, Clock, Cry, Dbp, Per, and Nampt (Green

et al., 2008). In fact, when we specifically examine the cost of

core circadian genes, we do not observe that these genes are

typically among the most expensive genes because these tran-

scriptional regulatory genes are expressed at low levels. Among

16 of the canonical circadian genes, only one gene (Nampt) is

among the top 10% of expensive cycling genes, and only three

other genes (Atf6, Clock, and Creb1) are among the top 25%.

One might ask why it is necessary for a cell to synthesize new

proteins in a cyclic manner instead of utilizing stable, long-lived

proteins? We can offer at least two explanations. First, it is

known that many cellular processes are incompatible, such as

oxidative versus reductive metabolic pathways. This has led to

two different solutions in cells: subcellular compartmentalization

and temporal partitioning of metabolic pathways. In cases in

which subcellular compartmentalization is not efficient, then

temporal partitioning (time sharing) may be the only solution.

Indeed, in many primordial photosynthetic organisms, temporal

partitioning is the major strategy for separating processes such

as photosynthesis during the day, which involves oxygen, and ni-

trogen fixation during the night, which must occur in an oxygen-

poor environment (Fay, 1992; Schneegurt et al., 1994; Stöckel

et al., 2008). Furthermore, there is considerable evidence in

plants and animals that mis-expression of genes in the cell can

cause unexpected deleterious effects (Fernandez et al., 2013;

Lai et al., 2012; Manansala et al., 2013; Montgomery et al.,

2013), again discounting the long-term maintenance of global

protein expression.

Second, in addition to partitioning of cellular processes, in

yeast (Bristow et al., 2014) and parasites (Bozdech et al., 2003;

Suvorova and White, 2014) there is considerable gene expres-

sion turnover and gene expression occurs ‘‘as needed’’ in these

organisms. In the yeast metabolic cycle, the three phases

(Oxidative; Reductive, Building; Reductive, Charging) follow

the strategy of ‘‘just-in-time’’ delivery of components (Kuang

et al., 2014). That is, at each of these phases, the basic building

blocks of the cell are synthesized at the time that they are

needed, in order to flexibly adapt with the environment.

Cells do not store these components throughout the metabolic

cycle. An example showing the importance of this ‘‘just-in-

time’’ strategy is that cyanobacteria show higher reproductive

fitness if the patterns of their the internal circadian oscillator

and environmental cycles are similar, while fitness is decreased

if the internal circadian system does not match the environment

well (e.g., in constant light) (Woelfle et al., 2004). Why might

this occur? Such just-in-time strategies have been successfully

implemented in manufacturing as the cost of maintaining

storage and completing regular inventory exceeds the cost of
ports 13, 1868–1880, December 1, 2015 ª2015 The Authors 1877



manufacturing and delivery of goods in real time (Gonzalez et al.,

2006; Qureshi et al., 2013). Perhaps inventory storage is either

not efficient in cells, or as in the first example, components might

be incompatible to be stored together. Thus, we see in this tem-

poral view of gene expression, a surprisingly efficient strategy for

both the partitioning and deliver of cellular metabolic compo-

nents on a genome scale. The hypothesis for a just-in-time strat-

egy in transcriptional networks has been previously proposed

(Zaslaver et al., 2004). However, our results not only provide ev-

idence in support of this strategy in metabolic processes occur-

ring inmore simple organisms such as yeast but also expand this

hypothesis to mammals such as mouse. Our findings are also in

line with the hypothesis that ultradian or time-keeping strategies

are employed at the molecular level (such as in gene expression)

to integrate cellular functions in yeast as well as mammalian sys-

tems (Lloyd and Murray, 2005).

Although the cost of synthesis and degradation of the tran-

scription and translation of cycling genes has been evaluated

here, there are other cellular processes that consume energy in

the cell that may play a part in cycling gene expression, such

as the transport of mRNA and protein outside of the nucleus

(Görlich and Kutay, 1999; Nakielny and Dreyfuss, 1999; Vargas

et al., 2005), protein folding and misfolding (Beissinger and

Buchner, 1998; Goldberg, 2003), alternative splicing (Staley

and Guthrie, 1998; Wahl et al., 2009), and DNA repair (Lindahl

and Wood, 1999; Sancar et al., 2004). Because there is little dif-

ference among the cost of nucleotides (Table S1), it is unlikely

that codon bias is a major contributor to changes in energetic

cost; however, this needs to be investigated further, especially

with regard to translational efficiency (Quax et al., 2015) once

quantitative proteomic datasets across cycling time points are

available. The evaluation of noncoding RNAs also needs to be

considered, as these transcripts may have rapid turnover but

also contribute to the regulation of whether coding transcripts

are ultimately expressed as proteins. Future studies that deter-

mine targets and functions of these noncoding RNAs on a

genome scale will need to be incorporated. Also, energy gener-

ation and consumption are linked to the temporal compartmen-

talization of metabolic functions, which allows for increased

efficiency of metabolism especially under depleted nutrient con-

ditions (Tu et al., 2005; Tu andMcKnight, 2007). The organization

of the genome may also play a role in energy usage, as genes

physically near each other on chromosomes have similar

expression profiles (Wang et al., 2011), and such relationships

may lead to similar cost and energy usage during expression.

