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Abstract

We put recent results by Chen, Deng, Du, Stanley and Yan on crossings and nestings of matchings and
set partitions in the larger context of the enumeration of fillings of Ferrers shape on which one imposes
restrictions on their increasing and decreasing chains. While Chen et al. work with Robinson–Schensted-
like insertion/deletion algorithms, we use the growth diagram construction of Fomin to obtain our results.
We extend the results by Chen et al., which, in the language of fillings, are results about 0-1-fillings, to
arbitrary fillings. Finally, we point out that, very likely, these results are part of a bigger picture which also
includes recent results of Jonsson on 0-1-fillings of stack polyominoes, and of results of Backelin, West and
Xin and of Bousquet-Mélou and Steingrímsson on the enumeration of permutations and involutions with
restricted patterns. In particular, we show that our growth diagram bijections do in fact provide alternative
proofs of the results by Backelin, West and Xin and by Bousquet-Mélou and Steingrímsson.
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1. Introduction

In the recent paper [6], Chen et al. used Robinson–Schensted-like insertion/deletion processes
to prove enumeration results about matchings and, more generally, set partitions with certain re-
strictions on their crossings and nestings. At the heart of their results, there is Greene’s theorem
[12] on the relation between increasing and decreasing subsequences in permutations and the
shape of the tableaux which are obtained by the Robinson–Schensted correspondence. The pur-
pose of this paper is to put these results in a larger context, namely the context of enumeration of
fillings of shapes where one imposes restrictions on the increasing and decreasing chains of the
fillings.

As we explain in Section 3, the results in [6] are equivalent to results about 0-1-fillings of
triangular arrangements of cells. We show in Section 2 that (almost) all the theorems of [6]
generalize to the setting of 0-1-fillings of arrangements of cells which have the form of a Ferrers
diagram. In contrast to Chen et al., we work with the growth diagram construction of Fomin [8]
which, in my opinion, leads to a more transparent presentation of the bijections between fillings
and oscillating sequences of (integer) partitions which underlie these results.

In Section 4, we extend these constructions to the “Knuth setting,” that is, to fillings where
the constraint that in each row and in each column there is at most one 1 is dropped. The re-
sults that can be obtained in this way are presented in Theorems 7–13. They are based on
four variations of the Robinson–Schensted–Knuth correspondence (presented here in the lan-
guage of growth diagrams). These four variations are, in one form or another, well-known (see
[11, Appendix A.4]), and their growth diagram versions have been worked out by Roby [21]
(for the original Robinson–Schensted–Knuth correspondence) and van Leeuwen [19]. For the
convenience of the reader, we recall these correspondences (in growth diagram version and in
insertion version) in Section 4, and we use the opportunity to also work out the correspond-
ing variations of Greene’s theorem on increasing and decreasing chains, see Theorems 8, 10
and 12, which so far has only been done for the original Robinson–Schensted–Knuth correspon-
dence.

The motivation to go beyond the setting of Chen et al. comes from recent results by Jonsson
[15] on the enumeration of 0-1-fillings of stack polyominoes (shapes, which are more general
than Ferrers diagrams) with restricted length of increasing and decreasing chains of 1’s. The re-
striction that in each row and in each column of the shape there is at most one 1 is not present
in the results by Jonsson. Unfortunately, the result on 0-1-fillings (see Theorem 13, Eq. (4.6))
which we are able to obtain from the growth diagram construction does not imply Jonsson’s re-
sult, although it comes very close. Nevertheless, we believe that all these phenomena are part of
a bigger picture that needs to be uncovered. To this bigger picture there belong certainly results
by Backelin, West and Xin [1] and by Bousquet-Mélou and Steingrímsson [2] on the enumera-
tion of permutations and involutions with restricted patterns. Indeed, we show that our growth
diagram bijections provide alternative proofs for their results. (I owe this observation to Mireille
Bousquet-Mélou.) In spite of this, apparently we do not yet have the right understanding for all
these phenomena (not even regarding [1] and [2]). In particular, this paper seems to indicate that
Robinson–Schensted–Knuth-like insertion/deletion, respectively growth diagram processes, do
not seem to be right tools for proving the results from [15], say. All this is made more precise in
Section 5, where we also formulate several open problems that should lead to an understanding
of the “big picture.”

To conclude the introduction, we point out that, independently from [6], Robinson–Schensted-
like algorithms between set partitions and oscillating sequences of (integer) partitions have also
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been constructed by Halverson and Lewandowski [13], with the completely different motivation
of explaining combinatorial identities arising from the representation theory of the partition al-
gebra. Halverson and Lewandowski provide both the insertion/deletion and the growth diagram
presentation of the algorithms. However, in their considerations, Greene’s theorem does not play
any role.

2. Growth diagrams

In this section we review the basic facts on growth diagrams (cf. [3, Section 3; 21, Chapter 2;
22; 23, Section 5.2; 25, Section 7.13]).

We start by fixing the standard partition notation (cf. e.g. [25, Section 7.2]). A partition is
a weakly decreasing sequence λ = (λ1, λ2, . . . , λ�) of positive integers. This also includes the
empty partition (), denoted by ∅. For the sake of convenience, we shall often tacitly identify
a partition λ = (λ1, λ2, . . . , λ�) with the infinite sequence (λ1, λ2, . . . , λ�,0,0, . . .), that is, the
sequence which arises from λ by appending infinitely many 0’s. To each partition λ, one asso-
ciates its Ferrers diagram (also called Ferrers shape), which is the left-justified arrangement of
squares with λi squares in the ith row, i = 1,2, . . .. We define a partial order ⊆ on partitions by
containment of their Ferrers diagrams. The union μ ∪ ν of two partitions μ and ν is the partition
which arises by forming the union of the Ferrers diagrams of μ and ν. Thus, if μ = (μ1,μ2, . . .)

and ν = (ν1, ν2, . . .), then μ ∪ ν is the partition λ = (λ1, λ2, . . .), where λi = max{μi, νi} for
i = 1,2, . . .. The intersection μ ∩ ν of two partitions μ and ν is the partition which arises
by forming the intersection of the Ferrers diagrams of μ and ν. Thus, if μ = (μ1,μ2, . . .)

and ν = (ν1, ν2, . . .), then μ ∩ ν is the partition ρ = (ρ1, ρ2, . . .), where ρi = min{μi, νi} for
i = 1,2, . . .. The conjugate of a partition λ is the partition (λ′

1, . . . , λ
′
λ1

) where λ′
j is the length

of the j th column in the Ferrers diagram of λ.
The objects of consideration in the present paper are fillings of arrangements of cells which

look like Ferrers shapes in French notation, that is, which have straight left side, straight bottom
side, and which support a descending staircase, see Fig. 1(a) for an example. We shall encode
such Ferrers shapes by sequences of D’s and R’s, where D stands for “down” and R stands
for “right.” To construct the sequence of D’s and R’s of a Ferrers shape we trace the right/up
boundary of the Ferrers shape from top-left to bottom-right and write D whenever we encounter
a down-step, respectively R whenever we encounter a right-step. For example, the Ferrers shape
in Fig. 1(a) would be encoded by RDRDDRDDRRD.

We fill the cells of such a Ferrers shape F with non-negative integers. In this section (and in
the following section) the fillings will be restricted to 0-1-fillings such that every row and every
column contains at most one 1. See Fig. 1(b) for an example.

Next, the corners of the cells are labeled by partitions such that the following two conditions
are satisfied:

(C1) A partition is either equal to its right neighbor or smaller by exactly one square, the same
being true for a partition and its top neighbor.

(C2) A partition and its right neighbor are equal if and only if in the column of cells of F

below them there appears no 1 and if their bottom neighbors are also equal to each other.
Similarly, a partition and its top neighbor are equal if and only if in the row of cells of
F to the left of them there appears no 1 and if their left neighbors are also equal to each
other.
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(a) A Ferrers shape in French notation (b) A filling of the Ferrers shape

Fig. 1.

Fig. 2. A growth diagram.

See Fig. 2 for an example. (More examples can be found in Figs. 4–7.) There, we use a short
notation for partitions. For example, 11 is short for (1,1). Moreover, we changed the convention
of representing the filling slightly for better visibility, by suppressing 0’s and by replacing 1’s
by X’s. Indeed, the filling represented in Fig. 2 is the same as the one in Fig. 1(b).

Diagrams which obey the conditions (C1) and (C2) are called growth diagrams.
We are interested in growth diagrams which obey the following (forward) local rules (see

Fig. 3).

(F1) If ρ = μ = ν, and if there is no cross in the cell, then λ = ρ.
(F2) If ρ = μ �= ν, then λ = ν.
(F3) If ρ = ν �= μ, then λ = μ.
(F4) If ρ,μ, ν are pairwise different, then λ = μ ∪ ν.
(F5) If ρ �= μ = ν, then λ is formed by adding a square to the (k + 1)st row of μ = ν, given that

μ = ν and ρ differ in the kth row.
(F6) If ρ = μ = ν, and if there is a cross in the cell, then λ is formed by adding a square to the

first row of ρ = μ = ν.
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(a) A cell without cross (b) A cell with cross

Fig. 3.

