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SUMMARY

Cancer progression depends on both cell-intrinsic
processes and interactions between different cell
types. However, large-scale assessment of cell type
composition and molecular profiles of individual
cell types within tumors remains challenging. To
address this, we developed epigenomic deconvolu-
tion (EDec), an in silico method that infers cell type
composition of complex tissues as well as DNA
methylation and gene transcription profiles of con-
stituent cell types. By applying EDec to The Cancer
Genome Atlas (TCGA) breast tumors, we detect
changes in immune cell infiltration related to patient
prognosis, and a striking change in stromal fibro-
blast-to-adipocyte ratio across breast cancer sub-
types. Furthermore, we show that a less adipose
stroma tends to display lower levels of mitochondrial
activity and to be associated with cancerous cells
with higher levels of oxidative metabolism. These
findings highlight the role of stromal composition in
the metabolic coupling between distinct cell types
within tumors.

INTRODUCTION

Molecular profiling of breast tumors has led to their categori-

zation into different subtypes with distinct risks and underlying

biology. Of particular interest is the classification into five

intrinsic subtypes, which can be performed using the prediction

analysis of microarray 50 (PAM50) classifier (Parker et al., 2009).

However, most molecular-profiling studies to date have been

performed on bulk tissue samples, ignoring the complexity of

the breast tissue, with its multiple cell types and the interactions
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between them. Valuable evidence for the significance of hetero-

typic interactions comes from the study of cell type composition

of tumors, as exemplified by the prognostic value of immune

cell infiltration (Coussens et al., 2013; Liu et al., 2014) and of epi-

genomic (Hu et al., 2005) and transcriptomic (Finak et al., 2008)

perturbations within stromal cells (Tlsty and Coussens, 2006).

Laser capture microdissection (LCM), cell sorting, and other

physical methods to isolate cell types from solid tumors for

molecular profiling are technically challenging, and severely limit

throughput (Debey et al., 2004). A number of methods for in silico

deconvolution have been developed to address this problem us-

ing as input gene expression profiles (Aran et al., 2015; Gentles

et al., 2015; Houseman and Ince, 2014; Kuhn et al., 2011; Li

and Xie, 2013; Newman et al., 2015; Shen-Orr et al., 2010; Venet

et al., 2001; Yoshihara et al., 2013; Zhong et al., 2013) and, more

recently, DNAmethylation profiles (Houseman et al., 2012, 2014,

2016; Zheng et al., 2014; Zou et al., 2014; Rahmani et al., 2016) of

tissue homogenates. However, the ability of these methods to

infer cell type composition of solid tumors and interpret the

states of constituent cell types is limited, thus hampering the

study of cellular states and cellular interactions within the tumor

microenvironment.

To address this gap, we developed epigenomic deconvolution

(EDec), a deconvolution method based on a heuristic for con-

strained matrix factorization using quadratic programming. The

deconvolution is based on cell-type-specific patterns of DNA

methylation. Such patterns are acquired during normal cellular

differentiation, maintained through cell division, and serve as

chemically stable cellular markers. We reasoned that methyl-

ation profiles would be more amenable to deconvolution than

gene expression due to their linearity, measurement within the

complete (0–1) dynamic range, and technology independence

(including both bisulfite sequencing and array platforms).

Previous methylation-based deconvolution methods either

make direct use of reference methylation profiles of constituent

cell types (Houseman et al., 2012) or ignore such references
ts 17, 2075–2086, November 15, 2016 ª 2016 The Author(s). 2075
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(Houseman et al., 2014, 2016; Rahmani et al., 2016; Zou et al.,

2014). Highly accurate reference methylation profiles, essential

for reference-based deconvolution approaches, are unavailable

for many solid tissues, arguing for a reference-free approach.

However, reference methylation profiles from representative

cell lines are available and can provide valuable information if

used to improve inference while minimizing bias. Toward this

goal, EDec uses relevant reference information in indirect

ways to minimize bias. First, it uses references to identify sets

of loci that are likely to exhibit variation in methylation levels

across constituent cell types of a given tissue (feature selection),

while taking a reference-free approach to the deconvolution

problem itself. Second, it identifies constituent cell types by

comparing their deconvoluted molecular profiles to reference

profiles.

EDec consists of three stages (0, 1, and 2; Figure 1). Starting

withmethylationprofilesof tumor homogenatesover loci selected

basedon referencemethylationprofiles (Figure1A, stage0), EDec

estimates both cell type proportions and methylation profiles of

constituent cell types using an reference-free approach (Fig-

ure 1A, stage 1) similar to previous reference-free techniques

(Gaujoux and Seoighe, 2012; Houseman et al., 2016). The pro-

portion estimates are then used as a ‘‘key’’ to deconvolute

gene expression profiles of constituent cell types (Figure 1A,

stage 2).

EDec proof-of-concept experiments were performed using

both Illumina methylation arrays and RainDance Technologies’

ThunderStorm bisulfite sequencing (BS-seq) (Komori et al.,

2011; Paul et al., 2014) targeted bisulfite sequencing. The

method is validated using both computer simulations and

profiling experiments on prepared cell mixtures. By applying

EDec to the breast cancer datasets generated by The Cancer

Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012),

we predict cellular proportions andmethylation states of constit-

uent cell types within breast tumors as well as infer changes

in gene expression within each constituent cell type. Such pre-

dictions were largely confirmed by comparisons with cell type

composition estimates based on H&E staining, and by com-

parison against gene expression profiles of specific cell types

isolated through LCM. We show that cancerous epithelial cells

exhibit methylomes distinct from those of normal epithelium.

