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Abstract

The class of stochastic processes is characterized which, as multiplicative noise with large
intensity, stabilizes a linear system with companion form d × d-matrix. This includes the char-
acterization of parametric noise which stabilizes the damped inverse pendulum. The proof yields
also an expansion of the top Lyapunov exponent in terms of the noise intensity as well as
a criterion for a stationary di�usion process permitting a stationary integral and it shows that
stabilizing noise averages the Lyapunov spectrum. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

1.1. Goal of the paper

It is known that the damped inverse linearized pendulum cannot be stabilized via
parameter excitation by means of white noise dW, W a Wiener process, although im-
proved stability behavior, i.e. lower instability, can be observed in presence of white
noise with small intensity (Pardoux and Wihstutz, 1988). On the other hand, per-
turbed white noise such as dF = −
0F dt + 
1 dW, F an Ornstein–Uhlenbeck process
(
0; 
1¿ 0), which has the same “amount of randomness” as white noise, does stabilize
the inverse pendulum: if its intensity is high enough (see Kao and Wihstutz, 1994).
This phenomenon also has been made visible by simulations as well as by means of
physical experiments (recently Popp, 1995). Surprisingly, the same stabilizing e�ect
can be achieved with the help of degenerate noise dF = f0(�) dt, where � is a “very
thin” stationary background noise (Kao and Wihstutz, 1994).
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To embellish the picture, we recall that the stable equilibrium point of the harmonic
oscillator is destabilized by white noise as well as by noise dFt = f(�t) dt from a
wide class of stationary processes �t whatever its intensity (see Molchanov, 1978;
Kotani, 1984).
So naturally, the question arises: which kind of noise is stabilizing and which is

destabilizing?

1.2. Noise perturbed system

We are interested in systems which can be derived from di�erential equations of
order d, y(d) − ady(d−1) − · · · − a2y′ − a1y= 0, that is, putting x= [y; y′; : : : ; y(d−1)]T,
in systems of the form

dx = Ax dt; (1.1)

where A is a d× d companion form matrix,

A=

 0 1 0
1

a1 · · · ad−1 ad

 : (1.2)

Our goal is to introduce noise into the parameters ai in such a way that the trivial so-
lution x(t) ≡ 0 becomes globally exponentially stable, if it was unstable (and preserves
and enhances its stability properties, if it was stable). So we consider the stochastic
di�erential equation

dx� = Ax� dt + Ux� ◦ dF�
t (1.3)

(Stratonovich form), �¿ 0, where

U =

 0 · · · 0 0

u1 · · · ud−1 ud

 : (1.4)

As to the noise dF�
t , in order to disallow systematic change we restrict ourselves to

mean zero noise, that is, EF�
t =const = 0. (Here we assume without loss of generality

that the constant is zero.) On the other hand, the permitted class of noise processes
should be large enough to contain both real and white noise. Finally, we want to stay
in the Markovian framework. This in mind, we begin with a background process �t for
which, for the sake of simplicity, we �rst assume properties which are more restricted
than necessary. They will be relaxed later in order to include such common processes
as, e.g. the Ornstein–Uhlenbeck process (see Section 6.2).
Background noise. More precisely, let �t be a stationary and ergodic process on a

connected compact Riemannian C∞-manifold M satisfying the stochastic di�erential
equation

d�t = X0(�t) dt +
r∑

k=1

Xk(�t) ◦ dWk
t ; (1.5)
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where (W 1
t ; : : : ; W

r
t ) are independent standard Wiener processes over the probability

space (
;F; P) with �ltration (Ft) and X0; X1; : : : ; Xr are C∞-vector �elds on M .
We assume further that the generator

G= (X0 · ∇�) +
1
2

r∑
k=1

(Xk · ∇�)2 (1.6)

is uniformly elliptic, and denote the unique invariant probability measure with �.
We remark that under these conditions, f(�) is p-integrable for any measurable

function f on M and p¿1, and the Poisson equation Gu=f− Ef has a solution on
all of M which is unique up to a constant. (See e.g. Orey, 1971, p. 29 or Papanicolaou,
1978, p. 127.)
Random vibration. With help of �t we de�ne the semi-martingale

dFt = f0(�t) dt +
r∑

k=1

fk(�t) ◦ dWk
t ; (1.7)

where f0; f1; : : : ; fr are real-valued C∞-functions on M . If

’0(�) = f0(�) +
1
2

r∑
k=1

Xk(�) · ∇�fk(�) (1.8)

denotes the Itô-drift, then due to stationarity of �t

EFt − EF0 =
∫ t

0
E’0(��) d�+

r∑
k=1

E
∫ t

0
fk(��) dWk

� = K0t;

where K0 :=E’0(�0); whence

EFt = const i� K0 = 0: (1.9)

We have assumed EFt = const or K0 = 0: That is, we are dealing with a stochastic
analogue of what Meerkov (1980), Bellman et al. (1986) and others call vibrational
control. Our noise can be considered as random vibration, meaning that the random
vector�eld x 7→ [A + ’0U +

∑
k fkUẆ ]x averages out to the vector�eld x 7→ Ax of

the unperturbed system dx = Ax dt:
Speeding up. Expecting the need of high energy for stabilization we introduce

��
t := �t=� and F�

t :=Ft=� (� → 0).

1.3. Lyapunov exponents

Due to smoothness, for any F0-measurable initial condition x0 there is a unique
(strong) solution x�(t; x0; !) = x�(t; x0; !;U; dF�) of (1.3) for all t¿0 (see, e.g. Ikeda
and Watanabe, 1987, p. 235) and we may de�ne the pathwise exponential growth rates
or Lyapunov exponents of (1.1) as

��(x0; !) := lim
t→∞

1
t
log ‖x�(t; x0; !)‖: (1.10)
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1.4. Stabilizing noise

The question whether or not the trivial solution x�(t) ≡ 0 of (1.3) is globally
exponentially stable is governed by the largest Lyapunov exponent of (1.3), given
dF�. We aim to make this exponent as small as possible. We introduce the following
terminology.