Remarks. (1) Due to conditions (C1) and (C2), the rules (F1)–(F4) are forced. In particular, the
uniqueness in rule (F4) is dictated by the constraint that neighboring partitions can only differ by
at most one square. Thus, the only “interesting” rules are (F5) and (F6).

(2) Given a 0-1-filling such that every row and every column contains at most one 1, and
given a labeling of the corners along the left side and the bottom side of a Ferrers shape by
partitions such that property (C1) and the additional property that two neighboring partitions
along the bottom side can only be different if there is no 1 in the column of cells of F above
them, respectively two neighboring partitions along the left side can only be different if there is
no 1 in the row of cells of F to the right of them, the (forward) rules (F1)–(F6) allow one to
algorithmically find the labels of the other corners of the cells by working one’s way to the right
and to the top.

(3) The rules (F5) and (F6) are carefully designed so that one can also work one’s way the
other direction, that is, given λ,μ, ν, one can reconstruct ρ and the filling of the cell. The corre-
sponding (backward) local rules are:

(B1) If λ = μ = ν, then ρ = λ.
(B2) If λ = μ �= ν, then ρ = ν.
(B3) If λ = ν �= μ, then ρ = μ.
(B4) If λ,μ, ν are pairwise different, then ρ = μ ∩ ν.
(B5) If λ �= μ = ν, then ρ is formed by deleting a square from the (k − 1)st row of μ = ν, given

that μ = ν and λ differ in the kth row, k � 2.
(B6) If λ �= μ = ν, and if λ and μ = ν differ in the first row, then ρ = μ = ν.

In case (B6) the cell is filled with a 1 (an X). In all other cases the cell is filled with a 0.
Thus, given a labeling of the corners along the right/up border of a Ferrers shape, one can

algorithmically reconstruct the labels of the other corners of the cells and of the 0-1-filling by
working one’s way to the left and to the bottom.

In view of the above remarks, we have the following theorem. (See also [21, Theorem 2.6.7],
[9, Theorem 3.6.3].)

Theorem 1. Let F be a Ferrers shape given by the D-R-sequence w = w1w2 . . .wk . The 0-
1-fillings of F with the property that every row and every column contains at most one 1 are
in bijection with sequences (∅ = λ0, λ1, . . . , λk = ∅), where λi−1 and λi differ by at most one
square, and λi−1 ⊆ λi if wi = R, whereas λi−1 ⊇ λi if wi = D. Moreover, λi−1 � λi if and
only if there is a 1 in the column of cells of F below the corners labeled by λi−1 and λi , and
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λi−1 � λi if and only if there is a 1 in the row of cells of F to the left of the corners labeled by
λi−1 and λi .

Remarks. (1) In analogy to classical notions (cf. [21,22,26]), we call the sequences (λ0, λ1,

. . . , λk) in this theorem oscillating tableaux of type w and shape ∅/∅.
(2) There are more general versions of Theorem 1 for skew Ferrers shapes. Since we have no

need for these, we refrain from reproducing them here.

Proof of Theorem 1. To construct the mapping from the 0-1-fillings to the generalized os-
cillating tableaux, we label all the corners along the left side and the bottom side of F by ∅.
Then we apply the forward local rules (F1)–(F6) to construct labels for all the other cor-
ners of F . The oscillating tableau (λ0, λ1, . . . , λk) is read off as the labels along the right/up
border of F . For example, the 0-1-filling in Fig. 1(b) is mapped to the oscillating tableau
(∅,1,1,11,11,1,1,1,∅,∅,1,∅) (see Fig. 2).

That we obtain an oscillating tableau of type w is obvious from conditions (C1) and (C2).
That the map is a bijection is obvious from the preceding discussion. �

It is now a well-known fact that, in the case that the Ferrers shape is a square and that we
consider 0-1-fillings with exactly one 1 in each row and each column, the bijection in Theorem 1
is equivalent to the Robinson–Schensted correspondence. Namely, 0-1-fillings of an n×n square
with exactly one 1 in each row and each column are in bijection with permutations. On the other
hand, according to Theorem 1, the sequences (λ0, λ1, . . . , λ2n) which we read off the top side and
the right side of the square are sequences with ∅ = λ0 � λ1 � · · · � λn � · · · � λ2n−1 � λ2n = ∅.
In their turn, these are in bijection with pairs (P,Q) of standard tableaux of the same shape,
the common shape consisting of n squares. (See [25, Section 7.13].) The standard tableau Q

is defined by the first half of the sequence, ∅ = λ0 � λ1 � · · · � λn, the entry i being put in the
square by which λi and λi−1 differ, and, similarly, the standard tableau P is defined by the second
half of the sequence, ∅ = λ2n � λ2n−1 � · · · � λn. It is then a theorem (cf. [3, pp. 95–98], [25,
Theorem 7.13.5]) that the bijection between permutations and pairs of standard tableaux defined
by the growth diagram on the square coincides with the Robinson–Schensted correspondence, P

being the insertion tableau, and Q being the recording tableau.
The special case where the Ferrers shape is triangular is discussed in more detail in the next

section.
In addition to its local description, the bijection in Theorem 1 has also a global description.

The latter is a consequence of a theorem of Greene [12] (see also [3, Theorems 2.1 and 3.2]).
In order to formulate the result, we need the following definitions: a NE-chain of a 0-1-filling is
a sequence of 1’s in the filling such that any 1 in the sequence is above and to the right of the
preceding 1 in the sequence. Similarly, a SE-chain of a 0-1-filling is a set of 1’s in the filling such
that any 1 in the sequence is below and to the right of the preceding 1 in the sequence.

Theorem 2. Given a growth diagram with empty partitions labeling all the corners along the left
side and the bottom side of the Ferrers shape, the partition λ = (λ1, λ2, . . . , λ�) labeling corner c

satisfies the following two properties:

(G1) For any k, the maximal cardinality of the union of k NE-chains situated in the rectangular
region to the left and below of c is equal to λ1 + λ2 + · · · + λk .
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(G2) For any k, the maximal cardinality of the union of k SE-chains situated in the rectangular
region to the left and below of c is equal to λ′

1 + λ′
2 + · · · + λ′

k , where λ′ denotes the
partition conjugate to λ.

In particular, λ1 is the length of the longest NE-chain in the rectangular region to the left and
below of c, and λ′

1 is the length of the longest SE-chain in the same rectangular region.

In order to formulate the main theorem of this section, we introduce one more piece of no-
tation. We write N(F ;n;NE = s,SE = t) for the number of 0-1-fillings of the Ferrers shape F

with exactly n 1’s, such that there is at most one 1 in each column and in each row, and such that
the longest NE-chain has length s and the longest SE-chain, the smallest rectangle containing the
chain being contained in F , has length t .

Theorem 3. For any Ferrers shape F and positive integers s and t , we have

N(F ;n;NE = s,SE = t) = N(F ;n;NE = t,SE = s).

Proof. We define a bijection between the 0-1-fillings counted by N(F ;n;NE = s,SE = t)

and those counted by N(F ;n;NE = t,SE = s). Let the Ferrers shape F be given by the D-
R-sequence w = w1w2 . . .wk . Given a 0-1-filling counted by N(F ;n;NE = s,SE = t) we
apply the mapping of the proof of Theorem 1. Thus, we obtain an oscillating tableau (∅ =
λ0, λ1, . . . , λk = ∅). Since the 0-1-filling had n entries 1, in the oscillating tableau there are
exactly n “rises” λi−1 � λi (and, hence, exactly n “falls” λi−1 � λi ). Moreover, by Theorem 2,
we have λi

1 � s and (λj )′1 � t for all i and j , with equality for at least one i and at least one j .
Now we apply the inverse mapping to the sequence (∅ = (λ0)′, (λ1)′, . . . , (λk)′ = ∅) of conjugate
partitions. Thus, we obtain a 0-1-filling counted by N(F ;n;NE = t,SE = s). �

If we specialize Theorem 3 to the case where F is a square and to 0-1-fillings which have
exactly one entry 1 in each row and in each column, then we obtain a trivial statement: The
number of permutations of {1,2, . . . , n} with longest increasing subsequence of length s and
longest decreasing subsequence of length t is equal to the number of permutations of {1,2, . . . , n}
with longest increasing subsequence of length t and longest decreasing subsequence of length s.
This statement is indeed trivial because, given a former permutation π1π2 . . . πn, the reversal
πnπn−1 . . . π1 will belong to the latter permutations.

However, for other Ferrers shapes F , there is no trivial explanation for Theorem 3. In partic-
ular, as we are going to show in the next section, if we specialize Theorem 3 to the case where
F is triangular, then we obtain a non-obvious theorem, originally due to Chen et al. [6], about
crossings and nestings in set partitions.

3. Crossings and nestings in set partitions and matchings

In this section we show that the main theorems in [6] are, essentially, special cases of the
theorems in the previous section.

