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The derivation of a priority vector from a pair-wise comparison matrix (PCM) is an important issue in the
Analytic Hierarchy Process (AHP). The existing methods for the priority vector derivation from PCM
include eigenvector method (EV), weighted least squares method (WLS), additive normalization method
(AN), logarithmic least squares method (LLS), etc. The derived priority vector should be as similar to each
column vector of the PCM as possible if a pair-wise comparison matrix (PCM) is not perfectly consistent.
Therefore, a cosine maximization method (CM) based on similarity measure is proposed, which maxi-
mizes the sum of the cosine of the angle between the priority vector and each column vector of a
PCM. An optimization model for the CM is proposed to derive the reliable priority vector. Using three
numerical examples, the CM is compared with the other prioritization methods based on two perfor-
mance evaluation criteria: Euclidean distance and minimum violation. The results show that the CM is
flexible and efficient.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Analytic Hierarchy Process (AHP) introduced by Saaty (1977,
1980, 2000) is one of the widely used multi-criteria decision mak-
ing (MCDM) methods (Peng, Kou, Wang, Wu, & Shi, 2011). MCDM
deals with three main types of decision problems: ranking, sorting
and choice (Roy, 1996; Peng, Kou, Wang, & Shi, 2011; Kou, Lu, Peng,
& Shi, 2012; Corrente, Greco, & Slowiński, 2013). In this paper we
only focus on ranking as it is one topic of prioritization methods
based on AHP model. Ranking problem consists in rank ordering
of all alternatives with respect to the considered criteria
(Kadziński, Greco, & Slowiński, 2012; Siraj, Mikhailov, & Keane,
2012). It is an important issue in AHP to derive a reliable priority
vector from a pair-wise comparison matrix (PCM) that is collected
from experts’ judgments. The validity of the derived priority vec-
tors mainly relies on the design of prioritization methods. The pri-
oritization method refers to the process of deriving a priority
vector from a PCM. Over the past few decades, lots of prioritization
methods have been developed, including weighted least squares
method (WLS) (Chu, Kalaba, & Spingarn, 1979), eigenvector
method (EV) (Saaty, 1977), additive normalization method (AN)
(Saaty, 1980; Srdjevic, 2005), least squares method (LS) (Saaty &
Vargas, 1984), logarithmic least squares method (LLS) (Crawford
& Williams, 1985), gradient eigenweight method (GE) and least
distance method (LD) (Cogger & Yu, 1985), geometric least squares
method (GLS) (Islei & Lockett, 1988), goal programming method
(GP) (Bryson, 1995), geometric mean method (GM) (Barzilai,
1997), logarithmic goal programming method (LGP) (Bryson &
Joseph, 1999), fuzzy preference programming method (FPP)
(Mikhailov, 2000), singular value decomposition method (SVD)
(Gass & Rapcsa’k, 2004), interval priority method (IP) (Sugihara,
Ishii, & Tanaka, 2004), linear programming method (LP) (Chandran,
Golden, & Wasil, 2005), data envelopment analysis method (DEA)
(Ramanathan, 2006), correlation coefficient maximization
approach (CCM) (Wang, Parkan, & Luo, 2007), Bayesian prioritization
procedure (BP) (Altuzarra, Moreno-Jime’nez, & Salvador, 2007).
Besides, Srdjevic (2005) suggested combining some different
prioritization methods to derive the better priority vector.
Lipovetsky and Conklin (2002) suggested deriving a robust estima-
tion of the priority vector using the transformed matrices. Srdjevic
and Srdjevic (2011) put forward a bi-criteria evolution strategy for
deriving the weights estimation. Lin, Kou, and Ergu (2013a)
proposed a heuristic approach for the priority vector derivation
based on the nearest consistent matrix and experts’ judgments.

However, there is some dispute on which prioritization method
is better as existing prioritization methods perform differently
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with regard to different measures, that is, some prioritization
methods perform better in some cases, and some others are better
in other cases. Some comparative analysis between the commonly
used prioritization methods can be found in the literature (Chu
et al., 1979; Crawford & Williams, 1985; Saaty & Vargas, 1984;
Saaty, 1990; Golany & Kress, 1993; Mikhailov & Singh, 1999). Main
conclusion is that there is no one method that is superior to the
others in all cases. Therefore, the choice of the prioritization meth-
od should be dictated by the objective of the analysis. Until now,
the issue of the relative superiority of prioritization methods is still
unresolved. In this paper, based on cosine similarity measure, a
new prioritization method for the priority vector derivation from
a PCM is proposed, which is called cosine maximization method
(CM) and maximizes the sum of the cosine of the angle between
the priority vector and each column vector of a PCM, and then
the proposed CM is compared with the other four prioritization
methods regarding two performance evaluation criteria.