De�nition 1.1. dF� in Eq. (1.3) is called stabilizing noise, if for suitable entries
u1; : : : ; ud (of U ) the Lyapunov exponents (1.10) satisfy the following condition: for
any �¿ 0 there is an �0¿ 0 such that for all 0¡�6�0 and all x0 ∈ Rd P-a.s.

��(x0; !)6
1
d
trace(A) + �: (1.11)

This is the best we can hope for, since in typical cases where Oseledec’s theorem
holds, the Lyapunov exponents sum up to

∑
��
i = trace(A), whence ��

max¿trace(A)=d,
for all �¿ 0:
Stablizing mean zero noise will render the trivial solution globally exponentially

stable if and only if trace(A)¡ 0. In view of applications, we remark that in all
mechanical or electrodynamical systems the trace of A is negative due to friction,
damping, or resistance.

1.5. The main result

Theorem 1.2. Let �t be the stationary and ergodic background noise from (1:5) and
Ft the semi-martingale (1:7). Then the following conditions are equivalent:
(i) dF�

t is stabilizing mean zero noise for (1:3).
(ii) limt→∞EF2t =t = 0:
(iii) There exists a measurable function  on M and an initial condition F0 such

that Ft =  (�t):
(iv) There exists an initial condition such that Ft is stationary and ergodic.

1.6. Organization of the paper

The Lyapunov exponent �� from (1.10) will be the starting point for our investiga-
tion. After having given �� a representation which better suits our purposes, we will
expand �� in terms of � by means of a homogenization procedure (Sections 2 and 3).
In Section 4, we will draw from this expansion a necessary condition for dF� being
stabilizing noise and give it a probabilistic interpretation. Moreover, this condition will
enforce that the semi-martingale Ft is a function of the background noise, Ft =  (�t),
therefore stationary and ergodic. In Section 5, we show that this property is su�cient
for the noise to be stabilizing. This closes the circle. Examples are given in Section 6,
where the assumptions on the background noise are relaxed. Section 7 concludes with
observations for the whole Lyapunov spectrum and averaging properties of stabilizing
noise.
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2. Preliminaries for the proof

2.1. Trace-zero assumption

It su�ces to consider trace(A) = trace(U ) = 0, since if not, we proceed as follows.
In order not to lose the companion form, we �rst transform Rd by a suitable trace
and dimension-dependent linear transformation T = T (�); � = ad=d, and then subtract
�I from T−1AT . The �rst operation does not change either the Lyapunov exponents
or the trace, while the second one changes both. The trace becomes zero and the
Lyapunov exponents are shifted by −�. For details, see Kao and Wihstutz (1994). The
transformation does not change the form of U and we may choose from the beginning
ud = 0. For the remainder of the paper we assume ad = ud = 0:

2.2. Polar coordinates

For representing the Lyapunov exponent in a workable form it is convenient to
rewrite our system

d

[
��
t

x�t

]
=

{[
0

Ax�

]
+
1
�

[
X0(��)

f0(��)Ux�

]}
dt +

1√
�

r∑
k=1

[
Xk(��)

fk(��)Ux�

]
◦ dWk

t ; (2.1)

in polar coordinates. So let s = x=‖x‖ (s identi�ed with −s on the projective space
P= Pd−1) and �= log‖x‖, x 6= 0. Then we have

d


��

s�

��

=



0

hA(s�)

qA(s�)

+ 1�


X0(��)

f0(��)hU (s�)

f0(��)qU (s�)


 dt

+
1√
�

r∑
k=1


Xk(��)

fk(��)hU (s�)

fk(��)qU (s�)

 ◦ dWk
t (2.2)

(Stratonovich form) where for any d× d matrix C

hC(s) :=Cs− qC(s)s; qC(s) := sTCs: (2.3)

By integration, the component ��
t becomes

��
T =

∫ T

0
Q�(��

t ; s
�
t ) dt +martingale; (2.4)

where

Q�(�; s) = qA(s) + f0(�)qU (s)

+
1
2�

r∑
k=1

[(Xk · ∇�fk)(�)qU (s) + f2k (�)(hU · ∇sqU )(s)]: (2.5)

Due to compactness there is at least one stationary and ergodic solution (��
t ; s

�
t ) with

invariant measure �� on M × P with marginal measure � on R. Therefore dividing
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(2.4) by T and passing to the limit T → ∞, noting that the martingale term goes to
zero, we obtain the Furstenberg–Khasminsky-type representation

�� =
∫
M×P

Q�(�; s)��(d�; ds)=: 〈Q�; ��〉; (2.6)

which, possibly, is not the maximal exponential growth rate (see Has’minskii 1980,
p. 225; Arnold et al., 1986; Kao and Wihstutz, 1994).

3. Expansion of ��

In this section we will derive an expansion for �� of the form

�� = �−1=3�̂(K1) + �−1=6�1(�) + �2(�) + O(�1=6); (3.1)

where �̂(K1), depending on a certain constant K1, is positive, if K1 is so, and �1(�)
and �2(�) are bounded functions of �. This form makes apparent that if K1¿ 0, then
�� → ∞ as � → 0, from which we will obtain necessary conditions for stabilization.