EDec also replicates the previously reported association be-

tween increased immune cell infiltration in triple-negative breast

cancer and better prognosis (Adams et al., 2014). We further

detect expression changes that are highly consistent with known

hallmarks of cancer, and with known roles of specific cell types

within breast cancer. Last, we observe that the degree of stromal

adiposity across breast cancer subtypes predicts the pattern of

metabolic coupling observed between cancer epithelium and

stroma.

RESULTS

Epigenomic Deconvolution Method
The first stage of EDec (Figure 1A, stage 1) performs constrained

matrix factorization to find cell type-specific methylation profiles

and constituent cell type proportions that minimize the Euclidian

distance between their linear combination and the original matrix
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of tissue methylation profiles (Figure 1B). The minimization algo-

rithm involves an iterative procedure that, in each round, alter-

nates between estimating constituent cell type proportions and

methylation profiles by solving constrained least-squares prob-

lems through quadratic programming. Theminimization problem

is made tractable by the constraints that methylation measure-

ments (beta values) and cell type proportions are numbers in

the [0, 1] interval, and that cell type proportions within a sample

add up to 1. These constraints restrict the space of possible so-

lutions, thus making it possible for the local iterative search to

reproducibly find a global minimum and an accurate solution.

One key requirement for EDec is that cell type proportions vary

across samples. A second requirement is that there must be

significant differences across constituent cell type methylation

profiles. The latter requirement can be met by providing EDec

with loci expected to vary in methylation levels across constitu-

ent cell types (Figure 1A, stage 0).

Similar to how tissue methylation profiles are modeled, tissue

gene expression profiles can also be modeled by the linear com-

bination of the expression profiles of its constituent cell types.

However, due to the less constrained nature of gene expression

measurements ([0,N]) versusmethylationmeasurements ([0, 1]),

the same reference-free approach used in stage 1 is not as

effective for gene expression deconvolution. Therefore, instead

of using that approach, when both DNA methylation and gene

expression profiles are available for the same set of samples

(e.g., from the same tissue homogenate), EDec-stage 2 uses

the cell proportions estimated in stage 1 as a fixed input when

estimating the average gene expression profiles of constituent

cell types through a constrained least-squares fit using quadratic

programming with solutions constrained to [0, N] (Figure 1A,

stage 2, and Figure 1C).

Validation using in Silico Mixtures of Methylation
Profiles Derived from Breast Cancer-Related Cell Lines
We first validated the core EDec algorithm (stage 1) on simulated

mixtures of experimentally derived DNA methylation profiles

(nine cell lines: six breast cancer, one normal breast epithelial,

one immune, and one cancer-associated fibroblast [CAF]).

Among the 1,000 target genomic regions included in this breast

cancer methylation-focused panel (Table S2), 149 exhibited

particularly distinct methylation patterns across different breast

cell types (based on reference epigenomes) (Kundaje et al.,

2015) and were used in EDec-stage 1. The simulation dataset

consisted of 100 mixtures, each composed of four cell types

(one breast cancer cell line, one normal mammary epithelial

cell type, one stromal cell type, and one immune cell type). About

one-half of the simulated mixtures contained on average higher

levels of breast cancer (60%) and immune cell types (20%),

representing distributions observed in tumor samples such as

those in the TCGA dataset. To simulate the presence of different

breast cancer subtypes, different simulated mixtures had a

different cancerous epithelium constituent. Specifically, the

breast cancer cell type for each mixture was chosen randomly

from the set of six breast cancer cell lines. Simulated normal

breast contained higher than average levels of normal epithelial

(60%) and stromal cell types (30%). To better represent real

samples, random noise was introduced into the methylation



Figure 1. Description of the EDec Method

(A) The EDecmethod has twomain stages (stages 1 and 2), preceded by a preparation stage (stage 0). In stage 0, a set of reference methylation profiles is used to

select a set of genomic loci or array probes with distinct methylation levels across groups of references representing different constituent cell types. Methylation

profiles of complex tissue samples over the set of loci/probes selected in stage 0 are used as the input for the stage 1 of the EDec method. In stage 1, EDec

estimates both the average methylation profiles of constituent cell types and the proportions of constituent cell types in each input sample using an iterative

algorithm for constrained matrix factorization using quadratic programming. Stage 2 of EDec takes as input the gene expression profiles of the same tissue

samples profiled for DNA methylation, as well as the proportions of constituent cell types for those samples, estimated in stage 1, and outputs the gene

expression profiles of constituent cell types.

(B) Representation of the model associated with stage 1 of EDec method.

(C) Representation of the model used for gene expression deconvolution in stage 2 of the EDec method.