First of all, we have to recall the definitions and basic objects from [6]. The objects
of consideration in [6] are set partitions of {1,2, . . . , n}. A block {i1, i2, . . . , ib}, i1 < i2 <

· · · < ib , of such a set partition is represented by the set of pairs {(i1, i2), (i2, i3), . . . ,
(ib−1, ib)}. More generally, a set partition is represented by the union of all sets of pairs, the
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union being taken over all its blocks. This representation is called the standard representa-
tion of the set partition. For example, the set partition {{1,4,5,7}, {2,6}, {3}} is represented
as the set {(1,4), (4,5), (5,7), (2,6)}. Next, one defines a k-crossing of a set partition to be
a subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of its standard representation where i1 < i2 < · · · <

ik < j1 < j2 < · · · < jk . Similarly, one defines a k-nesting of a set partition to be a subset
{(i1, j1), (i2, j2), . . . , (ik, jk)} of its standard representation where i1 < i2 < · · · < ik < jk <

· · · < j2 < j1. (These notions have intuitive pictorial meanings if one connects a pair (i, j) in the
standard representation of a set partition by an arc, cf. [6].) Finally, given a set partition P , we
write cross(P ) for the maximal number k such that P has a k-crossing, and we write nest(P ) for
the maximal number k such that P has a k-nesting,

In [6, Eq. (3)], the following theorem is proved by a Robinson–Schensted-like inser-
tion/deletion process, which sets up a bijection between set partitions and “vacillating tableaux”
(see below).

Theorem 4. Let n, s, t be positive integers. Then the number of set partitions of {1,2, . . . , n}
with cross(P ) = s and nest(P ) = t is equal to the number of set partitions of {1,2, . . . , n} with
cross(P ) = t and nest(P ) = s.

As we now explain, this is just a special case of Theorem 3, where F is triangular. More
precisely, let Δn be the triangular shape with n − 1 cells in the bottom row, n − 2 cells in the
row above, etc., and 1 cell in the top-most row. See Fig. 4 for an example in which n = 7. (The
filling and labeling of the corners should be ignored at this point. For convenience, we also joined
pending edges at the right and at the top of Δn.)

We represent a set partition of {1,2, . . . , n}, given by its standard representation {(i1, j1),

(i2, j2), . . . , (im, jm)}, as a 0-1-filling, by putting a 1 in the ir th column and the jr th row from
above (where we number rows such that the row consisting of j −1 cells is the row numbered j ),
r = 1,2, . . . ,m. The filling corresponding to the set partition {{1,4,5,7}, {2,6}, {3}} is shown in
Fig. 4, where we present again 1’s by X’s and suppress the 0’s.

Fig. 4. Bijection between {{1,4,5,7}, {2,6}, {3}} and (∅,∅,1,1,11,11,11,1,2,1,11,1,1,∅,∅).
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It is obvious that this defines a bijection between set partitions of {1,2, . . . , n} and 0-1-fillings
of Δn in which every row and every column contains at most one 1. Moreover, a k-crossing
corresponds to a SE-chain in the fillings, while a k-nesting corresponds to a NE-chain. Thus,
Theorem 3 specialized to F = Δn yields Theorem 4 immediately.

Figure 4 shows as well the labeling of the corners by partitions if we apply the correspon-
dence of Theorem 1. The “extra” corners created by the pending edges are labeled by empty
partitions. The oscillating tableaux which one reads along the right/up border of Δn are se-
quences (∅ = λ0, λ1, . . . , λ2n = ∅) with the property that λ2i+1 is obtained from λ2i by doing
nothing or by deleting one square, and λ2i is obtained from λ2i−1 by doing nothing or adding
a square. Such oscillating tableaux are called vacillating tableaux in [6]. Again, from Theo-
rem 1, it is obvious that set partitions of {1,2, . . . , n} are in bijection with vacillating tableaux
(∅ = λ0, λ1, . . . , λ2n = ∅). Figure 4 does in fact work out the bijection for the set partition of Ex-
ample 4 in [6]. One can verify that the resulting vacillating tableau is the same as in [6]. Indeed,
in general, the bijection between set partitions and vacillating tableaux described in [6, Section 3]
is equivalent with our growth diagram bijection. This follows from the afore-mentioned fact that
the growth diagrams model Robinson–Schensted insertion.

The main theorem in [6] is in fact a refinement of Theorem 4. This refinement takes also into
account the minimal and the maximal elements in the blocks of a set partition P . While, from the
growth diagram point of view, this refinement is special for triangular Ferrers shapes and cannot
be extended in a natural way to arbitrary Ferrers shapes, it follows nevertheless with equal ease
from the growth diagram point of view. Given a set partition P , let min(P ) be the set of minimal
elements of the blocks of P , and let max(P ) be the set of maximal elements of the blocks of P .
Then [6, Theorem 1] reads as follows.

Theorem 5. Let n, s, t be positive integers, and let S and T be two subsets of {1,2, . . . , n}.
Then the number of set partitions of {1,2, . . . , n} with cross(P ) = s, nest(P ) = t , min(P ) = S,
max(P ) = T is equal to the number of set partitions of {1,2, . . . , n} with cross(P ) = t ,
nest(P ) = s, min(P ) = S, max(P ) = T .

Proof. As in the proof of Theorem 3, we set up a bijection between the two different sets of
set partitions. In fact, using the correspondence between set partitions and 0-1-fillings that we
explained after the statement of Theorem 4, the bijection is exactly the same as the one in the
proof of Theorem 3. We only have to figure out how one can detect the minimal and maximal
elements in blocks in the vacillating tableau to which a set partition is mapped, and verify that
these are kept invariant under conjugation of the partitions of the vacillating tableau.

Let {i1, i2, . . . , ib} be a block of the set partition P . Then, in the 0-1-filling corresponding
to P , there is a 1 in column i1 and row i2, while there is no 1 in row i1. Similarly, there is a 1 in
column ib−1 and row ib , while there is no 1 in column ib . Consequently, the two corners on the
right of row i1 will be labeled by partitions λ2i1−2 and λ2i1−1 with λ2i1−2 = λ2i1−1, and the two
corners on the top of column i1 will be labeled by partitions λ2i1−1 and λ2i1 with λ2i1−1 � λ2i1 .
On the other hand, the two corners on the right of row ib will be labeled by partitions λ2ib−2

and λ2ib−1 with λ2ib−2 � λ2ib−1, and the two corners on the top of column ib will be labeled by
partitions λ2ib−1 and λ2ib with λ2ib−1 = λ2ib . Thus, in summary, the sets min(P ) and max(P ) can
be detected from the growth properties of the subsequences (λ2i−2, λ2i−1, λ2i ) of the vacillating
tableau corresponding to P . Clearly, these remain invariant under conjugation of the partitions.
Hence, the theorem. �
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For the sake of completeness, we also review how one can realize the other Robinson–
Schensted-like insertion/deletion mappings in [6].

To begin with, [6, Theorem 5] describes a bijection between pairs (P,T ) of set partitions P of
{1,2, . . . , n} and (partial) standard tableaux T of shape λ with set of entries contained in max(P )

and vacillating tableaux (∅ = λ0, λ1, . . . , λ2n = λ). In growth diagram language, the bijection
can be realized by putting the 0-1-filling corresponding to P in the cells of Δn, labeling all the
corners along the left side of Δn by ∅, and labeling the corners along the bottom side of Δn by
the increasing sequence of partitions corresponding to T , that is, the �th corner is labeled by the
partition corresponding to the shape that is covered by the entries of T contained in {1,2, . . . , �},
� = 0,1, . . . , n. Figure 5 shows the growth diagram describing the bijection in the case that

(P,T ) =
(

1 7
5

, {{1}, {2,6}, {3}, {4,7}, {5}}
)

. (3.1)

This is, in fact, the pair (P,T ) of Example 3 in [6]. As the figure shows, this pair is mapped to
the vacillating tableau

(∅,∅,1,1,2,2,2,2,21,21,211,21,21,11,21), (3.2)

in agreement with the result of the (differently defined) bijection in [6].
In [6, Section 4], a variant of the bijection between set partitions and vacillating tableaux is

discussed, namely a bijection between set partitions and hesitating tableaux. Here, a hesitating
tableau is an oscillating tableau (∅ = λ0, λ1, . . . , λ2n = ∅) with the property that, for each i,
either (1) λ2i−2 = λ2i−1 � λ2i , or (2) λ2i−2 � λ2i−1 = λ2i , or (3) λ2i−2 � λ2i−1 � λ2i .

In terms of growth diagrams, this bijection can be again realized as a special case of the
bijection described in the proof of Theorem 3. (This realization is also attributed to Michael
Korn in [6].) Here, we do not transform set partitions into 0-1-fillings of a triangular shape, but
into 0-1-fillings of a slightly modified shape that may vary depending on the original set partition.
More precisely, given a set partition P of {1,2, . . . , n}, we deform Δn by attaching an extra cell
in the ith row from above and the ith column for every singleton block {i} of P , and by attaching

Fig. 5. Bijection between the pair in (3.1) and the vacillating tableau in (3.2).
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Fig. 6. Bijection between {{1,4,5,7}, {2,6}, {3}} and(∅,∅,1,1,11,21,11,21,2,21,11,1,1,∅,∅).

an extra cell in the j th row from above and the j th column whenever (i, j) and (j, k) are both
in the standard representation of P , for some i and k. Then, as before, we transform P into a
0-1-filling of this modification of Δn, by placing a 1 in the ith column and j th row if (i, j)

is a pair in the standard representation of P , and, in addition, by placing a 1 in the added cell
in the ith row and the ith column for every singleton block {i} of P . All other cells are filled
with 0’s. An example is shown in Fig. 6. It shows the 0-1-filling corresponding to the partition
{{1,4,5,7}, {2,6}, {3}} under this modified rule. The added cells are indicated by dotted lines.