3.1. Modifying the Furstenberg–Khasminsky representation of ��

We consider the generators A� and L� of (��
t ; s

�
t ) and (�

�
t ; s

�
t ; �

�
t ), respectively, which

are of the form

A� = hA · ∇s +
1
�

{
G+ ’0(hU · ∇s) +

r∑
k=1

fk(Xk · ∇�)(hU · ∇s)

+
1
2

r∑
k=1

f2k (hU · ∇s)2
}

(3.2)

L� = (hA · ∇s + qA · ∇�) +
1
�

{
G+ ’0(hU · ∇s + qU · ∇�) +

r∑
k=1

fk(Xk · ∇�)

× (hU · ∇s + qU · ∇�) +
1
2

r∑
k=1

f2k (hU · ∇s + qU · ∇�)2
}

(3.3)

with G from (1:6) and Itô-drift ’0 from (1.8). By virtue of the Fokker–Planck equation,
(A�)∗�� = 0, we obtain from (2.6) for g ∈ domA�,

�� = 〈Q�; ��〉+ 〈g; (A�)∗��〉= 〈A�g+ Q�; ��〉: (3.4)

A straightforward calculation shows for any smooth function g(�; s), A�g+Q� =
L�(g+ �); whence

�� = 〈L�(g+ �); ��〉: (3.5)

The task is now to �nd a suitable function g(�; s) from which expansion (3.1) will
become evident.
We �rst treat the two-dimensional case using a homogenization procedure. We then

show that the higher-dimensional case can be reduced to dimension 2. This in mind,
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in the next three subsections we consider the matrices A =
[
0 1

a 0

]
and U =

[
0 0

u 0

]
,

u 6= 0:

3.2. Linear transformation

It will turn out that the following linear transformation of R2 yields the correct
scaling for the asymptotics of ��:

T =

[
�−1=6 0

0 �1=6

]
: (3.6)

We obtain

TAT−1 =

[
0 �−1=3

�1=3a 0

]
= �−1=3N + �1=3�; N =

[
0 1

0 0

]
; � =

[
0 0

a 0

]
; (3.7)

TUT−1 = �1=3U: (3.8)

Since the mappings A → hA and A → qA are both linear in A, in the new coordinates
the generator L� reads

L̃� = �1=3(h� · ∇s + q� · ∇�) + �−1=3(hN · ∇s + qN · ∇�)

+
1
�
{G+ �1=3G1 + �2=3G2}; (3.9)

where G is the generator of � from (1:6) and

G1 = ’0(hU · ∇s + qU · ∇�) +
r∑

k=1

fk(Xk · ∇�)(hU · ∇s + qU · ∇�);

G2 =
1
2

(
r∑

k=1

f2k

)
(hU · ∇s + qU · ∇�)2:

Since the Lyapunov exponents are invariant under linear transformation of the coordi-
nates, we have

�� = 〈L̃�
(g+ �); �̃�〉 (3.10)

(�̃� the invariant measure in the new coordinates).

3.3. Homogenization

In order to average out the leading �-terms in L̃
�
, as usual, we choose g of the

form g(�; s) = 
0(s) + �1=3g1(�; s) + �2=3g2(�; s); put g0(s; �) = 
0(s) + � and compute

(G+ �1=3G1 + �2=3G2)(g0 + �1=3g1 + �2=3g2)

=Gg0 + �1=3[Gg1 + G1g0] + �2=3[Gg2 + G1g1 + G2g0]

+ �3=3[G1g2 + G2g1] + �4=3[G2g2]: (3.11)
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Since g0 depends only on s and �, Gg0 = 0; and the choice of

g1 =−G−1(G1g0) =−G−1(’0)(hU · ∇s + qU · ∇�)g0

yields Gg1 + G1g0 = 0: We may choose further

g2 =−G−1(’1 − K1)(hU · ∇s + qU · ∇�)2g0;

where

’1 =−’0G−1(’0)−
r∑

k=1

fk(Xk · ∇�)(G−1(’0)) +
1
2

r∑
k=1

f2k ;

K1 = E’1: (3.12)

Then (3.11) is of order �2=3 and the coe�cient of the �2=3-term on the right-hand side
is given by Gg2 +G1g1 +G2g0 =K1(hU · ∇s+ qU · ∇�)2g0. Note that for any matrix C;

(hC · ∇s + qC · ∇�)2g0 = (hC · ∇s)2
0 + hC · ∇sqC ;

taking into account that g0(s; �) = 
0(s) + �. With regards to (3.9) the homogenization
results in

L̃
�
(g+ �) = �−1=3{[K1(hU · ∇s)2 + hN · ∇s]
0 + [K1(hU · ∇s)qU + qN ]}+O(1):

(3.13)

3.4. Expansion, case d= 2

We will see (Lemma 4.1) that for mean zero noise always K1¿0. If K1¿ 0, then
the operator

L̂=
1
2
(
√
2K1hU · ∇s)2 + hN · ∇s;

can be regarded as generator of the projection onto the unit sphere, ŝ = x̂=‖x̂‖, of the
di�usion process

dx̂ =
[
0 1
0 0

]
x̂ dt +

√
2K1

[
0 0
u 0

]
x̂ ◦ dWt: (3.14)

For this generator it is known (Pinsky and Wihstutz, 1991, p. 99) that one can solve
the Poisson equation

L̂
0 =−q̂(s) + �̂; (3.15)

where

�̂= �̂(K1) = 〈q̂; �̂〉¿ 0;

q̂= K1(hU · ∇s)qU + qN (3.16)

(and �̂ the unique invariant measure on P1 for which L̂
∗
�̂ = 0). Here �̂ is both the

“Fredholm alternative” of (3.15) and the top Lyapunov exponent of the white-noise-
driven system (3.14). With this choice of 
0 (thus of g= 
0 + �1=3g1 + �2=3g2 + �) we
obtain from (3.13) the expansion

�̂= 〈L̃�
(g+ �); �̃�〉= �−1=3�̂(K1) + 〈O(1); �̃�〉 (3.17)

with �̂(K1)¿ 0 for K1¿ 0:
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3.5. Expansion of �� for general dimension d

The case of general dimension, d¿2, with A and U from (1.2) and (1.4), can
be reduced to the two-dimensional case by choosing the linear transformation T =
diag(�−(d−1)=6; : : : ; �−1=6; �1=6) — rather than (3:6) — and a suitable function g(�; s)+�
such that, after transformation, the leading term of L̃