Cell Reports 17, 2075–2086, November 15, 2016 2077



profiles across all samples (Supplemental Experimental Proced-

ures). We applied EDec to this dataset assuming nine different

cell types in the model (six possible breast cancer cell lines,

one normal epithelial, one stromal, and one immune). EDec

accurately estimated DNA methylation profiles (r = 0.982; Fig-

ure 2A) and proportions (r = 0.983) for all constituent cell types

(Figure 2B).

Validation on Cell Line Mixtures Profiled by Targeted
Bisulfite Sequencing
We next validated EDec on cellular mixtures prepared in vitro.

Specifically, we profiled 10 samples using targeted bisulfite

sequencing and applied EDec using the set of 149 loci selected

in EDec-stage 0. Four of the 10 samples were pure cells lines,

including the following:MCF-7, HMEC (humanmammary epithe-

lial cells), a CAF cell line, andCD8+ cytotoxic T cells. The other six

samples consisted of three pairwise combinations (MCF-7/

HMEC, MCF-7/T cells, and MCF-7/CAF), each in two propor-

tions (75%:25% and 95%:5%). There was a strong concordance

between the EDec estimated and the true proportions (r = 0.996;

Figure 2C). In addition, the estimated methylation profiles for the

four different cellular fractions closely matched the methylation

profiles of cells used to create themixtures (r = 0.998; Figure 2D).

Validation on Breast Tumor Samples Profiled by
Targeted Bisulfite Sequencing
We next generated DNA methylation profiles for 31 breast

tumors and 8 normal breast samples using targeted bisulfite

sequencing. We applied EDec, assuming six constituent cell

types (Supplemental Experimental Procedures), and asked

how similar the estimated methylation profiles were to a set of

external reference methylation profiles (Figure 2E). Three of the

six estimated methylation profiles were most similar to one of

the reference breast cancer cell lines. The three remaining pro-

files had particularly high correlation with themethylation profiles

of either CD8+ cytotoxic T cells, CAF cell line, or the HMEC cell

line. This indicates that EDec identifies three components that

explain the diversity of cancerous epithelial cells in those sam-

ples, whereas the other three components correspond to an

immune fraction, a fibroblast/stromal fraction, and a normal

epithelial fraction.

To further validate EDec, clinical pathologist evaluations of cell

type composition were obtained for 29 of the 39 samples based

on H&E staining. The pathologist estimated proportions for

cancerous epithelial, normal epithelial, stromal, and immune

fractions. Since the EDec method had proportion estimates for

three different cancer epithelial fractions, we combined the pro-

portions for those three fractions to make the two techniques

comparable. Despite observing good consistency for the cancer

epithelial and immune fractions, we observed low correlation for

the normal epithelial and stromal fractions. We reasoned that the

low correlation may be explained by extensive epithelial-mesen-

chymal transitions that may blur the boundary between epithe-

lial and stromal cells. We therefore modified the analysis by

combining proportion estimates of normal epithelial and stromal

components and examined concordance of EDec and H&E

proportion estimates for three fractions (cancerous epithelial,

normal epithelial/stromal, and immune). The estimates were
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highly concordant for all three cell type fractions (r = 0.74,

p value < 10�15; Figure 2F). The highest correlation was for the

immune fraction (0.78) and the lowest for cancerous epithelial

fraction (0.67). The concordance between these two techniques

indicates that EDec’s estimates of proportions and methylation

profiles correspond to real cell types and are not just general

components that explain variability in the methylation dataset.

Deconvolution of Breast Tumors from the TCGA
Collection Confirms the Role of Immune Response
in Tumor Progression
We next applied EDec to deconvolute DNA methylation profiles

of 1,061 breast tumors and 123 adjacent normal breast samples

generated using Infinium HumanMethylation arrays by TCGA

(Cancer Genome Atlas Network, 2012). We selected 391 infor-

mative loci (EDec-stage 0) from 45 reference DNA methylation

profiles gathered from the NCBI GEO archive for the following

four relevant cell types: cancer epithelial (25), normal epithelial

(3), stromal (9), and immune (8) (Figure 3A) (Supplemental Exper-

imental Procedures).

EDec-stage 1 (Figure 1A) was then applied to the TCGA DNA

methylation data over the 391 probes, assuming 4–15 constitu-

ent cell types. Reference methylation profiles (20) were added

to the TCGA dataset to improve stability of convergence (Sup-

plemental Experimental Procedures and Figure S5). Based on

model reproducibility and goodness of fit (Supplemental Exper-

imental Procedures), we chose themodel with eight cell types for

all further analyses. We generated heat maps of correlations be-

tween the eight EDec-estimated methylation profiles and each

GEO reference methylation profile (Figure 3B). The correlations

suggest that EDec identified methylation profiles correspond-

ing to one immune, one stromal, one normal epithelial, and five

different cancerous epithelial components.

DNA methylation profiles were also generated for nine of

the TCGA samples using targeted bisulfite sequencing. This

allowed us to compare EDec-estimated proportions for those

samples based on sequencing data, in the context of 39 breast

tissue samples profiled by bisulfite sequencing, versus those

estimates based on arrays in the context of 1,184 TCGA sam-

ples (Figure 3C). Estimated proportions were highly correlated

(r = 0.88), suggesting that EDec operates independently of

the methylation profiling method. EDec and pathologist (H&E

staining) proportion estimates were also consistent (r = 0.90)

(Figure 3D).