To realize the bijection to hesitating tableaux, we label all the corners along the left side and
the bottom side by ∅, and then apply the forward local rules (F1)–(F6) to determine the labels
for all other corners. Along the right/up border one reads off a hesitating tableau. It is easy to see
that this defines a bijection. The example in Fig. 6 maps the partition {{1,4,5,7}, {2,6}, {3}} to
the hesitating tableau (∅,∅,1,1,11,21,11,21,2,21,11,1,1,∅,∅). This example corresponds
to Example 6 in [6].

For the sake of completeness, we record the consequence of this bijection from [6, The-
orem 11]. In the statement, we need the notion of enhanced k-crossings and k-nestings. To
define these, one first defines the enhanced representation of a set partition P to be union of
the standard representation of P with the set of pairs (i, i), where i ranges over all the single-
ton blocks {i} of P . Then one defines an enhanced k-crossing of a set partition to be a subset
{(i1, j1), (i2, j2), . . . , (ik, jk)} of its enhanced representation where i1 < i2 < · · · < ik � j1 <

j2 < · · · < jk . Similarly, one defines an enhanced k-nesting of a set partition to be a subset
{(i1, j1), (i2, j2), . . . , (ik, jk)} of its enhanced representation where i1 < i2 < · · · < ik � jk <

· · · < j2 < j1. Finally, given a set partition P , we write cross(P ) for the maximal number k such
that P has an enhanced k-crossing, and we write nest(P ) for the maximal number k such that P

has an enhanced k-nesting,
With the above notation, the following variant of Theorem 5 holds.

Theorem 6. Let n, s, t be positive integers, and let S and T be two subsets of {1,2, . . . , n}.
Then the number of set partitions of {1,2, . . . , n} with cross(P ) = s, nest(P ) = t , min(P ) = S,
max(P ) = T is equal to the number of set partitions of {1,2, . . . , n} with cross(P ) = t ,
nest(P ) = s, min(P ) = S, max(P ) = T .
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Fig. 7. Bijection between {{1,4}, {2,6}, {3,5}} and {∅,1,11,21,2,1,∅}.

We conclude this section by recalling the growth diagram bijection between matchings and
(ordinary) oscillating tableaux (cf. [21, Section 4] or [22]). Clearly, matchings of {1,2, . . . ,2n}
can be alternatively seen as partitions of {1,2, . . . ,2n} all the blocks of which consist of two
elements. In their turn, if we transform the latter to the corresponding 0-1-fillings of the trian-
gular shape Δn, then these filling have the property that in the union of the ith column and the
ith row (from above) there is exactly one 1. See Fig. 7 for the 0-1-filling corresponding to the
matching {{1,4}, {2,6}, {3,5}}. Consequently, if we apply the bijection from the proof of Theo-
rem 3 we obtain a vacillating tableau (∅ = λ0, λ1, . . . , λ4n = ∅) with the property that, for each i,
either (1) λ2i−2 = λ2i−1 � λ2i , or (2) λ2i−2 � λ2i−1 = λ2i . Thus, the information contained in
the partitions λ2i−1 is superfluous and can be dropped. What remains is an (ordinary) oscillating
tableau, that is, a sequence (∅ = λ0, λ2, λ4, . . . , λ4n = ∅) with the property that successive parti-
tions in the sequence differ by exactly one square. Figure 7 shows that, under this bijection, the
matching {{1,4}, {2,6}, {3,5}} is mapped to the oscillating tableau {∅,1,11,21,2,1,∅}. This is
in accordance with Example 7 in [6].

4. Growth diagrams for arbitrary fillings of Ferrers shapes

In this section we embed the considerations of the previous two sections into the larger con-
text where we relax the conditions on the fillings that we imposed so far: namely, in this section,
we do not insist anymore that our fillings have at most one 1 in each row and in each column and
otherwise 0’s. That is, we shall allow more than one 1 in rows and columns and we shall also
allow arbitrary non-negative entries in our fillings. As it turns out, there are now four variants
how to define growth diagrams for these more general fillings which lead to (different) exten-
sions of Theorem 3. (All of these are, of course, special instances of the general set-up in [10,
Theorem 3.6].) They have been described in some detail in [21] and [19], albeit without giving
the analogues of Greene’s theorem in all four cases, the latter being exactly what we need for our
purposes. We use the opportunity here to provide thorough descriptions of all four of these cor-
respondences in this section, including the analogues of Greene’s theorem. The corresponding
extensions of Theorems 1 and 2 are given in Theorems 7–12, while the corresponding extensions
of Theorem 3 are given in Theorem 13.

To sketch the idea, let us consider the filling of the 2 × 2 square on the left of Fig. 8. (At this
point, the labellings of the corners of the cells should be ignored.) We cannot apply the forward
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Fig. 8. The “blow-up” of an arbitrary filling.

local rules to such a diagram since the entries in the cells are not just 1’s and 0’s, and, even if
they should be (such as in the filling of the rectangle on the left of Fig. 10), there could be several
1’s in a column or in a row. To remedy this, we “separate” the entries. That is, we construct a
diagram with more rows and columns so that entries which are originally in the same column or
in the same row are put in different columns and rows in the larger diagram, and that an entry
m is replaced by m 1’s in the new diagram, all of which placed in different rows and columns.
For this “separation” we have two choices for the columns and two choices for the rows: either
we “separate” entries in a row by putting them into a chain from bottom/left to top/right, or we
“separate” them by putting them into a chain from top/left to bottom/right, the same being true
for entries in a column. In total, this gives 2 × 2 = 4 choices of separation. As we shall see,
two out of these four (the Second and Third Variant below) are, in fact, equivalent modulo a
reflection of growth diagrams. Interestingly, this equivalence can only be seen directly from the
growth diagram algorithms, but not from the insertion algorithms that go with them. (The First
and Fourth Variant are also related, but in a much more subtle way. See [19, Section 3.2].)

4.1. First variant: RSK

The first variant (described in detail in [21, Section 4.1]) generalizes the Robinson–Schensted–
Knuth (RSK) correspondence. It is defined for arbitrary fillings of a Ferrers shape with non-
negative integers.

Let us consider the filling of the 2×2 square on the left of Fig. 8. (The labellings of the corners
of the cells should be ignored at this point.) The filling is now converted into the 0-1-filling of a
larger shape (where, again, 1’s are represented by X’s and 0’s are suppressed). If a cell is filled
with entry m, we replace m by a chain of m X’s arranged from bottom/left to top/right. If there
should be several entries in a column then we arrange the chains coming from the entries of the
column as well from bottom/left to top/right. We do the same for the rows. The diagram on the
right of Fig. 8 shows the result of this conversion when applied to the filling on the left of Fig. 8.
(Still, the labellings of the corners of the cells in the augmented diagram should be ignored at
this point.) In the figure, the original columns and rows are indicated by thick lines, whereas the
newly created columns and rows are indicated by thin lines.

Now we can apply the forward rules (F1)–(F6) to the augmented diagram. That is, we label
all the corners of the cells on the left side and the bottom side of the augmented diagram by ∅,
and then we apply (F1)–(F6) to determine the labels of all the other corners. Subsequently, we
“shrink back” the augmented diagram, that is, we record only the labels of the corners located at
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Fig. 9. A cell filled with a non-negative integer m.

the intersections of thick lines. This yields the labels on the left of Fig. 8. (For a different example
see Fig. 10.)

The labellings by partitions that one obtains in this manner have again the property that a
partition is contained in its right neighbor and in its top neighbor. In addition, two neighboring
partitions differ by a horizontal strip, that is, by a set of squares no two of which are in the same
column.

Clearly, we could also define local forward and backward rules directly on the original
(smaller) diagram. This has been done in detail in [19, Section 3.1]. For the sake of complete-
ness, we recall these rules here in a slightly different, but of course equivalent, fashion. Consider
the cell in Fig. 9, filled by a non-negative integer m, and labeled by the partitions ρ, μ, ν, where
ρ ⊆ μ and ρ ⊆ ν, μ and ρ differ by a horizontal strip, and ν and ρ differ by a horizontal strip.
Then λ is determined by the following algorithm:

(F10) Set CARRY := m and i := 1.
(F11) Set λi := max{μi, νi} + CARRY.
(F12) If λi = 0, then stop. The output of the algorithm is λ = (λ1, λ2, . . . , λi−1). If not, then set

CARRY := min{μi, νi} − ρi and i := i + 1. Go to (F11).

