3×3 Orthostochastic Matrices and the Convexlty of Generalized Numerical Ranges

Yik-Hoi Au-Yeung and Yiu-Tung Poon
University of Hong Kong
Hong Kong

Submitted by Olga Taussky Todd

Abstract

Let \mathscr{U}_{3} be the set of all 3×3 unitary matrices, and let A and B be two 3×3 complex normal matrices. In this note, the authors first give a necessary and sufficient condition for a 3×3 doubly stochastic matrix to be orthostochastic and then use this result to consider the structure of the sets $\mathscr{U}(A)=\left\{\operatorname{Diag} U A U^{*}: U \in \mathscr{U}_{3}\right\}$ and $W(A, B)=\left\{\operatorname{Tr} U A U^{*} B: U \in \mathscr{Q}_{3}\right\}$, where * denotes the transpose conjugate.

1. INTRODUCTION

Let A and B be two $n \times n$ complex matrices, and let \mathscr{Q}_{n} be the set of all $n \times n$ unitary matrices. Define $\mathscr{W}(\Lambda)=\left\{\right.$ Diag $\left.U A U^{*}: U \in \mathscr{Q}_{n}\right\}$ and $W(\Lambda, B)$ $=\left\{\operatorname{Tr} U A U^{*} B: U \in \mathscr{Q}_{n}\right\}$, where ${ }^{*}$ denotes the transpose conjugate. Horn [3] proved that if A is Hermitian, then $\mathscr{W}(A)$ is convex. Au-Yeung and Sing [1] proved that if A is nommal, then $\mathscr{(A)}$ is convex if and only if the eigenvalues of A are collinear. Williams [7] characterized the structure of $\mathscr{W}(A)$ for a 3×3 normal matrix A. Westwick [6] (in an equivalent form) proved that if A is normal and the eigenvalues of A are collinear, then $W(A, B)$ is convex. He also gave an example of two 3×3 normal matrices A and B such that $W(A, B)$ is not convex.

An $n \times n$ doubly stochastic (d.s.) matrix ($a_{i j}$) is said to be orthostochastic (o.s.) if there exists $\left(u_{i j}\right) \in \mathscr{Q}_{n}$ such that $a_{i j}=\left|u_{i j}\right|^{2}$. The purpose of this note is (1) to give a necessary and sufficient condition for a 3×3 d.s. matrix to be o.s., (2) to give another characterization of the structure of $\mathscr{W}(A)$ for a normal 3×3 matrix A and (3) to give a necessary and sufficient condition for the convexity of $W(A, B)$ in terms of the eigenvalues of A and B for 3×3 normal matrices A and B.

2. ORTHOSTOCHASTIC MATRICES AND THE CONVEXITY OF GENERALIZED NUMERICAL RANGES

We first give a necessary and sufficient condition for a d.s. matrix to be o.s.

Theorem 1. Let $\left(a_{i j}\right)$ be a 3×3 real matrix such that $\sum_{i=1}^{3} a_{i j}=1$ $(i=1,2,3)$ and $\Sigma_{i=1}^{3} a_{i j}=1(j=1,2,3)$. Then
(1) if $\left(a_{i j}\right)$ is o.s., then for any $j \neq j^{\prime}$ and for any l

$$
\begin{equation*}
\sqrt{a_{l i} a_{l i^{\prime}}} \leqslant \sum_{\substack{i=1 \\ i \neq l}}^{3} \sqrt{a_{i j} a_{i i^{\prime}}} \tag{*}
\end{equation*}
$$

(2) conversely, if there exist $j \neq j^{\prime}$ such that $a_{i j} \geqslant 0, a_{i i^{\prime}} \geqslant 0(i=1,2,3)$ and for any l, the inequality $\left(^{*}\right)$ holds, then $\left(a_{i j}\right)$ is o.s.

Proof. Suppose $\left(a_{i j}\right)$ is o.s.; then there exist real numbers $\theta_{i j}(i, j=1,2,3)$ such that $\left(\sqrt{a_{i j}} e^{\sqrt{-1} \theta_{i j}}\right)$ is unitary. Hence for any $j \neq j^{\prime}$

$$
\sum_{i=1}^{3} \sqrt{a_{i j} a_{i i^{\prime}}} e^{\sqrt{-1}\left(\theta_{i j}-\theta_{i j}\right)}=0
$$

and consequently the inequality $\left(^{*}\right.$) follows.
Conversely, suppose there exist $j \neq j^{\prime}$ such that the inequality $\left(^{*}\right)$ holds for any l. For definiteness, we assume $j=1$ and $j^{\prime}=2$. Then the nonnegative numbers $\sqrt{a_{11} a_{12}}, \sqrt{a_{21} a_{22}}, \sqrt{a_{31} a_{32}}$ form the lengths of the three sides of a triangle. Hence there exist real numbers θ and ψ such that

$$
\sqrt{a_{11} a_{12}}+\sqrt{a_{21} a_{22}} e^{\sqrt{-1} \theta}+\sqrt{a_{31} a_{32}} e^{\sqrt{-1} \psi}=0
$$

Let $\quad u_{i 1}=\sqrt{a_{i 1}} \quad(i=1,2,3) \quad$ and $\quad u_{12}=\sqrt{a_{12}}, \quad u_{22}=\sqrt{a_{22}} e^{\sqrt{-1} \theta}$, $u_{32}=\sqrt{a_{32}} e^{\sqrt{-1} \psi}$, and $\left(u_{13}, u_{23}, u_{33}\right)$ be any unit vector orthogonal to (u_{11}, u_{21}, u_{31}) and (u_{12}, u_{22}, u_{32}). Then $\left(u_{i j}\right)$ is unitary and $a_{i j}=\left|u_{i j}\right|^{2}$.