�
(g+�) depends only on the last

two components sd−1 and sd and is of the same form as in (3.13).
To see that, we decompose A= N (d) + �(d) with

N (d) =


01 0

\
1

0 0

 ; �(d) =

[
0 · · · 0

a1 · · · ad−2 ad−1 0

]
(3.18)

and in order to split o� the south-east 2 × 2 blocks we decompose further. We put
N (d) = N1 + N2, where

N1 =


01 0

\
10

0 0

 ; N2 =

 0 0
01

0 00

 : (3.19)

We introduce the matrices �1(�) and �2; whose �rst (d− 1) rows are zero and whose
last rows are, respectively,

[�(d−3)=6a1; : : : ; �1=6ad−3; ad−2; 0; 0]; [0; : : : ; 0; ad−1; 0]

and we let U1(�) and U2 be de�ned analogously with last rows

[�(d−3)=6u1; : : : ; �1=6ud−3; ud−2; 0; 0] and [0; : : : ; 0; ud−1; 0]:

Then

TAT−1 = �−1=3[N2 + �1=6N1] + �1=3[�2 + �1=6�1(�)];

TUT−1 = �1=3[U2 + �1=6U1(�)]: (3.20)

Compare (3.20) with (3.7) and (3.8), note that N1, �1(�) and U1(�) are of order �0

and that for d=2 these matrices vanish, while in that case N2 =N , �2 =� and U2 =U
from (3.7). Substituting N2 + �1=6N1, �2 + �1=6�1(�) and U2 + �1=6U1(�) for the matrices
N , � and U in Section 3.2, we obtain

L̃
�
(g� + �) = L̃

�
(
0(s) + �+ �1=3g�

1 + �2=3g�
2)

= �−1=3{[K1(hU2 · ∇s)2 + hN2 · ∇s]
0 + [K1(hU2 · ∇s)qU2 + qN2 ]

+ �1=6R1(�; s; �) + R2(�; s; �)}; (3.21)
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where g�
1 and g�

2 are small perturbations of g1 and g2 from Section 3.3 and

sup{|Ri(�; s; �)|; � ∈ M; s ∈ P; �¿ 0}6C ¡∞; i = 1; 2:

Now choose 
0(s) only depending on sd−1 and sd with s2d−1 + s2d = 1. Then, as for
d=2, if K1¿ 0; there is a function 
0(sd−1; sd) such that the right-hand side in (3.21)
becomes

�−1=3{�̂(K1) + �1=6R1(�; s; �)}+ R2(�; s; �) + O(�1=6); �̂(K1)¿ 0: (3.22)

By integration with respect to �̃� we obtain:

Lemma 3.1. Given the stochastic di�erential equation (1:3) with stationary and
ergodic background noise (1:5); the mean zero noise dF� from (1:7) and the function
’1 from (3:15); then if K1 = E’1¿ 0; there is at least one Lyapunov exponent �� of
the form (2:6) which can be expanded as

�� = �−1=3�̂(K1) + �−1=6�1(�) + �2(�) + O(�1=6); (3.23)

where �̂(K1)¿ 0; and for i = 1; 2

sup
�
|�i(�)|= sup

�¿0
|〈Ri(�; s; �); ��〉|6C ¡∞:

4. Necessary conditions

4.1. Probabilistic interpretation of K1

If dF� is stabilizing mean zero noise, then �� is bounded from above, sup�¿0 �
� ¡∞,

and therefore (by Lemma 3.1) K1 cannot be positive. If we can show that on the other
hand K1¿0, then vanishing of the constant K1 is necessary for dF� to be stabilizing.
What is the meaning of this crucial constant K1?
The answer is easy, if fk = 0 (k = 1; : : : ; r), thus ’0 = f0 and ’1 = −’0G−1(’0).

Namely, this case, by the functional central limit theorem,

Ft=
√
t = (1=

√
t)
[
F0 +

∫ t

0
’0(��) d�

]
→ −2〈’0G−1(’0); �〉W1 = 2K1W1

in distribution, as t → ∞. So, 2K1 is the limiting variance of Ft=
√
t;

EF2t =t → 2K1 (t → ∞): (4.1)

We now show that (4.1) holds generally in our framework. We allow thereby for the
remainder of this subsection that K0 = E’0(�) is arbitrary (unless stated otherwise), to
the e�ect that G−1(’0 −K0) is substituted for G−1(’0) in De�ntion 3:12 for ’1: First
we observe that by Minkowsky’s inequality, Jensen’s inequality (with respect to the
Lebesgue measure over [0; t]) and the stationarity of �t for all t¿0

‖Ft‖2 := {E|Ft |2}1=2

6 {E|F0|2}1=2 +
{
E
∣∣∣∣∫ t

0
’0(��) d�

∣∣∣∣2
}1=2

+
r∑

k=1

{
E
∣∣∣∣∫ t

0
fk(��) dWk

�

∣∣∣∣2
}1=2
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6 {E|F0|2}1=2 +
{∫ t

0
E|’0(��)|2 d�

}1=2
+

r∑
k=1

{∫ t

0
E|fk(��)|2 d�

}1=2
6 C0 + C1

√
t (4.2)

with 06C0; C1¡∞, whence immediately√
E|Ft |2=t → 0 as t → ∞: (4.3)

To calculate EF2t , where we assume without loss of generality that EF20=0, we consider
the pair (�t ; Ft) with the generator

H :=G+ ’0
@
@F

+
∑
k

fk(Xk · ∇�)
@
@F

+
1
2

∑
k

f2k
@2

@F2
:

Then, putting p0(�; F) :=F2; by Itô’s formula, we have

EF2t = Ep0(�t; Ft)− Ep0(�0; F0) =
∫ t

0
EHp0(��; F�) d�

=
∫ t

0
E
[
2’0(��)F� +

∑
k

f2k (��)

]
d�: (4.4)