Conversely, given μ,ν,λ, where μ ⊆ λ and ν ⊆ λ, where λ and μ differ by a horizontal strip,
and where λ and ν differ by a horizontal strip, the backward algorithm works in the following
way:

(B10) Set i := max{j : λj is positive}, and CARRY := 0.
(B11) Set ρi := min{μi, νi} − CARRY.
(B12) Set CARRY := λi − max{μi, νi} and i := i − 1. If i = 0, then stop. The output of the

algorithm is ρ = (ρ1, ρ2, . . .) and m = CARRY. If not, go to (B11).

The extension of Theorem 1 then reads as follows. In the statement of the theorem below (and
also later), for two partitions with ν ⊆ μ we write μ/ν for the difference of the Ferrers diagrams
corresponding to μ and ν, respectively, that is, for the set of squares which belong to the Ferrers
diagram of μ but not to the Ferrers diagram of ν.

Theorem 7. Let F be a Ferrers shape given by the D-R-sequence w = w1w2 . . .wk . Fillings
of F with non-negative integers are in bijection with sequences (∅ = λ0, λ1, . . . , λk = ∅), where
λi/λi−1 is a horizontal strip if wi = R, whereas λi−1/λi is a horizontal strip if wi = D.

It is now a well-known fact (cf. [21, Section 4.1]) that, in the case that the Ferrers shape is a
rectangle, the bijection in Theorem 7 is equivalent to the Robinson–Schensted–Knuth correspon-
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dence. Namely, assuming that F is a p × q rectangle, according to Theorem 7, the sequences
(λ0, λ1, . . . , λp+q) which we read off the top side and the right side of the square are sequences
with ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λq ⊇ · · · ⊇ λp+q−1 ⊇ λp+q = ∅, where λi/λi−1 is a horizontal strip
for i = 1,2, . . . , q , and where λi/λi+1 is a horizontal strip for i = q, q + 1, . . . , p + q − 1.
In their turn, these are in bijection with pairs (P,Q) of semistandard tableaux of the same
shape, the common shape consisting of n squares, where n is the sum of all the entries of
the filling. (See [21]. The semistandard tableau Q is defined by the first half of the sequence,
∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λq , the entry i being put in the squares by which λi and λi−1 dif-
fer, and, similarly, the semistandard tableau P is defined by the second half of the sequence,
∅ = λp+q ⊆ λp+q−1 ⊆ · · · ⊆ λq .) It is then a theorem that the bijection between fillings and
pairs of semistandard tableaux defined by the growth diagram on the rectangle coincides with
the Robinson–Schensted–Knuth correspondence, P being the insertion tableau, and Q being
the recording tableau. (The reader is referred to [11, Chapter 4], [20], [23, Section 4.8], [25,
Section 7.11] for extensive information on the Robinson–Schensted–Knuth correspondence.)

Figure 10 is meant to illustrate this, using an example that will serve as a running example
here as well as for the other three variants. Let us recall that the RSK correspondence starts with a
rectangular filling as on the left of Fig. 10, transforms the filling into a two-rowed array, and then
transforms the two-rowed array into a pair of semistandard tableaux by an insertion procedure.
The two-rowed array is obtained from the filling, by considering the entry, m say, in the ith row
(from below) and j th column (from the left), and recording m pairs

(
j
i

)
. These pairs are then

ordered into a two-rowed array such that the entries in the top row are weakly increasing, and, in
the bottom row, entries must be weakly increasing below equal entries in the top row. Thus, the
filling in Fig. 8 corresponds to the two-rowed array

(
1 1 1 2 2
1 2 2 1 1

)
,

while the filling in Fig. 10 corresponds to the two-rowed array

(
1 1 1 2 2
1 3 4 1 2

)
. (4.1)

Fig. 10. Growth diagrams and RSK.
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Now the bottom entries are inserted according to row insertion, in which an element bumps the
first entry in a row which is strictly larger. The top entries keep track of where the individual
insertions stop. If this is applied to the two-rowed array in (4.1), one obtains

(P,Q) =
(

1 1 2
3 4

,
1 1 1
2 2

)
,

which is indeed in agreement with the increasing sequences of partitions along the right side and
the top side of the rectangle, respectively.

Again, in addition to its local description, the bijection in Theorem 7 has also a global de-
scription. It is again a consequence of Greene’s theorem (stated here as Theorem 2) and the
description of the bijection based on “separation” of entries along columns and rows. In order to
formulate the result, we adapt our previous definitions: a NE-chain of a filling is a sequence of
non-zero entries in the filling such that any entry in the sequence is weakly above and weakly
to the right of the preceding entry in the sequence. The length of such a NE-chain is defined as
the sum of all the entries in the chain. On the other hand, a se-chain of a filling is a sequence of
non-zero entries in the filling such that any entry in the sequence is strictly below and strictly to
the right of the preceding entry in the sequence. In contrast to NE-chains, we define the length
of a se-chain as the number of entries in the chain. (These definitions can be best motivated as
weak, respectively strict, chains of balls in the matrix–ball model for fillings described in [11,
Section 4.2].)

Theorem 8. Given a diagram with empty partitions labeling all the corners along the left side
and the bottom side of the Ferrers shape, which has been completed according to RSK, the
partition λ = (λ1, λ2, . . . , λ�) labeling corner c satisfies the following two properties:

(G11) For any k, the maximal sum of all the entries in a collection of k pairwise disjoint NE-
chains situated in the rectangular region to the left and below of c is equal to λ1 + λ2 +
· · · + λk .

(G12) Fix a positive integer k and consider collections of k se-chains with the property that
no entry e can be in more than e of these se-chains. Then the maximal cardinality of
the multiset (!) union of the se-chains in such a collection of se-chains situated in the
rectangular region to the left and below of c is equal to λ′

1 + λ′
2 + · · · + λ′

k , where λ′
denotes the partition conjugate to λ.

In particular, λ1 is the length of the longest NE-chain in the rectangular region to the left and
below of c, and λ′

1 is the length of the longest se-chain in the same rectangular region.

4.2. Second variant: dual RSK

The second variant generalizes the “dual correspondence” of Knuth [20], which we abbreviate
as dual RSK. It is only defined for 0-1-fillings of a Ferrers shape. (In contrast to Sections 2 and 3,
these can, however, be arbitrary, that is, there can be several 1’s in a row or a column.)

As an illustration for this second variant, we use again the filling on the left of Fig. 10, which
is reproduced on the left of Fig. 11. (The labellings of the corners of the cells should be ignored
at this point.) The filling is now converted into a 0-1-filling of a larger shape, but in a different
way than before (where, again, 1’s will be represented by X’s and 0’s are suppressed). Namely,
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Fig. 11. Growth diagrams and dual RSK.

if there should be several 1’s in a column then, as in the first variant, we arrange them from
bottom/left to top/right. However, we do the “opposite” for the rows, that is, if there should be
several 1’s in a row then we arrange them from top/left to bottom/right. The diagram on the right
of Fig. 11 shows the result of this conversion when applied to the filling on the left of Fig. 11.

Now, as in the first variant, we apply the forward rules (F1)–(F6) to the augmented diagram,
and, once this is done, we “shrink back” the augmented diagram, as before. This yields the labels
on the left of Fig. 11.

Of course, the labellings by partitions that one obtains in this manner have again the property
that a partition is contained in its right neighbor and in its top neighbor. However, now two
partitions which are horizontal neighbors differ by a horizontal strip, whereas two partitions
which are vertical neighbors differ by a vertical strip, that is, by a set of squares no two of which
are in the same row.

Direct local forward and backward rules on the original (smaller) diagram are also available
for this variant, see [19, Section 6]. Our presentation is again slightly different, but equivalent.
Namely, consider the cell in Fig. 9, filled by m = 0 or m = 1 and labeled by the partitions ρ, μ,
ν, where ρ ⊆ μ and ρ ⊆ ν, μ and ρ differ by a horizontal strip, and ν and ρ differ by a vertical
strip. Then λ is determined by the following algorithm:

(F20) Set CARRY := m and i := 1.
(F21) Set λi := max{μi + CARRY, νi}.
(F22) If λi = 0, then stop. The output of the algorithm is λ = (λ1, λ2, . . . , λi−1). If not, then set

CARRY := min{μi + CARRY, νi} − ρi and i := i + 1. Go to (F21).

Conversely, given μ,ν,λ, where μ ⊆ λ and ν ⊆ λ, where λ and μ differ by a vertical strip,
and where λ and ν differ by a horizontal strip, the backward algorithm works in the following
way:

(B20) Set i := max{j : λj is positive} and CARRY := 0.
(B21) Set ρi := min{μi, νi − CARRY}.
(B22) Set CARRY := λi − max{μi, νi − CARRY} and i := i − 1. If i = 0, then stop. The output

of the algorithm is ρ = (ρ1, ρ2, . . .) and m = CARRY. If not, go to (B21).

The corresponding extension of Theorem 1 then reads as follows.
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Theorem 9. Let F be a Ferrers shape given by the D-R-sequence w = w1w2 . . .wk . Then 0-1-
fillings of F with non-negative integers are in bijection with sequences (∅ = λ0, λ1, . . . , λk = ∅),
where λi/λi−1 is a horizontal strip if wi = R, whereas λi−1/λi is a vertical strip if wi = D.