The rest of the paper is organized as follows. In Section 2, the
CM and its consistency index is formulated based on cosine simi-
larity measure. In Section 3, four typical prioritization methods
and two performance evaluation criteria are reviewed. In Section 4,
the proposed CM is compared with four typical prioritization
methods by examining three numerical examples. Section 5 con-
cludes the paper.

2. CM method for the priority vector derivation from a PCM

We will propose a CM method for the priority vector derivation
from a PCM based on similarity measure, and then develop a new
consistency index related with the CM to measure the inconsis-
tency level of a PCM.

2.1. Cosine maximization method (CM)

In order to develop the CM for the priority vector derivation,
several definitions and theorems are introduced as follows:

Definition 1. Matrix A = (aij)n�n is said to be positive reciprocal if
aij > 0, aii = 1 and aij = 1/aji for all i, j 2 {1, 2, . . . ,n}.
Definition 2. A positive reciprocal matrix A = (aij)n�n is said to be
perfectly consistent if aij = aikakj for all i, j, k 2 {1,2, . . . ,n}.
Definition 3. Similarity measure between two vectors ti and tj,
SM(ti, tj) in a n dimensional vector space V is a mapping from
V � V to the range [0,1]. Thus, SM(ti, tj) 2 [0,1].
Property 1. The similarity measure in Definition 3 has the following
well known characteristics:

(1) "ti 2 V, SM(ti, ti) = 1;
(2) "ti, tj 2 V, SM(ti, tj) = 0 if ti and tj are not similar at all;
(3) "ti, tj, tk 2 V, SM(ti, tj) < SM(ti, tk) if ti is more like tk than it is

like tj.

The objective is to define a similarity mapping such that more
similar vectors have a higher similarity value.

Theorem 1. Let two vectors be ti = (ti1, ti2, . . . , tin)T and tj = (tj1,
tj2, . . . , tjn)T, then the cosine similarity measure between two vectors
ti and tj is denoted as

CSMðti; tjÞ ¼
Xn

k¼1

tiktjk

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
t2

ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
t2

jk

q� �
:

Proof of Property 1 and Theorem 1. See the reference (Salton &
Mcgill, 1983).

There are several common similarity measures used in practice
such as Dice similarity measure, Jaccard similarity measure, over-
lap similarity measure, and cosine similarity measure (Dunham,
2003). The concept of similarity measure can be extended all the
way to the priority vectors derived from a PCM. Therefore, in any
complex decision problem represented by a hierarchy in AHP, the
similarity measure between the priority vector and each column
vector of the PCM is denoted by the cosine similarity measure be-
tween them due to its simplicity. Such a cosine similarity measure
has been successfully used and completely discussed in models of
Information Retrieval (Salton, 1971; Salton & Mcgill, 1983) and
AHP model (Zahir, 1999).

We now consider deriving a reliable priority vector from a PCM
based on the cosine similarity measure of Theorem 1. Let A =
(aij)n�n be a positive reciprocal PCM and w = (x1,x2, . . . ,xn)T withPn

i¼1xi ¼ 1 and xi P 0 (i = 1,2, . . . ,n) be a priority vector derived
from A using some prioritization method.

If A is perfectly consistent, it follows that (Saaty, 1980)

aij ¼ xi=xj; i; j 2 f1;2; . . . ;ng: ð1Þ

From (1), A can be precisely characterized by

A ¼

x1=x1 x1=x2 � � � x1=xn

x2=x1 x2=x2 � � � x2=xn

..

. ..
.

� � � ..
.

xn=x1 xn=x2 � � � xn=xn

2
66664

3
77775: ð2Þ

According to (2), A can be viewed as consisting of the following n
column vectors:

ðx1;x2; . . . ;xnÞT=xi; i ¼ 1;2; . . . ;n: ð3Þ

Let Cj be the cosine similarity measure between the priority vector
w and the jth column vector aj of A, where w = (x1,x2, . . . ,xn)T and
aj = (a1j,a2j, . . . ,anj)T.

By Theorem 1, we have

Cj ¼ CSMðx; ajÞ

¼
Xn

k¼1

xkakj

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

kj

q� �
;

j ¼ 1;2; . . . ;n: ð4Þ

Since aij = xi/xj, i, j 2 {1,2, . . . ,n}, we have

Cj ¼¼
Xn

k¼1

x2
k=xj

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
ðxk=xjÞ2

q� �
¼ 1;

j ¼ 1;2; . . . ;n: ð5Þ

It is obvious that the cosine similarity measure between the derived
priority vector and each column vector of A is equal to 1 if and only
if A is perfectly consistent.