In order to make 2K1 appear, we add and subtract this mean, obtaining

EF2t = 2K1t +
∫ t

0

{
E
[
2’0(��)F� +

∑
k

fk(��)2
]
− 2K1

}
d�; (4.5)

and verify that the integrand on the right-hand side equals

− EH(p1 + p2)(��; F�) + 2K0EF�; (4.6)

where

p1(�; F) := − 2G−1(’0 − K0) · F;

p2(�; F) := 2G−1(’0G−1(’0 − K0)− E[’0G−1(’0 − K0)]):

(Find p1 and p2 in a similar way as the “correctors” g1 and g2 in the homogenization
procedure of Section 3 and compute H(p1 + p2) =H(p0 + p1 + p2)−H(p0).)
Then, again by Itô’s formula together with EFt = EF0 + K0t and the stationarity of

p2(�; F) = p2(�);

EF2t = 2K1t + 2K0
∫ t

0
[EF0 + K0�] d�− E(p1 + p2)(�t ; Ft) + E(p1 + p2)(�0; F0)

= 2K1t + 2K0

[
EF0t +

1
2
K0t2

]
+ E{G−1(’0 − K0)(�t) · Ft} − E{G−1(’0 − K)(�0) · F0}: (4.7)

If, in addition, K0 = 0, then by the Cauchy–Schwarz’s inequality and (4.3), we obtain

EF2t =t = 2K1 + r(t); lim
t→∞ r(t) = 0; (4.8)

that is (4.1).
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Lemma 4.1. Let Ft = F0 +
∫ t
0 ’0(��) d� +

∑
k

∫ t
0 fk(��) dWk

� be given by (1:7) with
stationary ergodic noise �t from (1:5). Then the second moment; EF2t ; is given by
(4:7) and

lim
t→∞

EF2t
t
= 2K1 i� K0 = E’0(�) = 0: (4.9)

In that case K1 = E’1¿0; ’1 given by (3:12).

There is still another very useful representation of K1=E’1(�). [Again, we calculate
here for arbitrary K0 ∈ R.] If we put

 :=G−1(’0 − K0) (4.10)

and

f := [f1; : : : ; fr]T; X( ) := [X1 · ∇� ; : : : ; Xr · ∇� ]
T;

then

2’1 = 〈 f ; f 〉 − 2〈 f ;X( )〉 − 2’0 ;

thus ‖ f − X( )‖2 = 2’1 + 2’0 + ‖X( )‖2. Now using the identity

G( 2) = X0 · ∇� 2 +
1
2

r∑
k=1

(Xk · ∇�)2( 2)

= (X0 · ∇� )(2 ) +
1
2

r∑
k=1

Xk · ∇�((Xk · ∇� )(2 ))

=G( )(2 ) +
r∑

k=1

(Xk · ∇� )2

= 2(’0 − K0) + ‖X( )‖2

and averaging with respect to �, while taking into account that G∗�=0, thus EG( 2)=0;
yields

2K1 = E‖ f − X( )‖2 + 2K0E : (4.11)

So, for mean zero noise (K0 = 0),

2K1 = E‖ f − X( )‖2: (4.12)

That is to say, K1 measures the di�erence between Xk · ∇� and fk:

4.2. Necessary conditions: vanishing of the limit variance of Ft=
√
t and stationarity

of Ft

From (4.9) and (4.12) we can easily draw necessary conditions for stabilizing
mean-zero noise.

Theorem 4.2. Let Ft=Ft(F0; �0)=F0+
∫ t
0 ’0(��) d�+

∑r
k=1

∫ t
0 fk(��) dWk

� be given by
(1:7) and (1:8); let �t be the stationary and ergodic process from (1:5) with generator
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G. Then for the mean zero noise dF�
t to be stabilizing with respect to the companion

form system (1:3) it is necessary that
(i)

EF2t
t

→ 0 (t → ∞) (4.13)

or; equivalently; that
(ii)

Ft =  (�t) if F0 =  (�0) (4.14)

with  = G−1(’0). That is to say; for suitable initial condition; Ft is a stationary
and ergodic stochastic process (with �nite variance).

Proof. The necessity of (i) follows immediately from Lemmas 4.1 and 3.1.
If (i) holds, then K1=K0=0 and by (4.12), fk(�)=Xk(�)·∇� (�) P-a.s. (k=1; : : : ; r):
Hence by Itô’s formula

dFt =’0(�t) dt +
∑
k

fk(�t) dWk
t

=G( )(�t) dt +
∑
k

[Xk(�t) · ∇� (�t)] dWk
t

= d (�t) (4.15)

which implies (ii). (ii)→ (i) is obvious, since EF2t = const.

5. Su�cient conditions

The circle is closed, if stationarity and ergodicity of Ft implies the stabilizing
property of dF�. This is indeed the case.

Theorem 5.1. Given Ft from (1:7) with �t from (1:5). If Ft is a stationary and ergodic
process in L2+� for some �¿ 0; then E’0 = 0 and the mean zero noise dF� is a
stabilizing noise for (1:3).

For convenience, we outline here the main ideas of the proof. For details see Kao
and Wihstutz (1994).
We consider �rst the mapping

(F; x) 7→ (F; z); z = T (−F)x; T (F) = FU + I: (5.1)

This mapping is linear in x, invertible with T (F)−1 = T (−F), and it is tailored such
that the di�usion term of

z� = z�(t; !) = T (−F�(t; !))x�(t; !); (5.2)

vanishes. This is because by It�o’s formula we obtain the family of ODEs

dz� = B(F�
t )z

� dt; (5.3)
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where B(F�
t ) = B0 + B�

1(t) (of course, still trace B(F�
t ) = 0). Here B0 = B0 + N is of

companion form with

B0 =

[
0 : : : 0 0

a1 − u1ud−1E(F�
t )
2; : : : ; ad−1 − u2d−1E(F�

t )
2; 0

]
(5.4)

and U can be chosen such that all eigenvalues of B0 are purely imaginary. Therefore
we may assume without loss of generality that B0 is skew-symmetric with qB0 (s) = 0
(if necessary, after a deterministic linear transformation which does not change the
Lyapunov exponents).
The entries of the matrix B�

t (t) are 0, const ·F�
t or const · [− (F�

t )
2 +E(F�

t )
2]; that is

to say B�
1(t) is a fast matrix with mean zero, if EF0 = 0 (which can always be chosen

without changing dF�).
The important point of this mapping is that it preserves the Lyapunov exponents

(since ’0(�t) is mean zero stationary and ergodic and limt→∞ Mt=t = 0 for the mar-
tingale part Mt of Ft). This permits us to study the simpler system (F�

t ; z
�
t ) rather

than (F�
t ; x

�
t ).