Consistent with expectations, EDec predicts normal breast

samples to have negligible proportions of cancerous epithelial

cells, whereas in breast tumors those cell types are generally

the ones with highest proportions (Figure 3E). We also observe

that the cancerous cell fraction of the different breast cancer

samples is explained by a different combination of the five

cancerous epithelial components, with one of them typically be-

ing dominant. Grouping tumor samples based on the dominant

cancer epithelial component showed some concordance with

their PAM50 classification (Parker et al., 2009). In particular,

basal-like samples were nearly all in the same EDec-defined

group (Figure 3E, red box). We further investigated methylation

heterogeneity of the epithelial fraction over the 391 chosen

probes within and between tumor subtypes (Supplemental



Figure 2. EDec Validation on Simulated

Mixtures, Experimental Mixtures, and Solid

Tumors

(A) Estimated versus true methylation levels for

each constituent cell type and locus involved in the

simulated mixtures dataset.

(B) Estimated versus true proportions for each con-

stituent cell type in each of the samples involved in

the simulated mixtures dataset.

(C) Estimated versus true methylation levels for

each constituent cell type and locus profiled in the

experimental mixtures dataset.

(D) Estimated versus true proportions for each

constituent cell type in each of the samples pro-

filed in the experimental mixtures dataset.

(E) Heat map representing the level of correlation

between the estimated methylation profiles from

the application of EDec to the targeted bisulfite-

sequencing dataset and the reference methylation

profiles. Red boxes indicate the highest level of

correlation for each estimated methylation profile.

The estimated methylation profiles were labeled

as cancer epithelial, normal epithelial, immune, or

stromal based on what reference methylation

profile was most correlated to each of them.

(F) Proportion of constituent cell types estimated

by EDec for samples in the targeted bisulfite-

sequencing dataset versus pathologist-estimated

proportions (H&E staining). Color key for all panels:

orange (MCF-7), blue (HMEC), green (CAF), and

red (T cell).
Experimental Procedures and Figure S1). Luminal B tumors

had the most heterogeneous profiles, whereas normal breast

samples had the most homogeneous epithelial profile. Despite

having an intermediary level of heterogeneity, basal-like tumors

exhibited epithelial methylation profiles highly distinct from the

other breast tumor subtypes.

We also found that tumor subtypes differ significantly in the

degree of infiltration by either immuneor stromal cells (Figure S2).

Normal-like samples contained the highest median stromal pro-

portion (18%), and Luminal B tumors, the lowest (4%). Basal-like

tumors displayed the highest median degree of immune cell infil-

tration (21%), whereas Luminal B tumors again had the lowest

(7%). Normal breast tissue samples displayed a much higher
Cell Report
median proportion of stromal cells (37%)

than breast tumors (8%).

We next investigated whether the pre-

dicted immuneproportionwasassociated

with survival of basal-like breast cancer

patients. Indeed, patients with greater

than 20% immune cell infiltration survived

significantly longer (p < 0.01) than those

with less than 20% (Figure 3F), consistent

with previous microscopy-based evalua-

tion of immune cell infiltration (Adams

et al., 2014).We also investigatedwhether

immune infiltration levels in adjacent

normal tissuewere related to immune infil-

tration levels in the matched tumor sam-
ple. No such correlation was observed, indicating that immune

infiltration of tumors is not dependent on the amount of immune

cells in the surrounding normal tissue (Figure S2).

Deconvolution of RNA-Sequencing Profiles of Breast
Tumors from the TCGA Collection Reveals Cell Type-
Specific Tumorigenic Perturbations with the Tumor
Microenvironment
Given the availability of both mRNA-sequencing and DNA

methylation profiles for the TCGA breast samples, we applied

EDec-stage 2 to estimate gene expression profiles of constituent

cell types. EDec-stage 2 was independently applied to six sub-

sets of the 1,114 TCGA expression profiles, corresponding to
s 17, 2075–2086, November 15, 2016 2079



Figure 3. Analysis of DNA Methylation Profiles of Breast Tumors Samples from the TCGA Collection using EDec

(A) Heat map representing the methylation levels over the chosen set of array probes for the reference methylation profiles.

(B) Heat map representing the correlation between the methylation profiles estimated by EDec and the reference methylation profiles. Red boxes indicate the

highest correlation for each estimated methylation profile.

(C) Scatterplot of EDec cell type proportion estimates for nine TCGA samples based on targeted bisulfite sequencing (y axis) and microarray (x axis).

(D) Scatterplot between EDec and pathologist (H&E) estimates of proportions of constituent cell types for a subset (six samples) of the TCGA dataset for which

H&E staining-based estimates were available.

(E) EDec-estimated proportions of constituent cell types for samples in the TCGA dataset. Side bar represents separation of TCGA cancers samples into PAM50

expression subtypes. The red box highlights the samples best explained by the cancerous epithelial 2 profile, which are almost exclusively classified as basal-like.

(F) Kaplan-Meier plot indicating the significant difference in prognosis (p value < 0.01) for patients within the group of samples best explained by the cancer

epithelial 2 profile (red box in [F]; basal-like) with high versus low estimated immune cell type proportion. See also Figures S1 and S2.
the five PAM50 subtypes (Luminal A [523 samples], Luminal

B [207], HER2-enriched [78], basal-like [173], normal-like [33])

(Parker et al., 2009), plus normal breast tissue samples (100).