If A is not perfectly consistent, from Definition 3 it follows that

0 6 Cj < 1 ð6Þ

In order to derive a reliable priority vector, the cosine similarity
measure between the derived priority vector and each column vec-
tor of a PCM should be equal to 1 as highly as possible. Inspired by
this idea, we construct an optimization model as follows:

Maximize C ¼
Xn

j¼1

Cj ¼
Xn

j¼1

Xn

i¼1

ðxiaijÞ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

kj

q� �

subject to
Pn

i¼1xi ¼ 1;
xi P 0; i ¼ 1;2; . . . ;n

(
: ð7Þ
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We set

x̂i ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
P 0; i ¼ 1;2; . . . ;n: ð8Þ

and

bij ¼ aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

kj

q
> 0

�
; i; j ¼ 1;2; . . . ;n: ð9Þ

Then we have

Xn

i¼1

x̂2
i ¼ 1: ð10Þ

and

Xn

i¼1

b2
ij ¼ 1: ð11Þ

Accordingly, optimization model (7) can be equivalently trans-
formed into the following optimization model:

Maximize C ¼
Xn

j¼1

Cj ¼
Xn

j¼1

Xn

i¼1

bijx̂i ¼
Xn

i¼1

Xn

j¼1

bij

 !
x̂i

subject to
Pn

i¼1x̂2
i ¼ 1;

x̂i P 0; i ¼ 1;2; . . . ;n

(
: ð12Þ

With regard to optimization model (12), we have the following
theorems.

Theorem 2. Let ŵ� ¼ x̂�1; x̂
�
2; . . . ; x̂�n

� 	T be the optimal solution to
optimization model (12) and C⁄ be the optimal objective function
value of it. Then

x̂�i ¼
Xn

j¼1

bij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r

; i ¼ 1;2; . . . ; n and

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1
bij


 �2
r

:

Proof. Due to the fact that ŵ ¼ ðx̂1; x̂2; . . . ; x̂nÞT is a bounded vec-
tor and C is a continuous function of ŵ, there exists a maximum
point such that optimization model (12) holds. To find the maxi-
mum point, we construct the following Lagrangian function.

LðC; kÞ ¼ C þ k
Xn

i¼1

x̂2
i � 1

 !
¼
Xn

i¼1

Xn

j¼1

bij

 !
x̂i þ k

Xn

i¼1

x̂2
i � 1

 !
:

Taking the partial derivatives of the Lagrangian function with
respect to ŵi and letting them be zero.

@LðC; kÞ
@x̂i

¼
Xn

j¼1

bij þ 2kx̂i ¼ 0; i ¼ 1;2; . . . ; n:

Then, we have

x̂i ¼ �
Xn

j¼1

bij=2k:

Since

Xn

i¼1

x̂2
i ¼ 1; ŵi P 0 and bij > 0:

Then, we obtain

Xn

i¼1

Xn

j¼1

bij=2k

 !2

¼
Xn

i¼1

x̂2
i ¼ 1 and k < 0:
It follows that

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r ,

2:

The results are obtained as follows:

x̂�i ¼ �
Xn

j¼1

bij

,
2k ¼

Xn

j¼1

bij

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r

; i ¼ 1;2; . . . ;n:

and

C� ¼
Xn

i¼1

Xn

j¼1

bij

 !
x̂�i ¼

Xn

i¼1

Xn

j¼1

bij

 !Xn

j¼1

bij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r

: �

Furthermore, we write

X ¼ fw ¼ ðx1;x2; . . . ;xnÞT
Xn

i¼1

xi

����� ¼ 1; xi > 0; i ¼ 1;2; . . . ;ng:

ð13Þ

Then the objective function C of optimization model (7) has a
unique maximum point

w� ¼ x�1;x
�
2; . . . ;x�n

� 	T 2 X: ð14Þ

That is to say, optimization model (7) can produce a unique solu-
tion, avoiding the inconvenience of how to choose one solution
from a set of solutions. The unique solution can be indirectly deter-
mined by optimization model (12). From (8), we have

x�i ¼ x̂�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q
; i ¼ 1;2; . . . ;n: ð15Þ

Let

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q
P 0 ð16Þ

Then (15) can be equivalently written as

x�i ¼ x̂�i b; i ¼ 1;2; . . . ;n: ð17Þ

where b is called weight assignment coefficient. Solving the follow-
ing system of equationPn

i¼1x�i ¼
Pn

i¼1x̂�i bPn
i¼1x�i ¼ 1

(
: ð18Þ

We have

b� ¼ 1
Xn

j¼1

x̂�j

,
: ð19Þ

From (17), we have

x�i ¼ x̂�i b
� ¼ x̂�i

Xn

j¼1

x̂�j

,
; i ¼ 1;2; . . . ;n: ð20Þ

Theorem 3. Let PCM A = (aij)n�n be perfectly consistent, the CM
method can precisely derive the optimal objective function value
C⁄ = n and the priorities x�j ¼ 1