Second, since F�
t , thus B(F�

t ), is stationary and ergodic and in L1, Osceledec’s mul-
tiplicative ergodic theorem (MET, Oseledec, 1968) holds for z�t from (4.3) (see, e.g.
Arnold and Wihstutz 1986, p. 9). This entails that there are at most d distinct Lya-
punov exponents (all being �nite), which, with their multiplicities, sum up to trace
EB(F�

t ) = 0. Moreover, there is an invariant measure �̃�(dF; ds) on R1 × P by means
of which the top Lyapunov exponent (of z�, thus of x�) can be represented as

��
max =

∫
R×P

q(B(F); s)�̃�(dF; ds): (5.5)

Intuitively, since B�
1(t) oscillates very fast about EB�

1(t)=0, for � → 0 the dynamics
of z�t should be governed by dz

� = B0z� dt with qB0 (s) = 0. Indeed, for Ft mean zero
stationary and ergodic one can prove an averaging principle over the in�nite time
horizon [0;∞) from which one obtains that

��
max =

∣∣∣∣��
max −

∫
P
qB0 (s) ��

�(ds)
∣∣∣∣→ 0 (� → 0); (5.6)

where ���(·) = ∫R �̃�(dF; ·) is the marginal measure associated with �̃�.
This proves Theorem 5.1 and concludes the proof of the main result, Theorem 2:1.

6. Examples

6.1. Non-degenerate background noise with compact state space

(i) White noise, dFt = dWt . To treat white noise dF = dW in our framework, we
consider any non-degenerate stationary and ergodic di�usion process �t on a compact
manifold M , such as the Brownian motion on the unit circle, and put f0(�)=const=0,
r=1 and f1(�)=const=1. Since EF2t =t=EW 2

t =t=1 does not converge to 0 as t → ∞,
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white noise is not stabilizing. Or, to give an equivalent reason, since there is no initial
condition W0(!) which would render Wt stationary and ergodic.
(ii) Ft = f(�t). If on the other hand for the semi-martingale Ft there is a smooth

real-valued function f on M with Ft = f(�t), then limt→∞EF2t =t = lim(const=t) = 0
and dF = (Gf)dt +

∑
k(Xk · ∇�f) dWk

t is stabilizing mean–zero noise. For instance,
if �t is the Brownian motion on the unit circle M ⊂R2 and f(�) = f(x1; x2) = x1, the
projection on the �rst axis, then we have in local coordinates, for example, on the
chart U = {(

√
1− x22 ; x2); |x2|¡ 1}, �U (�) = x2, the stabilizing noise

dF =
d
dx
(f ◦ �−1U )(x) dt = (−2x2)=

√
1− x22 dt:

6.2. Relaxing the assumptions. Admissible noise

In order to include other types of noise, we broaden our class of noise processes.
It is of interest, (for instance, for the physical experiments (Popp, 1995) to compare
the unbounded standard Wiener process Wt with other unbounded non-degenerate pro-
cesses, like the Ornstein–Uhlenbeck process, with respect to their stabilizing properties.
So we relax our assumptions on the manifold M and the background noise �t , which
were introduced only for the sake of simplicity. All reasoning in Sections 2–5 goes
through, if we allow integration by parts, 〈Gf; �〉=〈f;G∗�〉 for the representation (3.5)
of ��, if the Poisson equations

G l = ’l − E’l; l= 0; 1; 2; Gp= ’0 0 − E(’0 0): (6.1a)

are solvable (for l=0,  0= from (4.10)) and if the following integrability properties
hold (k = 1; : : : ; r):

f0; fk ; Xk · ∇�fk ∈ L2+�(�) for some �¿ 0 [thus ’0(�); Ft ∈ L2+�(P) if F0 is]

 0; Xk · ∇� 0; ’1;  1 ∈ L2(�); f2k  0; f2k  1; p ∈ L1(�): (6.1b)

Of course, these conditions are automatically satis�ed under our original assumptions.
They also hold, if M is compact, but the generator G is degenerate and only weakly
elliptic in the sense of Ichihara and Kunita (1974, 1977) meaning that

dim J (�) = dim M for all � ∈ M;

where J is the ideal in the Lie-algebra LA{X0; X1; : : : ; Xr}, generated by the di�usion
vector�elds X1; : : : ; Xr . In this case, �t is Doeblin and the Poisson equations are solvable.
There are many other situations, in which these conditions are easily proven to hold

true.