We combined the eight EDec-stage 1-estimated proportions

(Figure 3E) into the following three cell type fractions: epithelial

(including five cancer epithelial and one normal epithelial), stro-

mal, and immune. Proportion estimates for those three cell types

were then used in EDec-stage 2 to estimate expression profiles

of epithelial, stromal, and immune cell types for each PAM50

subtype and normal breast.

EDec predicts epithelial-specific expression of ESR1, PGR,

and FOXA1 in Luminal A and Luminal B subtypes (Figure 4A),

consistent with previous reports (Toss and Cristofanilli, 2015).
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Due to poor model fit, as indicated by large error bars, cell-

type-specific expression could not be established for a

number of genes, ERBB2 within HER2-enriched tumors being

the most conspicuous example. The poor fit of the model for

that gene is due to its exceedingly high variance in expression

within epithelial cells of this tumor type (Figure S3). We can

show through simulations (Supplemental Experimental Pro-

cedures) that this effect is mitigated by increasing the number

of input breast cancer samples. We note that the large esti-

mated standard error provides a clear signal that cell type-

specific expression cannot be established for specific genes,

thus preventing erroneous conclusion suggested by high

mean values.



Figure 4. Cell Type-Specific Gene Expres-

sion

(A) Bar plots represent the estimated expression

profiles of 12 different genes within constituent cell

types for each of the breast cancer intrinsic sub-

types, as well as for the set of normal breast

(control) samples. Error bars represent estimated

standard error associated with each cell type

specific gene expression estimate.

(B) Summary of main enriched gene sets among

upregulated or downregulated genes between

cancer and normal breast in each cell type. See

also Figures S3 and S4.
EDec predicts stroma-specific expression of vimentin (VIM), a

general mesenchymal cell marker (Kalluri and Zeisberg, 2006), in

normal breast and in all tumor subtypes. Conversely, the stroma-

specific expression of COL1A1, FAP, and FN1 is observed in tu-

mors, but not in normal breast (Figure 4A). That observation is

consistent with the activation of such genes in CAFs, the main

constituent of the tumor stroma (Kalluri and Zeisberg, 2006).
Cell Report
EDec correctly predicts immune-spe-

cific expression of immune cell markers

(PTPRC, CD3G, CD8A, and CD4) in every

group of samples (Figure 4A). Note that

the CD8+ T cell marker CD8A shows

significantly higher expression in breast

cancers than in normal breasts, consis-

tent with observations that the immune

components of breast tumors contains

a larger proportion of CD8+ T cells

compared to the immune component of

normal breasts.

We next compared gene expression

profiles of the three tumor-constituent cell

types against the profiles of their normal

control counterparts. A gene set enrich-

ment analysis (Huang et al., 2009a,

2009b) was then performed on the result-

ing sets of differentially expressed genes.

Figure 4B summarizes the top gene set en-

richments for genes upregulated or down-

regulated in tumor cells compared the

normal controls (for full set of gene set en-

richments, see Table S1). The terms found

to be enriched in each of the sets of differ-

entially expressed genes are consistent

with knownhallmarks of cancer (sustaining

proliferative signaling, activating invasion

and metastasis, inducing angiogenesis,

deregulating cellular energetics, avoiding

immune destruction, etc.) and with the

known roles of each cell type within breast

tumors (e.g., ‘‘extracellular matrix remod-

eling’’ genes upregulated specifically in

stromal cells and ‘‘sustaining inflammation

in tumor’’ category in immune cells) (Hana-

han and Weinberg, 2011).
We next sought to further validate EDec-stage 2 predictions

of differentially expressed genes against a previously published

dataset, in which gene expression profiling was performed on

epithelial and stromal components of matched invasive carci-

nomas and adjacent normal tissue, after LCM (Ma et al., 2009).

Despite the fact that the study did not separate out the immune

component, focused on the fibrous portion of the stroma (both in
s 17, 2075–2086, November 15, 2016 2081



Figure 5. Switch from Adipose to Fibrous Stroma Influences the Metabolic Phenotype of the Tumor
(A) Enrichment of either OXPHOS or GLYCOLYSIS gene sets (hallmark gene sets MSigDB [Liberzon et al., 2015]) among those upregulated or downregulated in

epithelial or stromal cells of breast cancer. Cell-type-specific differential expression analysis was performed with either by applying EDec to TCGA dataset, or in

the LCM dataset. Dashed lines represent a p value of 0.01.

(B) Estimated stromal expression of either adipocyte or CAF markers across breast cancer subtypes.

(C) Representative H&E staining images of matched tumor and normal breast samples from TCGA (TCGA-BH-A0B2).

(D) Histogram of correlations between stromal expression of OXPHOS genes and stromal expression of marker genes of either adipocyte or CAF across breast

cancer subtypes.

(E) Histogram of correlations between epithelial expression of OXPHOS genes and stromal expression of marker genes of either adipocyte or CAF across breast

cancer subtypes.
normal breast and breast cancer), and used microarrays to

profile expression, we still observe significant overlaps between

the differentially expressed genes predicted by EDec and

those observed in the LCM dataset (Figure S4). Consistency is

observed both for expression differences in epithelial and stro-

mal components.