How the constraints on the cost of gene expression constrain

other biological circuits such as feedback loops, enzymatic ac-

tivities, proportional regulation of promoter activities in coex-

pression networks, or transcriptional networks that are involved

in cyclical gene expression still needs to be investigated (Alon,

2007; Hart and Alon, 2013; Keren et al., 2013; Koike et al.,

2012; Milo and Last, 2012;Wagner, 2007). In addition, overall en-

ergy utilization in cells includes processes other than the ones

leading to protein expression. These include, but are not limited

to, lipid, carbohydrate, and triglyceride production and turnover

(Palinkas et al., 2015) and ion transport across plasma mem-

branes. Future studies that empirically calculate these parame-

ters over time can ultimately be incorporated into this model to
1878 Cell Reports 13, 1868–1880, December 1, 2015 ª2015 The Aut
determine total energy use andwhether cycling genes contribute

to an energy saving mechanism.

Future experiments that empirically measure the energetic

properties of all of these processes on a genome-wide basis

will contribute to our overall knowledge of cycling gene energy

usage. In all, the data presented here highlight the importance

of investigating energy usage and how such fundamental pro-

cesses can deeply influence cellular and organismal physiology.

EXPERIMENTAL PROCEDURES

Transcriptome Data

Three large-scale transcriptomic profiling datasets were used to characterize

the cycling behavior of the three species (Table S1): a �300-min metabolic

cycling dataset for the diploid yeast strain CEN.PK (Tu et al., 2005), a 12-hr

light/dark transcriptomic dataset for wild-type Drosophila brain (Hughes

et al., 2012), and a 48-hr constant-darkness transcriptomic profiling of mouse

liver (Koike et al., 2012). For each of these datasets, only the expressed genes

were used for further analysis. For each gene, the average expression values

were used if multiple expression signals were detected.

Mouse Liver Proteome Data

The mouse liver proteome data were obtained from a public mouse liver pro-

teome database (Shi et al., 2007).

Calculation of the Cost of Each mRNA and Protein

The cost of each gene/protein thatmet our criteria described above was calcu-

lated. The energy usage of synthesizing each amino acid and nucleotide was

based on a previous analysis of the yeast metabolic system, which is calcu-

lated by the activated phosphate bonds (�P) (Wagner, 2005) (Table S1). On

average, the synthetic cost per nucleotide residue (mean cost: 49.5 �P) is

greater than that of an amino acid (mean cost: 29.1 �P).

Cycling Genes

The cycling genes from these three studies (Hughes et al., 2012; Koike et al.,

2012; Tu et al., 2005) were used for the primary analyses. Cycling genes in

12 tissues from mouse (Zhang et al., 2014) were also used for confirmation.

For the mouse liver data, only exon-based cycling genes are included,

although we found that intronic cycling genes have higher cost (transcriptional)

than other genes as well (data not shown). For the genes that do not have an

annotated Ensembl ID, the transcript names were first mapped to an Ensembl

ID by the BioMart data-mining tool.

Cost during mRNA and Protein Synthesis and Degradation of the

Transcriptome

The expression cost of a gene was calculated based on two parts, as previ-

ously proposed (Wagner, 2005). Please note that the degradation rate of a

particular mRNA and protein are assumed constant in the given environment

as the genome-wide measurement of this parameter across each cycling

time point is not available. That assumption should have limited influence on

our calculation of the cost of peak and trough as the transcriptional burst is

a major mode of gene expression regulation (Cai et al., 2006; Dar et al., 2012).

Yeast Metabolic Cycle Experiments

Yeast Strains and Methods

Yeast manipulations were performed using standard methods (Sherman,

2002).

Continuous Culture Conditions

Yeast cultures were grown as previously described (Tu et al., 2005). Samples

were collected over twometabolic cycles. For the low-glucose condition, sam-

ples were taken every 36min for�14.5 hr. For the high glucose condition sam-

ples were taken every 13 min for �4.25 hr.

Library Preparation

RNA-seq libraries were prepared as described in detail previously (Takahashi

et al., 2015).
hors



Bioinformatic Analysis of Metabolic Cycles under Low and Higher

Glucose

TopHat v2.0.10 was used as the mapping program (Trapnell et al., 2009); the

unmapped reads and the reads with mapping quality score less than 10 were

filtered out after mapping (Table S1). Themapped and filtered reads were used

to calculate the RPKM values with HOMER (Heinz et al., 2010). Mapping the

reads to the less well-annotated CEN.PK genome (Nijkamp et al., 2012; Otero

et al., 2010) or normalizing the RPKMbetween samples did not change thema-

jor findings of this study (Figure S7). JTK_CYCLE was used to determine the

circadian behaviors of the genes (Hughes et al., 2010). Genes with an adjusted

p value < 0.05 were further regarded as cycling genes.

Full experimental procedures are available in Supplemental Experimental

Procedures.
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