Pn
i¼1aij


(j = 1, 2, . . . , n).
Proof. Let w = (x1,x2, . . . ,xn)T be a priority vector derived from A.
Since A is perfectly consistent, it follows that

aij ¼ xi=xj and aij ¼ aikakj for all i; j; k 2 f1;2; . . . ;ng:
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From (9), we have

bij ¼ aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

kj

q�
¼ aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
ðaij=aikÞ2

q�
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
ð1=aikÞ2

q�

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

ki

q�
:

Thus,

Xn

j¼1

bij ¼
Xn

j¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

ki

q�� �
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
a2

ki

q�

¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
ðxk=xiÞ2

q�
¼ nxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
:

By Theorem 2, the optimal objective function value is obtained as
follows:

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1
bij


 �2
r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
nxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðnxiÞ2

Xn

k¼1
x2

k

.r
¼ n:

Since

Xn

j¼1

bij ¼ nxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r

¼ n:

We have

ŵ�i ¼
Xn

j¼1

bij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

Xn

j¼1
bkj


 �2
r,

¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
:

Thus,

ŵ�j ¼ xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
and

Xn

i¼1
ŵ�i ¼

Xn

i¼1
xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
x2

k

q�
:

From (20), the priorities are derived as follows:

x�j ¼ x̂�j
Xn

i¼1

x̂�i

,
¼ xj

Xn

i¼1

xi

,
¼ 1

Xn

i¼1

ðxi=xjÞ
,

¼ 1
Xn

i¼1

aij

,
;

j ¼ 1;2; . . . ;n: �

In order to facilitate the solution process of the CM, the involved
steps are briefly described as follows:

Step 1. Normalize the PCM A = (aij)n�n to the transformation
matrix B = (bij)n�n by (9).

Step 2. Calculate the transformed weights x̂�i ði ¼ 1;2; . . . ;nÞ by
Theorem 2.

Step 3. Calculate the optimal objective function value C⁄ by
Theorem 2.

Step 4. Calculate the weight assignment coefficient b⁄ by (19).
Step 5. Calculate the final priority vector w� ¼ x�1;x�2; . . . ;x�n

� 	T

by (20).

2.2. Cosine consistency index (CCI)

It is well-known that the consistency of a PCM is a vital basis of
AHP theory in the course of deriving the priority vector. Saaty
(1977) proposed a consistency index (CI) related to the EV method:

CI ¼ ðk� nÞ=ðn� 1Þ ð21Þ

where n is the dimension of the PCM, and k is the principal
eigenvalue of the PCM. It follows that CI P 0 with CI = 0 if and only
if the PCM is perfectly consistent. Several consistency indices and
methods have been proposed to measure the inconsistency level
of a PCM. For example; Crawford (1987) developed a new
consistency index using the geometric mean procedure. Peláez
and Lamata (2003) described a consistency measure method based
on the determinant of a PCM; Aguarón and Moreno-Jiménez (2003)
proposed the geometric consistency index (GCI) and provided the
approximated thresholds associated with it; Alonso and Lamata
(2006) proposed a transformation formulation of consistency
thresholds by a regression of the random indices; Stein and Mizzi
(2007) developed harmonic consistency index (HCI); Vargas
(2008) compared consistency indices based on deterministic and
statistical approaches and provided a statistical approach for the
consistency test; Ergu, Kou, Peng, and Shi (2011) proposed an
induced matrix method to measure and improve the consistency
of a PCM; Lin, Kou, and Ergu (2013b, 2013c) improved the statistical
approach for the consistency test. However, these existing consis-
tency indices and methods is still criticized and disputed in some
aspects. Therefore, we will deduce a new consistency index related
to the CM method to measure the inconsistency level of a PCM.

Given that C⁄ is the optimal objective function value of optimi-
zation model (12). According to Theorem 3, if a PCM is perfectly
consistent, we have

C� ¼ n: ð22Þ

Otherwise,

0 < C� < n: ð23Þ

In order to make eliminate the influence of the size of a PCM, we
should divide the objective function value C⁄ by n, resulting in
C⁄/n. Where C⁄/n is called cosine consistency index (CCI) of the
PCM and takes on values in the interval (0,1]. We write

CCI ¼ C�=n: ð24Þ

If the PCM is perfectly consistent, it follows that

CCI ¼ 1: ð25Þ

Otherwise

0 < CCI < 1: ð26Þ

which indicates that the PCM has the relative consistency.
It is not discussed in this paper that how to determine the

thresholds associated with CCI and the relationship between the
CCI and the consistency of a PCM. Although there is no standard
cut-off rule for the CCI, given its meaning for a PCM, as a general
rule, one would expect CCI to be at least 90%.