Switch from Adipose to Fibrous Stroma Supports
Oxidative Metabolism in Cancerous Cells
Tumor cells are often more glycolytic than their normal counter-

parts even in the presence of oxygen. This phenomenon is known

as theWarburg effect (Wallace, 2005) and is thought to occur due
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to the higher anabolic needs of highly proliferative tumor cells

(Vander Heiden et al., 2009). Consistent with this phenomenon,

we observe enrichment for glycolysis genes among those

upregulated in cancer epithelium compared to normal epithelium

(Figure 5A). However, contrary to the reduction in mitochondrial

activity in cancerous cells predicted by the Warburg effect,

we observe strong enrichment for genes involved in oxidative

phosphorylation (OXPHOS) among those upregulated in cancer

epithelium compared to normal epithelium (Figure 5A). Further-

more, upregulation both glycolysis and OXPHOS genes can be

confirmed in comparisons of gene expression profiles of tumor

versus normal breast epithelium after LCM (Figure 5A).



The upregulation of both glycolytic and oxidative pathways in

cancer cells comes with a demand for nutrients and oxygen,

which can be met both by increased angiogenesis and poten-

tially by the support of other cells in the microenvironment. The

previously proposed reverse Warburg effect model (Martinez-

Outschoorn et al., 2014, 2015; Pavlides et al., 2009) postulates

that tumor cells can induce shutdown of oxidative metabolism

in the surrounding stromal cells, causing them to reduce oxygen

consumption and to secrete high-energy metabolites produced

through glycolysis. Those metabolites may then be taken up by

cancerous cells to fuel their own oxidative metabolism. Consis-

tent with that model, we observe enrichment for OXPHOS genes

among those downregulated in tumor stroma, and for glycolysis

genes among those upregulated in the tumor stroma (Figure 5A).

Given that adipocytes have higher rates of mitochondrial

activity than fibroblasts (Hofmann et al., 2012; Wilson-Fritch

et al., 2003), the observed downregulation of OXPHOS genes

in the tumor stroma may reflect the change in stromal composi-

tion, from amore adipose (oxidative) stroma in normal breast to a

more fibrous (glycolytic) stroma in breast tumors. To determine

whether such change indeed occurs, we examined expression

levels of adipocyte (PPARG, CEBPA, ADIPOQ, and FABP4) or

CAF (ACTA2, FN1, FAP, and COL1A1) markers in the stroma of

normal breast and different breast tumor subtypes (Figure 5B).

Adipocyte markers are highly expressed in the stroma of normal

breast and Luminal A tumors, with negligible expression in other

tumor subtypes. CAF markers, in contrast, seem to display the

opposite pattern of expression. Such observations are consis-

tent with fibrosis in breast tumors, and with the higher incidence

of tumors with adipose stroma among those of the Luminal A

subtype (Jung et al., 2015). The change in stromal adipocyte

content between normal breast and breast tumor is also

apparent in H&E staining slides gathered from matched tumor/

normal samples from TCGA (Figure 5C). In the LCM dataset,

only the fibrous portion of the stroma was selected for analysis

both in normal breast and in breast tumors. Therefore, consistent

with the idea that the observed changes in stromal OXPHOS

gene expression result from a change from adipose to fibrous

stroma, no change in expression of those genes is observed in

the LCM dataset (Figure 5A).

We next asked whether the change from adipose to fibrous

stroma was associated with a change from oxidative to glyco-

lytic stroma. To examine this, we analyzed the correlation

between the expression of either adipocyte or CAF markers in

the stroma and the stromal expression of OXPHOS genes across

breast cancer subtypes. We observed that, as expected, the

stromal expression of most OXPHOS genes had a strong

positive correlation with the stromal expression of adipocyte

markers, whereas the expression of CAF markers in the stroma

was negatively correlated with OXPHOS genes (Figure 5D).

The reverse Warburg effect model predicts that a glycolytic

stroma associates with oxidative cancerous epithelial cells,

whereas an oxidative stroma would be associated with more

glycolytic tumor cells. Given that a fibrous stroma seems to be

more glycolytic than an adipose one, we hypothesized that a

change from adipose to fibrous stroma would associate with a

change from glycolytic to oxidative cancerous epithelium. We

therefore analyzed the degree of correlation between the
expression of either adipocyte or CAF markers in the stroma

and the expression of OXPHOS genes in the epithelial frac-

tion across breast cancer subtypes. Stromal expression of

CAF markers was indeed positively correlated with epithelial

OXPHOS gene expression, whereas adipocyte marker expres-

sion in the stroma was negatively correlated with OXPHOS

gene expression in the epithelial fraction (Figure 5E). Interest-

ingly, the stromal expression of CAV1, a gene whose low expres-

sion in breast cancer stroma is known to associate with negative

prognosis and with tumors with reverse Warburg metabolism

(Martinez-Outschoorn et al., 2014, 2015; Pavlides et al., 2009),

is strongly correlated with the expression of adipocyte markers

in the stroma (mean r = 0.97), providing further support for the hy-

pothesis that stromal adiposity associates negatively and the

stromal fibroblast content associates positively with the reverse

Warburg pattern of metabolism.