De�nition 6.1. We call dF from (1.7) admissible, if K0 = E’0 = 0 (mean zero noise)
and (3.5) as well as (6.1a) and (6.1b) hold. With this terminology, we have:

Theorem 6.2. For admissible noise dF in (1:3) the assertions of Theorem 1:2 hold
true.
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6.3. Examples, continued

Here we discuss �rst real noise, that is

dF�
t =

1
�
f0(��

t ) dt; f1 = · · ·= fr = 0:

(iii) Degenerate di�usion: �t = (�t; �t) ∈ M = T 2, the two-dimensional torus, with

d�t = d
[
�t

�t

]
=
[
cos�t

0

]
dt +

[
0
1

]
dWt(mod 2�):

The vector �elds Y1 :=X1=
[
0
1

]
, Y2 := [X1; X2]=

[
−cos�
0

]
and Y3 := [X1; [X1; X0]]=

[
−sin�
0

]
belong to the ideal J generated in LA{X0; X1} by X1, and for any � = (�; �), rank
{Y1; Y2; Y3}(�; �) = 2. Therefore the generator in weakly elliptic (in the Ichihara and
Kunita sense). For f0(�) =f0(�; �) =−sin � cos�, Ft = F0 + cos �t leads to admissible
stabilizing noise.
(iv) The Ornstein–Uhlenbeck process �t on M = R1,

d�t =−
0�t dt + 
1 dWt; 
0; 
1¿ 0

with uniformly elliptic generator G=(−
0�)@=@�+ 1
2

2
1(@=@�)

2, mean E�t =0, variance
E�2t = �2 = 
21=2
0, together with f0(�) = � yields

dF�
t =

1
�
�t=� dt;

which is admissible, but not stabilizing. This is because the functions ’0(�)=f0(�)=
�,  0 = G−1(’0) = (−1=
0)�, ’1 = −’0 0 = (1=
0)�2 and  1 = G−1(’1 − K1) =
(−1)G−1(’0 0−E(’0 0))=(−1=2
20)�2 are in Lp(�), p¿1, but K1=E’1=(1=
0)�2=
1
2 (


2
1=


2
0) 6= 0.

Spectral behavior. We note that for admissible noise dF = f(�t) dt, we have ’1 =
−’0 0 =−fG−1(f) and 2K1 =−2〈fG−1(f); �〉= 2�S� (0), where S� is the spectral
density of the stationary process f(�t). So, we have shown the following corollary of
Theorem 6.2, which relates our discussion on stabilization to the discussion in Orey
(1981) and Arnold and Wihstutz (1983) (Theorem 2:3, Example 2:1) on the stationarity
of integrals of stationary processes as non-resonance phenomenon.

Corollary 6.3. Let dF = f(�) dt be admissible noise; S� the spectral density of f.
Then f(�t) has a stationary integral Ft = F0 +

∫ t
0 f(��) d� i� dF stabilizes (1:3) i�

S� (0) = 0.

For the Ornstein–Uhlenbeck process f(�t) = �t there is no such stationary integral,
since K1 = 1

2 (

2
1=


2
0) = S��(0) 6= 0, where S��(�) = �22
0=(
20 + �2).

If we consider, second, combinations of real and white noise, we encounter a di�erent
situation.
(v) dFt = d�t = d (Ornstein–Uhlenbeck process) behaves very di�erent from dF =

�t dt, since now Ft =f(�t) = �t is stationary and ergodic. Therefore, by Theorem 6.2,

dFt = d�t = (−
0�) dt + 
1 dWt (
0; 
1¿ 0)
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is stabilizing admissible noise. This stabilizing property is also equivalent to the other
properties in Theorem 1.2, since for Ft = f(�t), f smooth on R, we have f0 =
(−
0�)f′; f1 = 
1f′; ’0 =Gf,  0 = f, ’1 =G(− 1

2f
2),  1 =− 1

2f
2 and G−1(’0 0 −

’0 0) = G−1(f · Gf − f · Gf) where the bar denotes the expected value; and these
functions are in Lp(�), p¿1, if e.g. f(�) is a polynomial in � or f bounded with
bounded derivatives f′ and f′′.
The Ornstein–Uhlenbeck process �t and the Wiener process Wt are both unbounded

and “rich” stochastic processes. Their di�erent stability behavior stems from the fact
that the Wiener process spreads out too fast to allow an invariant probability measure.
(Roughly speaking, this is a kind of resonance phenomenon. The power spectrum of
white noise, SẆẆ (�) is constant 6= 0 and thus does not vanish at � = 0, while for
Ornstein–Uhlenbeck process �t , S�̇�̇(0) = 0:)
(vi) dFt = arctg�. Since it is of importance for applications we note explicitly that

we may well insert the Ornstein–Uhlenbeck process �t , say, into a bounded function
f with bounded derivatives f′ and f′′, such as the arc tangent function:

dFt = darctg (�t) = (−1)[
0=(1 + �2) + 
21=(1 + �2)2]� dt + 
1=(1 + �2) dWt

is stabilizing admissible noise for (1.3) (while dFt =arctg(�t) dt is admissible, but not
stabilizing).

6.4. Su�ciently fast convergence of ��
dF

We �nish this section with the remark that dF is stabilizing i� the corresponding
invariant measure ��

dF from (2.6) converges su�ciently fast to a suitable invariant �0,
at least in some weak sense.
If dF is stabilizing, then ��

max = 〈Q�; ��〉, where by (2.5) Q� = Q�
0 + 1=�Q1 with

Q�
0 = qA(s) + f0(�)qU (s) + 1=2�

∑
(Xk · ∇�fk)(�)qU (s) and

Q1 =
1
2

∑
fk(�)(hU · ∇sqU )(s):

Here the family {��; � → 0} of invariant measures on M ×P (with common marginal
� on M and P being compact) is tight. Therefore, if � → 0 (suitably), �� ⇒ �0 weakly
for some invariant measure �0 on M × P. (Ethier and Kurtz, 1986). Necessarily,
lim�→0〈Q�

0; �
�〉 = lim�→0〈Q1; ��〉 = 0. However, this is not su�cient. For a necessary

and su�cient criterion we need, in addition, that �� ⇒ �0 fast enough, at least in the
weak sense that for Q1 〈Q1; ��〉 → 〈Q1; �0〉= 0 faster than � → 0.
Inverted pendulum. For instance, in case of the inverted pendulum, �y+2�ẏ−ay=0