From the above discussion, it is found that the CM has some
advantages over the other prioritization methods, including
uniqueness of solution, easy computation and consistency indica-
tion. However, it is noted that we only consider the CM under con-
dition of the complete and precise PCM with both the acceptable
consistency and validity and that the CCI threshold is associated
with each decision-maker in practice.

3. Prioritization methods and evaluation criteria

We briefly review four typical prioritization methods and two
performance evaluation criteria on them. Like the previous section,
let A = (aij)n�n be a positive reciprocal PCM and w = (x1,x2, . . . ,xn)T

with
Pn

i¼1xi ¼ 1 and xi P 0 (i = 1,2, . . . ,n) be the priority vector
derived from A using some prioritization method.

3.1. Prioritization methods

There exist lots of prioritization methods for the priority vector
derivation from a PCM in AHP. Among them, EV and LLS are the
most popular and commonly used, AN is competitive with the
others due to its extreme simplicity (Srdjevic, 2005), WLS can
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easily be solved and can provide a unique solution unlike LS and
EV. Moreover, following discussion in Golany and Kress (1993),
some other existing prioritization methods are considered inferior
to EV, WLS, AN, LLS expect for LGP and FPP. Therefore, we will
choose EV, WLS, AN and LLS with which the CM is compared,
regarding the preference evaluation criteria.

Eigenvector method (EV).
The desired priority vector w = (x1,x2, . . . ,xn)T as the principal

eigenvector of A is obtained by solving the linear system (Saaty,
1977):

Aw ¼ kw

subject to
Xn

i¼1

xi ¼ 1; xi P 0; i ¼ 1;2; . . . ; n:
ð27Þ

where k is the principal eigenvalue of A. If A is perfectly consistent,
then k = n; Otherwise k > n. EV method gives reasonably good
approximation of the desired priority vector under condition of
small deviations around the consistent ratios xi/xj. However,
the solution is not so satisfactory if the inconsistency level of A
is high.

Weighted least squares method (WLS).
The desired priority vector w = (x1,x2, . . . ,xn)T is formulated as

the non-linear constrained optimization problem (Chu et al.,
1979):

Minimize
Xn

i¼1

Xn

j¼1

ðxi � aijxjÞ2

subject to
Xn

i¼1

xi ¼ 1; xi P 0; i ¼ 1;2; . . . ; n:

ð28Þ

The optimization problem is transformed into a system of linear
equations by differentiating the Lagrangian of (28) and equalizing
it to zero. Blankmeyer (1987) showed that in this way WLS can pro-
vide a unique and strictly positive solution.

Additive normalization method (AN).
The desired priority vector w = (x1,x2, . . . ,xn)T is obtained by

the procedure that is described as follows (Saaty, 1980):

First a0ij ¼ aij

Xn

i¼1

aij

,
; i; j ¼ 1;2; . . . ; n: ð29Þ

Then xi ¼ ð1=nÞ
Xn

j¼1

a0ij; i ¼ 1;2; . . . ; n: ð30Þ

Srdjevic (2005) showed that the resulting priority vector will be
fairly close to the eigenvector solution if A is close to perfectly con-
sistent. Thus, AN can be viewed as an approximation to EV in
practice.

Logarithmic least squares method (LLS).
The desired priority vector w = (x1,x2, . . . ,xn )T is formulated as

the multiplicative normalizing constrained optimization problem
(Crawford & Williams, 1985):

Minimize
Xn

i¼1

Xn

j¼1

ðln aij � lnxi þ ln xjÞ2

subject to
Xn

i¼1

xi ¼ 1; xi > 0; i ¼ 1;2; . . . ;n:

ð31Þ

Crawford and Williams (1985) showed that the solution of the opti-
mization problem (31) is unique and can be found as the geometric
mean of the columns of A.
3.2. Evaluation criteria

More general and applicable to all prioritization methods are
error measures such as generalized Euclidean distance (ED) and
minimum violations (MV) introduced by Golany and Kress
(1993). They measure both the accuracy of the solution and the
ranking order properties and are accepted and widely used by
researchers (Srdjevic, 2005; Mikhailov & Singh, 1999). In order to
assess the performance of the proposed CM, we choose ED and
MV as the performance evaluation criteria of prioritization
methods.

Euclidean distance criterion(ED).