DISCUSSION

The EDec method provides accurate platform-independent

estimation of cell type proportions, DNA methylation profiles,

and gene expression profiles of constituent cell types. By sig-

nificantly relaxing the dependence on reference methylation

profiles of constituent cell types compared to previous methods

(Housemanet al., 2012), EDec enables deconvolution of complex

tumor tissues where highly accurate references are unavailable.

In contrast to reference-free methods (Houseman et al., 2014,

2016; Rahmani et al., 2016; Zheng et al., 2014; Zou et al.,

2014), EDec’s indirect use of surrogate references greatly assis-

ted in the interpretation of deconvolution results, allowing us to

uncover more complex biological patterns than possible by

applying other reference-free deconvolution techniques.

Furthermore, unlike previous methylation-based deconvolution

methods, EDec does not require that each cell type be explained

by a single component (e.g., cancerous epithelial fraction in the

TCGA dataset was modeled by five different components), thus

making it possible tomodel the full diversity of cancerous epithe-

lial cells. Despite such methodological advances, we note that

thecurrent tissuemodels obtainedbyEDecstill only approximate

the full complexity of breast tumors. For example, more detailed

deconvolution of individual components of the stromal and im-

mune fractions would likely yield additional biological insights.

By addressing the confounding issue of tissue heterogeneity,

EDec enables the comparison of tumors of various cell type

compositions based on inferredmolecular profiles of constitutive

cancer epithelial cells and also the comparisons between cancer

cell fractions of tumors and experimentally more tractable cell

line models. EDec reveals that methylome profiles of breast can-

cer cells are distinct from those of normal epithelial cell types,

and that they can be mapped to specific groups of cancer cell

lines. We also observe that cancerous cells of basal-like tumors

have particularly distinct cellular identity as indicated by their

distinct methylation profiles.

By providing information about the epigenomic and transcrip-

tomic states of both cancerous epithelial and non-epithelial

tumor cells, the method enables the study of heterotypic interac-

tions driving tumor progression. The most striking pattern that

emerged from our analyses is metabolic coupling between
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epithelium and stroma that seems to be related to the degree of

adiposity of the stroma. Specifically, upregulation of both glycol-

ysis and OXPHOS in cancerous epithelial cells supports the idea

that, despite the long-postulated Warburg effect, cancer cells in

breast tumors still upregulate their energy production through

OXPHOS in comparison to normal cells (Zu and Guppy, 2004).

Furthermore, the switch from adipose to fibrous stroma leads

to lower stromal mitochondrial activity, which in turn seems to

support upregulation of OXPHOS in cancerous epithelial cells.

Our findings therefore refine the reverse Warburg effect model

(Martinez-Outschoorn et al., 2014, 2015; Pavlides et al., 2009)

by showing that it may be mediated by changes in cell type

composition of tumor stroma. It is tempting to speculate that

the differences in stroma composition across tumor subtypes

may be related to a different capacity of distinct tumor types to

induce the conversion of adipocytes into fibroblasts (Bochet

et al., 2013; Dirat et al., 2011), which would be more

supportive of reverse Warburg metabolism. Despite these

encouraging results, which are largely confirmed by expression

profiling of microdissected tumors, further experiments focusing

on protein and metabolite levels in different tumor cell types will

be needed to conclusively confirm this model.

In conclusion, EDec reveals layers of biological information

about distinct cell types within solid tumors and about their

heterotypic interactions that were previously inaccessible at

such large scale due to tissue heterogeneity. EDec improves on

previous methods by employing a data-driven approach that

makes indirect use of reference profiles of constituent cell types

and adequately models the variability of methylation profiles

across different cancer cells.We note that EDec is a general tech-

nique and could potentially be applied to different types of tumors

andothercomplexnon-tumor tissues.However, suchapplications

would involve new feature selection with a set of references

appropriate for that tissue, andwouldneed tobevalidated. Inaddi-

tion to themethod itself, we have also developed a ‘‘deconvoluted

breast cancer’’ data resource for breast tumors and normal

breast tissues within the TCGA collection (http://genboree.org/

theCommons/projects/edec). This resource can now be further

explored by the community to derive or test new hypotheses.
EXPERIMENTAL PROCEDURES

ThunderStorm BS-Seq Assay and Breast Cancer Target Panel

A set of 1,000 target regions of around 300 bp in length were preselected for

targeted bisulfite sequencing based on previous reports of their involvement

in breast cancer biology (Table S2). Of the 1,000 genomic regions, 149 were

selected based on cell type-specific methylation based on Roadmap Epige-

nomics reference DNA methylation profiles (Kundaje et al., 2015).

Primer pairs designed to specifically amplify each selected target region

were designed by RainDance Technologies. The ThunderStorm BS-seq assay

using that set of primer pairs was performed at RainDance Technologies

according to the manufacturer’s specification. In summary, that assay uses a

microfluidic chip to performmultiplex amplification of bisulfite-treatedDNA us-

ing the set of primers designed to amplify the selected set of genomic regions.