In the case that the Ferrers shape is a rectangle, the bijection in Theorem 9 is equivalent to
dual RSK. Namely, assuming that F is a p ×q rectangle, according to Theorem 9, the sequences
(λ0, λ1, . . . , λp+q) which we read off the top side and the right side of the square are sequences
with ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λq ⊇ · · · ⊇ λp+q−1 ⊇ λp+q = ∅, where λi/λi−1 is a horizontal strip
for i = 1,2, . . . , q , and where λi/λi+1 is a vertical strip for i = q, q + 1, . . . , p + q − 1. In
their turn, these are in bijection with pairs (P,Q), where Q and the transpose of P are semi-
standard tableaux of the same shape, the common shape consisting of n squares, where n is the
sum of all the entries of the filling. The semistandard tableau Q is defined by the first half of
the sequence, ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λq , as before, while P is defined by the second half of the
sequence, ∅ = λp+q ⊆ λp+q−1 ⊆ · · · ⊆ λq , as before. Since, in the latter chain of partitions, suc-
cessive partitions differ by vertical strips, P is not a semistandard tableau, but its transpose is.
This bijection between fillings and pairs (P,Q) coincides with dual RSK. (We refer the reader
to [11, Appendix A.4.3; 20, Section 5; 23, Section 4.8; 25, Section 7.14] for more information
on the dual correspondence.)

Figure 11 illustrates this with our running example. Let us recall that dual RSK starts with a
rectangular filling, consisting of 0’s and 1’s, as on the left of Fig. 11. The filling is now trans-
formed into a two-rowed array, by recording a pair

(
j
i

)
for a 1 in the ith row (from below) and

j th column (from the left). Subsequently, the pairs are ordered into a two-rowed array as before,
so that we obtain again the two-rowed array (4.1). Now the bottom entries are inserted according
to column insertion (cf. [20, Section 5, Algorithm INSERT*]; the tableaux there must be trans-
posed to obtain our version here), in which an element bumps the first entry in a column which
is larger than or equal to it. Again, the top entries keep track of where the individual insertions
stop. If this is applied to the two-rowed array in (4.1), one obtains

(P t ,Qt ) =
(1 1

2 3
4

,

1 2
1 2
1

)
, (4.2)

which is indeed in agreement with the increasing sequences of partitions along the right side and
the top side of the rectangle, respectively, if one transposes both arrays in (4.2).

Again, in addition to its local description, the bijection in Theorem 9 has also a global de-
scription. It is again a consequence of Greene’s theorem (stated here as Theorem 2) and the
description of the bijection based on “separation” of entries along columns and rows. In order to
formulate the global description of the bijection in terms of increasing and decreasing chains, we
need to define a nE-chain of a filling to be a sequence of 1’s in the filling such that any 1 in the
sequence is strictly above and weakly to the right of the preceding 1 in the sequence. Further-
more, we define a Se-chain of a filling to be a sequence of 1’s in the filling such that any 1 in the
sequence is weakly below and strictly to the right of the preceding 1 in the sequence. The length
of a nE-chain or a Se-chain is defined as the number of 1’s in the chain. (Again, these definitions
can be best motivated as chains of balls in the matrix–ball model for fillings described in [11,
Section 4.2].)
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Theorem 10. Given a diagram with empty partitions labeling all the corners along the left side
and the bottom side of the Ferrers shape, which has been completed according to dual RSK, the
partition λ = (λ1, λ2, . . . , λ�) labeling corner c satisfies the following two properties:

(G21) For any k, the maximal cardinality of the union of k nE-chains situated in the rectangular
region to the left and below of c is equal to λ1 + λ2 + · · · + λk .

(G22) For any k, the maximal cardinality of the union of k Se-chains situated in the rectangular
region to the left and below of c is equal to λ′

1 + λ′
2 + · · · + λ′

k , where λ′ denotes the
partition conjugate to λ.

In particular, λ1 is the length of the longest nE-chain in the rectangular region to the left and
below of c, and λ′

1 is the length of the longest Se-chain in the same rectangular region.

4.3. Third variant: RSK′

The third variant which we have in mind is, in growth diagram terms, the “reflection” of
the second variant. By “reflection,” we mean reflection of growth diagrams in a diagonal. More
precisely, given a 0-1-filling of a Ferrers diagram F , we separate 1’s in the same column by
arranging them from top/left to bottom/right, while we separate 1’s in the same row by arranging
them from bottom/left to top/right. What we obtain when we apply this to our running example,
is shown in Fig. 12.

We abbreviate this algorithm as RSK′. Since, as we said, in growth diagram terms, this is just
the second variant, but reflected in a diagonal, the relevant facts have already been told when
discussing dual RSK, with one exception: we have to explain to which insertion algorithm RSK′
is equivalent.

In order to do so, we transform again our 0-1-filling in Fig. 12 into a two-rowed array. This is
again done by constructing pairs from the 1’s in the filling, as before. However, the pairs are now
ordered in a different way. Namely, we order the pairs such that the entries in the top row are
weakly increasing, in the bottom row, however, entries must be decreasing below equal entries
in the top row. Thus, the filling in Fig. 12 corresponds to the two-rowed array

(
1 1 1 2 2
4 3 1 2 1

)
. (4.3)

Fig. 12. Growth diagrams and RSK′.
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Now we apply row insertion to the bottom entries to construct a semistandard tableau P and use
the top entries to record the insertions in the array Q. In general, Q will not be a semistandard
tableau, but the transpose of Q will be. If we apply this procedure to our two-rowed array in
(4.3), then we obtain the pair

(P,Q) =
⎛
⎜⎝

1 1
2
3
4

,

1 2
1
1
2

⎞
⎟⎠ ,

which is indeed in agreement with the increasing sequences of partitions along the right side
and the top side of the rectangle in Fig. 12, respectively. (An equivalent insertion algorithm is
described in [11, Appendix A.4.3, (1d), (2d)].)

4.4. Fourth variant: dual RSK′

Our last variant is, as the first variant, defined for arbitrary fillings of a Ferrers shape with
non-negative integers. We abbreviate it by dual RSK ′.

Our running example serves once more to illustrate this fourth variant, see Fig. 13. Here,
we separate entries in the following way. If a cell is filled with entry m, we replace m by a
chain of m X’s arranged from top/left to bottom/right. If there should be several entries in a
column then we arrange the chains coming from the entries of the column as well from top/left
to bottom/right. We do the same for the rows. (In brief, everything is reversed compared to the
first variant.)

Finally, as always, we apply the forward rules (F1)–(F6) to the augmented diagram, and, once
this is done, we “shrink back” the augmented diagram. See Fig. 13.

The labellings by partitions that one obtains in this manner have again the property that a
partition is contained in its right neighbor and in its top neighbor. However, here, two neighboring
partitions differ by a vertical strip.

The corresponding direct local forward and backward rules have been worked out in [19,
Section 3.2]. Again, for the sake of completeness, we recall them here in a slightly different
fashion. Let us again consider the cell in Fig. 9, filled by a non-negative integer m, and labeled
by the partitions ρ, μ, ν, where ρ ⊆ μ and ρ ⊆ ν, μ and ρ differ by a vertical strip, and ν and ρ

Fig. 13. Growth diagrams and dual RSK′ .
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differ by a vertical strip. Then, with the usual truth function χ(A) = 1 if A is true and χ(A) = 0
otherwise, λ is determined by the following algorithm:

(F40) Set CARRY := m and i := 1.
(F41) Set λi := max{μi, νi} + min{χ(ρi = μi = νi),CARRY}.
(F42) If λi = 0, then stop. The output of the algorithm is λ = (λ1, λ2, . . . , λi−1). If not, then set

CARRY := CARRY−min{χ(ρi = μi = νi),CARRY} + min{μi, νi} − ρi and i := i + 1.
Go to (F41).

Conversely, given μ,ν,λ, where μ ⊆ λ and ν ⊆ λ, where λ and μ differ by a vertical strip,
and where λ and ν differ by a vertical strip, the backward algorithm works in the following way:

(B40) Set i := max{j : λj is positive} and CARRY := 0.
(B41) Set ρi := min{μi, νi} − min{χ(μi = νi = λi),CARRY}.
(B42) Set CARRY := CARRY−min{χ(μi = νi = λi),CARRY} + λi − max{μi, νi} and i :=

i−1. If i = 0, then stop. The output of the algorithm is ρ = (ρ1, ρ2, . . .) and m = CARRY.
If not, go to (B41).

The corresponding extension of Theorem 1 then reads as follows.

Theorem 11. Let F be a Ferrers shape given by the D-R-sequence w = w1w2 . . .wk . Fillings
of F with non-negative integers are in bijection with sequences (∅ = λ0, λ1, . . . , λk = ∅), where
λi/λi−1 is a vertical strip if wi = R, whereas λi−1/λi is a vertical strip if wi = D.