(a¿ 0, y= angle from the vertical), with trace zero form

dx =
[

0 1
�+ �2 0

]
x dt +

[
0 0
1 0

]
x ◦ dF�

t ;

we have for both white noise dFt =dWt and dFt =d�t =−
0�t dt+ 
1 dWt (
0; 
1¿ 0)
that ��

max = 〈Q�; ��〉, 〈Q�
0; �

�
dF〉 → 0, 〈Q1; ��

dF〉 → 0 (� → 0), and Q1 =Q1(�; �)= cos2�
(where the angle � is determined by s= [cos�; sin�]T). But for non-stabilizing white
noise: 〈Q1; ��

dW 〉 ∼ �2=3 only (��
max(dW ) ∼ �−1=3; see Pinsky and Wihstutz (1991),

while for the stabilizing noise d�= d(Ornsten–Uhlenbeck): 1=�〈Q1; ��
d�〉 → 0 (� → 0).
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7. Impact on the Lyapunov spectrum

In this concluding section we discuss some simple implications of the main Theorem
1.2 in the context of the theory of random dynamical systems (in the sense of Arnold,
1998) and consider the full Lyapunov spectrum. For that purpose let (C0;B(C0); P0) be
the Wiener space (associated with the extended time set R), let �t denote the measure
preserving shift on C0,

�tw(·) = w(·+ t)− w(t); (7.1)

w(·) ∈ C0, t ∈ R, and let ��
t (�; w) be the stationary ergodic process solving (1.5) with

initial condition ��
0(�; w) = � ∈ M . Then

��
t (!) =��

t (�; w) = (�
�
t (�; w); �tw) (7.2)

is a measure preserving 
ow on (
;F; P) := (M × C0; B(M × C0); � × P0). If we
put for any function f on M , f(!) :=f(�; w) :=f(�) (� ∈ M;w ∈ C0), then we may
consider the semi-martingale F�

t − F0 from (1.7) as an additive co-cycle or helix (see
Arnold, 1998, p. 73) over the 
ow ��

t , that is

(F�
s+t − F0)(!) = (F�

s − F0)(!) + (F�
t − F0)(��

s!):

Cohomological equivalence of Ft − F0 and zero. Theorem 1.2 can now be read as a
necessary and su�cient criterion for the helix F�

t − F0 to be cohomological equivalent
to zero, meaning that there exists a measurable function 
 on 
 such that

(F�
t − F0)(!) = 
(��

t (!)) + 0− 
(!): (7.3)

We rewrite Theorem 2:1 as follows.

Proposition 7.1. The semi-martingale

F�
t − F0 =

∫ t

0
’0(��) d�+

r∑
k=1

fk(��) dWk
�

from (1.7) is cohomologically equivalent to zero i� limt→∞EF2t =t = 0 i� dF is stabi-
lizing system (1.3).

Validity of Oseledec’s MET. It is of interest to know whether Oseledec’s Multiplica-
tive Ergodic Theorem (Oseledec, 1968; Arnold, 1998) can be applied to the linear
stochastic system (1.3), that is to say to the associated fundamental matrix 	�(t; !)
with 	�(0; !) = I . Although we do not know the answer in general, that is for arbi-
trary admissible noise dF , our reasoning (which is independent of the MET) provides
a partial answer. In case of stabilizing noise it is easy to see that 	�(t; !) meets the
conditions of the MET. In this case namely the fundamental matrix ��(t; !) of the
transformed linear system (5.3), ż�t 6= B(F�

t )z
�
t , is a (multiplicative) co-cycle over ��

t

which satis�es the integrability conditions required by the MET (see, e.g. Arnold and
Wihstutz, 1986. That also 	� is a co-cycle over ��

t satisfying the required integrability
condition follows from the cohomological equivalence between ��

t and 	�
t , because
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we have

	�
t x0 = x�t = T �

t z
�
t = T �

t �
�(t; !)z0

= T �
t �

�(t; !)(T �
t )

−1x0; (7.4)

where T �
t :=F�

t U + I .

Proposition 7.2. If the admissible noise from (1:7) stabilizes the stochastic linear
system (1:3); then the fundamental matrix 	�(t; !) with x�(t; !) = 	�(t; !)x0(!) is
a (multiplicative) co-cycle which satis�es the conditions of Oseledec’s multiplicative
ergodic theorem.

Dichotomy for ��
max and averaging property of stabilizing noise. The maximum

Lyapunov exponent of (1.3) exhibits a dichotomy corresponding to stabilizing=non-
stabilizing admissible noise; and stabilizing noise averages the Lyapunov spectrum of
(1.3) to its “center of gravity”, as we can see from the following proposition.

Proposition 7.3. Given the trace-zero companion form system (1:3) with admissible
noise dF from (1:7); then
(i) either lim�→0��

max = 0 or lim�→0��
max =∞; according to whether or not the noise

is stabilizing.
(ii) If the noise is stabilizing; then for all Lyapunov exponents of the spectrum:

��
i → 0 (� → 0); i = 1; : : : ; p.

Proof. (i) If dF is not stabilizing, then K1 = E’1 6= 0, and according to Lemma 3.1
there is a Lyapunov exponent �� = 〈Q�; ��〉 with suitable invariant probability measure
��, which grows like �−1=3 → ∞, if � → 0. Therefore any possibly larger Lyapunov
exponent goes to ∞, as � → 0.
(ii) If dF is stabilizable, by Oseledec’s theorem ��

max¿0 and together with
De�nition 1:1 for stabilizing noise, ��

max → 0 (� → 0). But then also ��
i = 0 for all

i = 1; 2; : : : ; p, since all exponents sum up to 0.

We see what the noise is really doing when stabilizing is averaging the Lyapunov
spectrum. This means that stabilizing noise has destabilizing impact as well, namely
on the solutions with negative exponential growth rates. But that is to say, on solutions
which anticipate the future and therefore cannot be observed in praxis. So, from the
practical point of view of applications the term “stabilizing” is justi�ed.

8. For further reading

The following reference is also of interest to the reader: Katok and Hasselblatt, 1995.
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