This step is followed by sequencing of PCR product. Read mapping and

methylation level calling was performed using Bismark (Krueger and Andrews,

2011). Target regions were sequenced on average to 2003 coverage. For all

subsequent analyses, DNA methylation levels for all CpGs overlapping each

of the target regions were averaged, giving an average methylation value for

each region of interest. For eight of the breast cancer samples profiled using
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this assay, 450k arrays were also performed by the TCGA group. We observed

over 0.9 correlation between methylation levels measured by both platforms

over the 614 regions overlapping 450k array probes for all samples analyzed.

TCGA Data Processing

Methylation Array Data

The breast cancer TCGA DNA methylation data were generated using either

the Infinium HumanMethylation450 BeadChip (450k array) or the Infinium

HumanMethylation27 BeadChip (27k array). We used the TCGA Assembler

(Zhu et al., 2014) to download level 3 data (fully processed) for all 27k and

450k profiles. Because most 27k probes are present in the 450k array, we

merged the two datasets and included only overlapping probes in our analysis.

We also removed any probe with a detection p value less than 0.05 in at least

one sample, those that overlapped known SNPs, and those that were previ-

ously reported as cross reactive (Chen et al., 2013). The final number of probes

passing these criteria was 17,907. We also corrected for platform biases using

an Empirical Bayes-based approach (ComBat) (Johnson et al., 2007), imple-

mented in the SVA package in R (Leek et al., 2015).

RNA-Sequencing Data

TCGA Assembler (Zhu et al., 2014) was used to download normalized (RNA

sequencing [RNA-seq] v2�RNA-seq by expectationmaximization) gene tran-

script abundance measurements from the TCGA database. PAM50 classifica-

tion (Parker et al., 2009) based on RNA-seq for 1,030 breast cancer samples

generated by the TCGA Analysis Working Group were obtained from the Uni-

versity of California, Santa Cruz (UCSC), Cancer Genomics Browser (Goldman

et al., 2013). Of the TCGA breast cancer samples that had RNA-sequencing

data and associated PAM50 classification, 1,005 also had DNA methylation

data. For normal breast samples, 100 had both DNA methylation and RNA-

sequencing data. Therefore, the final set of RNA-sequencing samples con-

tained 1,105 samples.

Code and Dataset Availability

The EDec software is available as an R package. It can be downloaded from

https://github.com/BRL-BCM/EDec. Documentation and usage examples

are also available on that same page. All datasets associated with this publica-

tion can be found at http://genboree.org/theCommons/projects/edec. Primary

human breast tumor tissue and adjacent normal tissue were obtained with

local Institutional Review Board (IRB# PRO11090404) from the University of

Pittsburgh’s Health Science Tissue Bank.

ACCESSION NUMBERS

The accession number for the targeted bisulfite sequencing data reported in

this paper is GEO: GSE87297.
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Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y.Y., Dirat, B., Laurent, V., Dray,

C., Guiet, R., Maridonneau-Parini, I., Le Gonidec, S., et al. (2013). Adipocyte-

derived fibroblasts promote tumor progression and contribute to the desmo-

plastic reaction in breast cancer. Cancer Res. 73, 5657–5668.

Cancer Genome Atlas Network (2012). Comprehensive molecular portraits of

human breast tumours. Nature 490, 61–70.

Chen, Y.A., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke,

B.W., Gallinger, S., Hudson, T.J., andWeksberg, R. (2013). Discovery of cross-

reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethy-

lation450 microarray. Epigenetics 8, 203–209.

Coussens, L.M., Zitvogel, L., and Palucka, A.K. (2013). Neutralizing tumor-

promoting chronic inflammation: a magic bullet? Science 339, 286–291.

Debey, S., Schoenbeck, U., Hellmich, M., Gathof, B.S., Pillai, R., Zander, T.,

and Schultze, J.L. (2004). Comparison of different isolation techniques prior

gene expression profiling of blood derived cells: impact on physiological

responses, on overall expression and the role of different cell types. Pharma-

cogenomics J. 4, 193–207.

Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang,

Y.Y., Meulle, A., Salles, B., Le Gonidec, S., et al. (2011). Cancer-associated

adipocytes exhibit an activated phenotype and contribute to breast cancer

invasion. Cancer Res. 71, 2455–2465.

Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H.,

Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., et al. (2008). Stromal

gene expression predicts clinical outcome in breast cancer. Nat. Med. 14,

518–527.

Gaujoux, R., and Seoighe, C. (2012). Semi-supervised nonnegative matrix

factorization for gene expression deconvolution: a case study. Infect. Genet.

Evol. 12, 913–921.

Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair,

V.S., Xu, Y., Khuong, A., Hoang, C.D., and Diehn, M. (2015). The prognostic

landscape of genes and infiltrating immune cells across human cancers.

Nat. Med. 21, 938–945.

Goldman, M., Craft, B., Swatloski, T., Ellrott, K., Cline, M., Diekhans, M., Ma,

S., Wilks, C., Stuart, J., Haussler, D., and Zhu, J. (2013). The UCSC Cancer

Genomics Browser: update 2013. Nucleic Acids Res. 41, D949–D954.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next gener-

ation. Cell 144, 646–674.

Hofmann, A.D., Beyer, M., Krause-Buchholz, U., Wobus, M., Bornhäuser, M.,
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