EDðwÞ ¼
Xn

i¼1

Xn

j¼1

ðaij �xi=xjÞ2
" #1=2

: ð32Þ

This error measure is represented by the total distance between all
elements in A and related ratios of the weights contained in the pri-
ority vector derived from A using some prioritization method.

Minimum violation criterion (MV).

MVðwÞ ¼
Xn

i¼1

Xn

j¼1

Iij;

where

Iij ¼

1 if xi > xj and aji > 1;
0:5 if xi ¼ xj and aji – 1;
0:5 if xi – xj and aji ¼ 1;
0 otherwise:

8>>><
>>>:

ð33Þ

This error measure sums up all violations associated with the prior-
ity vector derived from A using some prioritization method. The
conditions of violation defined by (33) penalize possible order
reversal.

We will evaluate the performance of the CM by comparing it
with EV, WLS, AN and LLS regarding the performance evaluation
criteria: ED and MV. These error measure values can also be easily
solved by software packages such as SPSS, MATLAB and Microsoft
EXCEL. The inputs: the PCM A = (aij)n�n and the priority vector
w = (x1,x2, . . . ,xn)T derived from A using some prioritization
method. The outputs: the error measure values (ED and MV)
between the derived priority vector w = (x1,x2, . . . ,xn)T and A.
Obviously, the smaller the error measure value is, the better the
prioritization method is.
4. Numerical examples

In this section, we compare the CM with EV, WLS, AN and LLS
regarding two preference evaluation criteria: ED and MV. Three
numerical examples are used to demonstrate applications and
advantages of the CM. The results are discussed as follows:

Example 1. Consider the following PCM, which was used by Saaty
(2000).

A ¼

1 4 3 1 3 4
1=4 1 7 3 1=5 1
1=3 1=7 1 1=5 1=5 1=6

1 1=3 5 1 1 1=3
1=3 5 5 1 1 3
1=4 1 6 3 1=3 1

2
666666664

3
777777775
:

For this PCM, we have the following results using the CM.

Step 1. Normalize the PCM to the transformation matrix by (9),
we get



Table 2
Error measure values of prioritization methods for Example 1.

Criteria CM EV WLS AN LLS

ED 8.573(1) 9.446(4) 11.707(5) 8.795(2) 9.240(3)
MV 3 3 4 3 3
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B ¼

0:6527 0:6091 0:2491 0:2180 0:8968 0:7678

0:1632 0:1523 0:5813 0:6540 0:0598 0:1920

0:2176 0:0218 0:0830 0:0436 0:0598 0:0320

0:6527 0:0508 0:4152 0:2180 0:2989 0:0640

0:2176 0:7631 0:4152 0:2180 0:2989 0:5759

0:1632 0:1523 0:4983 0:6540 0:0996 0:1920

2
666666666664

3
777777777775
:

Step 2. Calculate the transformed weights by Theorem 2, we get

ŵ� ¼ x̂�1; x̂
�
2; . . . ; x̂�6

� 	T

¼ ð0:6514;0:3460;0:0879; 0:3262;0:4773;0:3377ÞT :

Step 3. Calculate the optimal objective function value by
Theorem 2, we get

C� ¼ 5:210:

Thus,

CCI ¼ C �=n ¼ 5:210=6 ¼ 86:8%:

Step 4. Calculate the weight assignment coefficient by (19), we
get

b� ¼ 0:4491:

Step 5. Calculate the final priority vector by (20), we get

w� ¼ x�1;x
�
2; . . . ;x�6

� 	T

¼ ð0:293;0:155;0:039;0:147; 0:214;0152ÞT :

It is shown in the first column of Table 1, where the numbers in
parentheses are ranking orders. Table 1 also shows the priority vec-
tors and ranking orders obtained by EV, WLS, AN and LLS. Table 2
shows the error measure values for CM, EV, WLS, AN and LLS, where
the numbers in parentheses are ranking orders regarding ED.

From Table 1, it is clear that the CM achieves the same ranking
order as EV and AN while WLS and LLS lead to different ranking or-
ders. From Table 2, the CM is better than the other prioritization
methods according to ED and MV as the smaller error measure
value means the better performance.

Example 2. Consider another PCM below, which is investigated by
Lipovetsky and Conklin (2002).
Table 3
Priority vectors and ranking orders obtained by prioritization methods for Example 2.