In the case that the Ferrers shape is a rectangle, the bijection in Theorem 11 is equivalent to
the following insertion algorithm. In order to describe this algorithm, we transform again our
filling in Fig. 13 into a two-rowed array. We do this in the same way as in the insertion procedure
modeling the third variant. Namely, for an entry m in the ith row (from below) and j th column
(from the left), we record m pairs

(
j
i

)
. The pairs are then ordered such that the entries in the

top row are weakly increasing, in the bottom row, however, entries must be decreasing below
equal entries in the top row. Clearly, in the case of our running example, this yields again the
two-rowed array (4.3).

Now we apply column insertion to the bottom entries to construct the semistandard tableau
P t and use the top entries to record the insertions in the semistandard tableau Qt . If we apply
this procedure to our two-rowed array in (4.3), then we obtain the pair

(P t ,Qt ) =
(

1 1 3 4
2

,
1 1 1 2
2

)
, (4.4)

which is indeed in agreement with the increasing sequences of partitions along the right side
and the top side of the rectangle in Fig. 13, respectively, if one transposes both arrays in (4.4).
(An equivalent insertion algorithm is described in [11, Appendix A.4.1], and is called “Burge
correspondence” there since it appears as an aside in [5]. The same terminology is used in [19,
Section 3.2].)

As before, the bijection in Theorem 11 has also a global description, as a consequence of
Greene’s theorem. In view of previous definitions, it should be clear what we mean by ne-chains
and SE-chains. We are then ready to formulate the corresponding result.
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Theorem 12. Given a diagram with empty partitions labeling all the corners along the left side
and the bottom side of the Ferrers shape, which has been completed according to dual RSK′, the
partition λ = (λ1, λ2, . . . , λ�) labeling corner c satisfies the following two properties:

(G41) Fix a positive integer k and consider collections of k ne-chains with the property that
no entry e can be in more than e of these ne-chains. Then the maximal cardinality of
the multiset (!) union of the ne-chains in such a collection of ne-chains situated in the
rectangular region to the left and below of c is equal to λ1 + λ2 + · · · + λk .

(G42) For any k, the maximal sum of all the entries in a collection of k pairwise disjoint SE-
chains situated in the rectangular region to the left and below of c is equal to λ′

1 + λ′
2 +

· · · + λ′
k , where λ′ denotes the partition conjugate to λ.

In particular, λ1 is the length of the longest ne-chain in the rectangular region to the left and
below of c, and λ′

1 is the length of the longest SE-chain in the same rectangular region.

4.5. Consequences on the enumeration of fillings with restrictions on their increasing and
decreasing chains

We are now ready to state and prove the two extensions of Theorem 3 which result
from Theorems 8, 10 and 12. In the statement, in analogy to previous notation, we write
N∗(F ;n;NE = s, se = t) for the number of fillings of the Ferrers shape F with non-negative
integers with sum of entries equal to n such that the longest NE-chain has length s and the
longest se-chain, the smallest rectangle containing the chain being contained in F , has length t .
The notation N∗(F ;n;ne = s,SE = t) has the obvious analogous meaning. Furthermore, we
write N01(F ;n;nE = s,Se = t) for the number of 0-1-fillings of the Ferrers shape F with
sum of entries equal to n such that the longest nE-chain has length s and the longest Se-chain,
the smallest rectangle containing the chain being contained in F , has length t . The notation
N01(F ;n;Ne = s, sE = t) has the obvious analogous meaning. We then have the following ex-
tensions of Theorem 3.

Theorem 13. For any Ferrers shape F and positive integers s and t , we have

N∗(F ;n;NE = s, se = t) = N∗(F ;n;ne = t,SE = s) (4.5)

and

N01(F ;n;nE = s,Se = t) = N01(F ;n;Ne = t, sE = s). (4.6)

Proof. We sketch the proof of (4.5). We define a bijection between the fillings counted
by N∗(F ;n;NE = s, se = t) and those counted by N∗(F ;n;ne = t,SE = s). Let the Fer-
rers shape F be given by the D-R-sequence w = w1w2 . . .wk . Given a filling counted by
N∗(F ;n;NE = s, se = t) we apply the mapping of the proof of Theorem 7. Thus, we obtain
a sequence (∅ = λ0, λ1, . . . , λk = ∅), where λi/λi−1 is a horizontal strip if wi = R, whereas
λi−1/λi is a horizontal strip if wi = D. Since the sum of the entries in the filling was n, in the
sequence the sum of the amounts of “rises” λi−1 ⊆ λi equals n (the amount is the number of
squares by which λi and λi−1 differ; equivalently, the sum of the amounts of “falls” λi−1 ⊇ λi is
exactly n). Moreover, by Theorem 8, we have λi � s and (λj )′ � t for all i and j , with equality
1 1
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for at least one i and at least one j . Now we apply the inverse mapping from Theorem 11 to the
sequence (∅ = (λ0)′, (λ1)′, . . . , (λk)′ = ∅) of conjugate partitions. Thus, due to Theorem 12, we
obtain a filling counted by N∗(F ;n;ne = t,SE = s).

The proof of (4.6) is completely analogous, but uses the mapping from Theorem 9 to go
from fillings counted by N01(F ;n;nE = s,Se = t) to oscillating sequences of partitions, and
the inverse “reflected” mapping from Section 4.3 to go from the sequence of conjugate partitions
to fillings counted by N01(F ;n;Ne = s, sE = t). Theorem 10 is used to see how the lengths of
the nE-chains, Se-chains, Ne-chains, and sE-chains are related to the partitions in the oscillating
sequences of partitions. �

In the special case that F is triangular, it is straight-forward to use the bijections of this section
to formulate extensions of Theorems 4–6 to partitions of multisets. We omit the details here for
the sake of brevity. The reader will have no difficulty to work them out.

5. The big picture?

In this paper we have been investigating which results on fillings, where length restrictions are
imposed on their chains, can be obtained by Robinson–Schensted-like correspondences. While I
believe that the corresponding analysis here is (more or less) complete, I believe at the same time
that the obtained results constitute just a small section in a much larger field of phenomena that
are concerned with fillings which avoid certain patterns. The evidence that I can put forward are
recent results by Backelin, West and Xin [1], Bousquet-Mélou and Steingrímsson [2] (generaliz-
ing previous results of Jaggard [14]), and Jonsson [15]. This, speculative, last section is devoted
to a comparison of these results with ours, and to posing some problems that suggest themselves
in this context.

To begin with, in [15] Jonsson considers 0-1-fillings of stack polyominoes. Here, a stack poly-
omino is the concatenation of a Ferrers shape in French notation that has been reflected in a
vertical line with another (unreflected) Ferrers shape in French notation. See Fig. 14(a) for an
example. Extending previously introduced notation, we write N01(F ;n;ne = s, se = t) for the
number of 0-1-fillings of a stack polyomino F with exactly n 1’s such that the longest ne-chain,
the smallest rectangle containing the chain being contained in F , has length s and the longest
se-chain, the smallest rectangle containing the chain being contained in F , has length t . Then
Jonsson proves in [15, Theorem 14] (Theorem 13 of [15] contains even a refinement) that

N01(F ;n;ne = s, se = ∗) = N01(F ′;n;ne = s, se = ∗) (5.1)

if n is maximal so that 0-1-configurations exist, the ne-chains of which are of length at most s,
where F ′ is the Ferrers shape which arises by permuting the columns of F so that they are
ordered from the longest column to the shortest. (se = ∗ means that there is no restriction on the
length of the se-chains.) Moreover, he and Welker [16] extended this result to arbitrary n. Not
only that, he also says that he expects these results to remain true if F is a moon polyomino, i.e.,
an arrangement of cells such that along any row of cells and along any column of cells there is no
hole, and such that any two columns of F have the property that one column can be embedded
in the other by applying a horizontal shift. See Fig. 14(b) for an example.

Jonsson proves his result by an involved inductive argument which does not shed any light
why his result is true. Jonsson and Welker, on the other hand, use machinery from commutative
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(a) A stack polyomino (b) A moon polyomino

Fig. 14.

algebra to prove their generalization. However, the most natural proof that one could think of is,
of course, a bijective one. This leads us to our first problem.

Problem 1. Find a bijective proof of (5.1).

Where is the (at least, potential) connection to the material of our paper? If we would apply
Jonsson and Welker’s results to a stack polyomino F and its reflection in a vertical line, we would
obtain that

N01(F ;n;ne = s, se = ∗) = N01(F ;n;ne = ∗, se = s). (5.2)

Clearly, this is very close to the assertions of Theorems 3 and 13, and it brings us to our next
problem.