Priority CM EV WLS AN LLS

x1 0.179(3) 0.173(3) 0.143(2) 0.174(3) 0.175(2)
x2 0.072(5) 0.054(5) 0.054(5) 0.066(5) 0.063(5)
x3 0.159(4) 0.188(2) 0.121(3) 0.170(4) 0.149(4)
x4 0.019(8) 0.018(8) 0.030(8) 0.019(8) 0.019(8)
x5 0.037(7) 0.031(7) 0.047(6) 0.035(7) 0.036(7)
x6 0.048(6) 0.036(6) 0.047(6) 0.045(6) 0.042(6)
A ¼

1 5 3 7 6 6 1=3 1=4
1=5 1 1=3 5 3 3 1=5 1=7
1=3 3 1 6 3 4 6 1=5
1=7 1=5 1=6 1 1=3 1=4 1=7 1=8
1=6 1=3 1=3 3 1 1=2 1=5 1=6
1=6 1=3 1=4 4 2 1 1=5 1=6

3 5 1=6 7 5 5 1 1=2
4 7 5 8 6 6 2 1

2
66666666666664

3
77777777777775
:

Using the CM for the PCM, the results are obtained as follows:
Table 1
Priority vectors and ranking orders obtained by prioritization methods for Example 1.

Priority CM EV WLS AN LLS

x1 0.293(1) 0.321(1) 0.415(1) 0.305(1) 0.316(1)
x2 0.155(3) 0.140(3) 0.094(5) 0.149(3) 0.139(4)
x3 0.039(6) 0.035(6) 0.035(6) 0.038(6) 0.036(6)
x4 0.147(5) 0.129(5) 0.112(4) 0.141(5) 0.125(5)
x5 0.214(2) 0.237(2) 0.219(2) 0.221(2) 0.236(2)
x6 0.152(4) 0.139(4) 0.125(3) 0.146(4) 0.148(3)
The transformation matrix is

B ¼

0:1953 0:4783 0:5046 0:4436 0:5475 0:5403 0:0519 0:2080
0:0391 0:0957 0:0561 0:3169 0:2737 0:2702 0:0311 0:1189
0:0651 0:2870 0:1682 0:3802 0:2737 0:3602 0:9342 0:1664
0:0279 0:0191 0:0280 0:0634 0:0304 0:0225 0:0222 0:1040
0:0325 0:0319 0:0561 0:1901 0:0912 0:0450 0:0311 0:1387
0:0325 0:0319 0:0421 0:2535 0:1825 0:0901 0:0311 0:1387
0:5858 0:4783 0:0280 0:4436 0:4562 04503 0:1557 0:4161
0:7811 0:6697 0:8411 0:5070 0:5475 0:5403 0:3114 0:8322

2
66666666666664

3
77777777777775
:

The transformed weight vector is

ŵ� ¼ ðx̂�1;x̂�2; . . . ;x̂�8Þ
T

¼ ð0:4090;0:1655;03629;0:0437;0:0849;0:1105;0:4151;0:6928ÞT

The optimal objective function value is

C� ¼ 7:2607:

Thus,

CCI ¼ C �=n ¼ 7:2607=8 ¼ 90:8%:

The weight assignment coefficient is

b� ¼ 0:4377:

The final priority vector is

w� ¼ x�1;x
�
2; . . . ;x�8

� 	T

¼ ð0:179;0:072;0:159;0:019;0:37;0:048;0:182;0:303ÞT :

Table 3 shows the priority vectors and ranking orders obtained
by the CM along with EV, WLS, AN and LLS, where the numbers in
parentheses are ranking orders. Table 4 shows error measure val-
ues for CM, EV, WLS, AN and LLS, where the numbers in parenthe-
ses are ranking orders regarding ED.

From Table 3, it is clear that the CM achieves the same ranking
order as AN while EV, WLS and LLS lead to different orders. This is
mainly reason that the original PCM was badly inconsistent and
x7 0.182(2) 0.167(4) 0.089(4) 0.179(2) 0.167(3)
x8 0.303(1) 0.333(1) 0.469(1) 0.312(1) 0.349(1)

Table 4
Error measure values of prioritization methods for Example 2.

Criteria CM EV WLS AN LLS

ED 13.204(1) 16.095(5) 15.727(4) 13.666(2) 14.733(3)
MV 1 2 2 1 2



Table 6
Error measure values of prioritization methods for Example 3.

Criteria CM EV WLS AN LLS

ED 11.118(1) 13.573(4) 11.168(2) 11.794(3) 13.999(5)
MV 0 0 0 0 0
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needs to be adjusted. Lipovetsky and Conklin (2002) showed that
the adjusted ranking order is exactly the same as the ranking order
obtained by the CM, that is x8 > x7 > x1 > x3 > x2 > x6 > x5 > x4.
Obviously, from Table 4, the CM is the best among these prioritiza-
tion methods based on ED and MV.

Example 3. Consider the following PCM, which comes from Saaty
(1980).

A ¼

1 4 9 6 6 5 5
1=4 1 7 5 5 3 4
1=9 1=7 1 1=5 1=5 1=7 1=5
1=6 1=5 5 1 1 1=3 1=3
1=6 1=5 5 1 1 1=3 1=3
1=5 1=3 7 3 3 1 2
1=5 1=4 5 3 3 1=2 1

2
666666666664

3
777777777775
:

For this PCM, we have the following results using the CM.

The transformation matrix is

B¼

0:9089 0:9624 0:5636 0:6665 0:6665 0:8393 0:7351
0:2272 0:2406 0:4384 0:5554 0:5554 0:5036 0:5881
0:1010 0:0344 0:0626 0:0222 0:0222 0:0240 0:0294
0:1515 0:0481 0:3131 0:0111 0:0111 0:0560 0:0490
0:1515 0:0481 0:3131 0:0111 0:0111 0:0560 0:0490
0:1818 0:0802 0:4384 0:3333 0:3333 0:1679 0:2940
0:1818 0:0602 0:3131 0:3333 0:3333 0:0839 0:1470

2
666666666664

3
777777777775
:

The transformed weight vector is

ŵ� ¼ x̂�1; x̂
�
2; . . . ; x̂�7

� 	T

¼ ð0:7950;0:4626;0:0440;0:1250;0:1250;0:2721;0:2161ÞT :

The optimal objective function value is

C� ¼ 6:720:

Thus,

CCI ¼ C�=n ¼ 6:720=7 ¼ 96%:

The weight assignment coefficient is

b� ¼ 0:4902:

The final priority vector is

w� ¼ x�1;x
�
2; . . . ;x�7

� 	T

¼ ð0:390;0:227;0:022; 0:061; 0:061; 0:133;0:106ÞT :

It is shown in the first column of Table 5, where the numbers in
parentheses are ranking orders. Table 5 also shows the priority vec-
tors obtained by EV, WLS, LS and LLS. Table 6 shows the error mea-
sure values for CM, EV, WLS, AN and LLS, where the numbers in
parentheses are ranking orders regarding ED.
Table 5
Priority vectors and ranking orders obtained by prioritization methods for Example 3.

Priority CM EV WLS AN LLS

x1 0.390(1) 0.427(1) 0.487(1) 0.409(1) 0.417(1)
x2 0.227(2) 0.230(2) 0.175(2) 0.226(2) 0.231(2)
x3 0.022(7) 0.021(7) 0.030(7) 0.022(7) 0.020(7)
x4 0.061(5) 0.052(5) 0.059(5) 0.058(5) 0.054(5)
x5 0.061(6) 0.052(6) 0.059(6) 0.058(6) 0.054(6)
x6 0.133(3) 0.123(3) 0.104(3) 0.128(3) 0.128(3)
x7 0.106(4) 0.094(4) 0.085(4) 0.100(4) 0.096(4)
From Table 5, it is clear that the CM achieves the same ranking
order as all the other prioritization methods, which shows the
ranking is robust and credible. From Table 6, the CM is smaller than
the other prioritization methods according to ED. All priority meth-
ods result in the same result according to MV. This partly shows
that the CM still performs better than the other prioritization
methods.

From the above examples, the CM has the better performance
than the other four prioritization methods according to the two
performance evaluation criteria: ED and MV. The investigation of
three numerical examples has shown applications and advantages
of the CM. However, the CM does not extend to the incomplete and
imprecise PCM and the thresholds associated with CCI are not di-
rectly determined, which is the research objective and direction
in the future work.
5. Conclusions

We have proposed a flexible and efficient CM for a priority vec-
tor derivation from a PCM. The main idea of the CM is to maximize
the sum of the cosine of the angle between the derived priority
vector and each column vector of a PCM. An optimization model
has been suggested for determining transformed the weight vector
and weight assignment coefficient, which makes the CM easy to
compute. The CM possesses some attractive properties that make
it an appealing alternative to the other prioritization methods.
For example, the CM does not require any statistical assumptions
and provides consistency indication for a PCM, CCI is easy to com-
pute and interpret in AHP. These features of the CM can be consid-
ered as sufficient compensation for deriving a reliable priority
vector from a PCM. However, the CM has own disadvantages: the
CM does not extend to the incomplete and imprecise PCM and
the thresholds associated with CCI are not determined in terms
of the relationship between the CCI and the consistency of a
PCM, which is our research objective in the future. Moreover,
discussion about advantages and disadvantages of prioritization
methods is still controversial mainly because existing prioritiza-
tion methods perform differently with regard to different perfor-
mance evaluation criteria. Therefore, combining different
prioritization methods should be considered as a new direction
in improving the current prioritization techniques.
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