Problem 2. Is it true that for any Ferrers shape (stack polyomino, moon polyomino) F and
positive integers s and t , we have

N01(F ;n;ne = s, se = t) = N01(F ;n;ne = t, se = s)? (5.3)

The reader should observe that, although Theorems 3 and 13 are very similar to (5.3), the
bijections used in their proofs cannot be used to prove (5.3). Certainly, Theorem 3 addresses 0-1-
fillings, but 0-1-fillings with the additional condition that in each row and in each column there
is at most one 1. Also (4.6) is about 0-1-fillings, and indeed about 0-1-fillings without further
restrictions. However, the bijection does not keep track of lengths of ne-chains and se-chains,
but instead of lengths of nE-chains, Se-chains, Ne-chains and sE-chains. On the other hand, (4.5)
does address ne-chains and se-chains. Indeed, it would imply

N∗(F ;n;ne = s, se = ∗) = N∗(F ;n;ne = ∗, se = s). (5.4)

As Jakob Jonsson (private communication) pointed out to me, although this is not an assertion
about 0-1-fillings but about arbitrary fillings, and although it does not imply (5.3), it implies at
least (5.2). Namely, consider the simplicial complex Δne�s of 0-1-fillings of F with ne-chains
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being of length at most s. (We refer the reader to [24, Chapter II] or [4, Chapter 5] for terminology
and background on simplicial complexes and Stanley–Reisner rings.) Similarly, define the sim-
plicial complex Δse�s . There is an obvious bijection between monomials in the Stanley–Reisner
ring of Δne�s and arbitrary fillings of F with ne-chains being of length at most s, and there is an
analogous, equally obvious bijection between monomials in the Stanley–Reisner ring of Δse�s

and arbitrary fillings of F with se-chains being of length at most s. Using this language, (5.4)
says that there are as many monomials of degree n in the Stanley–Reisner ring of Δne�s as there
are monomials of degree n in the Stanley–Reisner ring of Δse�s . But this says that the Hilbert
functions for these two Stanley–Reisner rings are the same, which implies that the correspond-
ing simplicial complexes have the same h-vector and dimension, and hence the same f -vector.
The latter means that, for any positive integer n, there are as many 0-1-fillings with n 1’s and
ne-chains being of length at most s as there are 0-1-fillings with n 1’s and se-chains being of
length at most s, which is equivalent to (5.2).

Problem 3. Are there extensions of Theorems 3 and 13 to stack polyominoes? To moon polyomi-
noes? Are there analogues of (5.1) for nE-chains, Se-chains, Ne-chains, sE-chains, for arbitrary
fillings?

The papers by Backelin, West and Xin [1] and Bousquet-Mélou and Steingrímsson [2], on the
other hand, consider 0-1-fillings of Ferrers shapes with the property that there is exactly one 1 in
every row and in every column of the Ferrers shape. As Mireille Bousquet-Mélou pointed out to
me, the bijection behind Theorem 3 provides in fact alternative proofs of the results in these two
papers. In the case of the main result in [2] this alternative proof is actually considerably simpler.

To be more specific, it is shown in [1, Proposition 2.3] that the main theorem in that paper,
[1, Theorem 2.1], is implied by the key assertion (see [1, Proposition 2.2]) that there are as many
such fillings of a Ferrers shape F with longest NE-chain of length s as there are such fillings with
longest SE-chain of length s. This is indeed covered by Theorem 3, by choosing n to be equal to
the maximum of width and height of F . (Clearly, if width and height of a Ferrers shape F are not
equal, then there are no 0-1-fillings with exactly one 1 in every row and in every column of F .)

Bousquet-Mélou and Steingrímsson [2], on the other hand, prove an analogue of the main
result of Backelin, West and Xin for involutions (see [2, Theorem 1]). Their proof is based on
a result due to Jaggard [14, Theorem 3.1] (see also [2, Proposition 3]) which shows that it is
enough to prove that, for any symmetric Ferrers shape F , there are as many symmetric 0-1-fillings
of F (as above, that is, with the property that there is exactly one 1 in every row and in every
column of F ) with longest NE-chain of length s as there are such symmetric 0-1-fillings with
longest SE-chain of length s. (Here, “symmetric” means that the filling, respectively the Ferrers
diagram, remains invariant under a reflection with respect to the main diagonal. In the case of the
Ferrers diagram, a more familiar term is “self-conjugate.”) It is now not too difficult to see that
the growth diagram bijection from Section 2 proving Theorems 1 and 3 provides a proof of the
latter key assertion. Namely, under the bijection in the proof of Theorem 1, symmetric 0-1-fillings
correspond to symmetric sequences (∅ = λ0, λ1, . . . , λk = ∅) as described in the theorem, that is,
to sequences with the property λi = λk−i for all i. Hence, the bijection in Theorem 3 restricts to
a bijection between symmetric 0-1-fillings.

The above arguments show that our bijection proves actually a refined version of [1,
Proposition 2.2], in which one can keep track of the length of NE-chains and SE-chains at
the same time. More generally, these arguments prove a version of Theorem 3 for symmet-
ric 0-1-fillings. Namely, for a symmetric (i.e. self-conjugate) Ferrers diagram F let us write
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Nsym(F ;n;NE = s,SE = t) for the number of symmetric 0-1-fillings of the Ferrers shape F

with exactly n 1’s, such that there is at most one 1 in each column and in each row, and such that
the longest NE-chain has length s and the longest SE-chain, the smallest rectangle containing the
chain being contained in F , has length t . Then we have the following theorem.

Theorem 14. For any symmetric Ferrers shape F and positive integers s and t , we have

Nsym(F ;n;NE = s,SE = t) = Nsym(F ;n;NE = t,SE = s).

Although the above arguments treat the results from [1] and [2] in a uniform manner, and
although it seems that they elucidate them to a considerable extent, there remain still some mys-
teries that seem worth to be investigated further. These mysteries concern the transformation due
to Backelin, West and Xin on which the proofs in [1] and [2] are based. In order to explain this,
let us recall that neither in [1] nor in [2] are the above enumerative key assertions proved by a
direct bijection, but in a round-about way which, in the end, is again based on a bijection, but
a bijection between different sets of objects. This bijection is described in Section 3 of [1] and
is called “transformation φ” in [2]. Let us call it the “BWX transformation.” As is explained in
[1, Proposition 2.4], the BWX transformation induces a bijection for the first of the two above
key assertions, and vice versa, any bijection for the key assertion induces a bijection that could
replace the BWX transformation. Thus, the question arises whether the BWX transformation and
our growth diagram bijection have something to do which each other, via the link in [1, Proposi-
tion 2.4]. This question is of particular interest in connection with the article [2]: the key result
in the latter paper is the proof that the BWX transformation commutes with reflection. This turns
out to be extremely hard. On the other hand, that the growth diagram bijection in Theorem 3
commutes with reflection is a triviality.

Problem 4. What is the relation between the BWX transformation and the growth diagram bijec-
tions in Section 2?

Interestingly, in a not at all equally precise, but somewhat speculative form, this question was
already posed at the end of the Introduction of [2]. Now, in the light of the above remarks and
observations, this speculation seems to get firm ground.

For the convenience of the reader, we also state the “symmetric” version of Theorem 13
explicitly, which follows in a manner completely analogous to the way Theorem 14 followed
from the bijection in Theorem 3. In the statement, N∗

sym(F ;n;NE = s, se = t) denotes the
number of symmetric fillings of the symmetric Ferrers shape F with non-negative integers
with sum of entries equal to n such that the longest NE-chain has length s and the longest
se-chain, the smallest rectangle containing the chain being contained in F , has length t .
The notation N∗

sym(F ;n;ne = s,SE = t) has the obvious analogous meaning. Furthermore,

N01
sym(F ;n;nE = s,Se = t) denotes the number of symmetric 0-1-fillings of the symmetric Fer-

rers shape F with sum of entries equal to n such that the longest nE-chain has length s and the
longest Se-chain, the smallest rectangle containing the chain being contained in F , has length t .
The notation N01

sym(F ;n;Ne = s, sE = t) has the obvious analogous meaning.

Theorem 15. For any symmetric Ferrers shape F and positive integers s and t , we have

N∗
sym(F ;n;NE = s, se = t) = N∗

sym(F ;n;ne = t,SE = s) (5.5)
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and

N01
sym(F ;n;nE = s,Se = t) = N01

sym(F ;n;Ne = t, sE = s). (5.6)

If one goes back to the papers by Backelin, West and Xin, and by Bousquet-Mélou and Stein-
grímsson, which are about permutations with forbidden patterns, then one may wonder if there
are also theorems in the case of arbitrary fillings for more general patterns than just increasing or
decreasing patterns, or in the case of 0-1-fillings where one relaxes the condition that every row
and column must contain exactly one 1. On the other hand, if one recalls the results by Jonsson
and Welker, then one is tempted to ask whether the above theorems may be extended, in one
form or another, to more general shapes. Thus, we are led to the following problem.

Problem 5. Are there extensions of Theorems 3, 13–15, or of (5.3) to more general patterns? To
more general shapes?

Finally one may also ask the question whether there is anything special with 0-1-fillings as
opposed to arbitrary fillings, or whether one can also obtain results in the spirit of this paper for
fillings where the size of the entries is at most m, for an arbitrary fixed m.

Problem 6. Can one extend the results for 0-1-fillings to fillings with entries from {0,1,2, . . . ,m}?

Further papers which should be considered in the present context are [7,17,18].

Note added in proof

Martin Rubey proves Jonsson’s conjecture for the moon polyominoes in his preprint “Increas-
ing and decreasing sequences in fillings of moon polyominoes” (math.CO/0604140) and obtains
significant results concerning Problems 1–3.
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