In the following we shall use A and B to denote two complex normal matrices with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and $\mu_{1}, \mu_{2}, \mu_{3}$ respectively. It follows from the definitions that $\mathscr{W}(A)=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right):\left(a_{i j}\right)\right.$ is a 3×3 o.s. matrix $\}$ and $W(A, B)=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right)\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}:\left(a_{i j}\right)\right.$ is a 3×3 o.s. matrix $\}$, where T denotes the transpose. From Theorem 1, we have

Corollary 1. ($\left.\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathscr{W}(\Lambda)(\gamma \in W(\Lambda, B)$ respectively) if and only if $\quad\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right) \quad\left(\gamma=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right)\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}\right.$ respectively $)$, where $\left(a_{i j}\right)$ is a d.s. matrix satisfying (${ }^{*}$) for some $j \neq j^{\prime}$ and for any l.

Obviously, if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathscr{U}(A)$, then each $\gamma_{i}(i=1,2,3)$ is a convex combination of λ_{1}, λ_{2} and λ_{3} and $\gamma_{1}+\gamma_{2}+\gamma_{3}=\lambda_{1}+\lambda_{2}+\lambda_{3}$. The following theorem gives a characterization of $\mathscr{Q}(A)$.

Theorem 2. Suppose λ_{1}, λ_{2} and λ_{3} are not collinear and $\gamma_{1}=\alpha_{1} \lambda_{1}+$ $\alpha_{2} \lambda_{2}+\alpha_{3} \lambda_{3}\left(\alpha_{i} \geqslant 0, \alpha_{1}+\alpha_{2}+\alpha_{3}=1\right)$. Then $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \vartheta(A)$, where $\gamma_{2}=x \lambda_{1}$ $+y \lambda_{2}+z \lambda_{3}, x, y, z \geqslant 0, x+y+z=1$ and $\gamma_{3}=\operatorname{Tr} A-\left(\gamma_{1}+\gamma_{2}\right)$, if and only if
(i) $x \leqslant \alpha_{2}+\alpha_{3}$ and
(ii) $\left(\sqrt{\alpha_{1} \alpha_{2} x}-\sqrt{\alpha_{3} \alpha_{0}}\right)^{2} \leqslant\left(\alpha_{2}+\alpha_{3}\right)^{2} y \leqslant\left(\sqrt{\alpha_{1} \alpha_{2} x}+\sqrt{\alpha_{3} \alpha_{0}}\right)^{2}$, where α_{0} $=\alpha_{2}+\alpha_{3}-x$.

Proof. We first observe that

$$
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(\begin{array}{lll}
\alpha_{1} & x & 1-\alpha_{1}-x \\
\alpha_{2} & y & 1-\alpha_{2}-y \\
\alpha_{3} & z & 1-\alpha_{3}-z
\end{array}\right)
$$

Now if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathscr{W}(A)$, then there exists an o.s. matrix $\left(a_{i j}\right)$ such that

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left\{\begin{array}{lll}
\alpha_{1} & x & 1-\alpha_{1}-x \\
\alpha_{2} & y & 1-\alpha_{2}-y \\
\alpha_{3} & z & 1-\alpha_{3}-z
\end{array}\right]=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right)
$$

Since λ_{1}, λ_{2} and λ_{3} are not collinear, by comparing the coefficients we see that

$$
\left(\begin{array}{lll}
\alpha_{1} & x & 1-\alpha_{1}-x \\
\alpha_{2} & y & 1-\alpha_{2}-y \\
\alpha_{3} & z & 1-\alpha_{3}-z
\end{array}\right]=\left(a_{i j}\right)
$$

Consequently, by Theorem $1,\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathscr{W}(A)$ if and only if all the following three inequalities hold:
(1) $\sqrt{\alpha_{1} x} \leqslant \sqrt{\alpha_{2} y}+\sqrt{\alpha_{3} z}$,
(2) $\sqrt{\alpha_{2} y} \leqslant \sqrt{\alpha_{1} x}+\sqrt{\alpha_{3} z}$,
(3) $\sqrt{\alpha_{3} z} \leqslant \sqrt{\alpha_{1} x}+\sqrt{\alpha_{2} y}$.

If $\alpha_{2}+\alpha_{3}=0$, from (1), $x=0$ and y can take any value between 0 and 1. So we may assume $\alpha_{2}+\alpha_{3}>0$ and notice that (1), (2) and (3) together are equivalent to

$$
\begin{aligned}
& \left(\sqrt{\alpha_{1} x}-\sqrt{\alpha_{3} z}\right)^{2} \leqslant \alpha_{2} y \leqslant\left(\sqrt{\alpha_{1} x}+\sqrt{\alpha_{3} z}\right)^{2} \\
\Leftrightarrow & -2 \sqrt{\alpha_{1} \alpha_{3} x z} \leqslant \alpha_{2} y-\alpha_{1} x-\alpha_{3} z \leqslant 2 \sqrt{\alpha_{1} \alpha_{3} x z} \\
\Leftrightarrow \quad & {\left[\alpha_{2} y-\alpha_{1} x-\alpha_{3}(1-x-y)\right]^{2} \leqslant 4 \alpha_{1} \alpha_{3} x(1-x-y) } \\
\Leftrightarrow & \left(\alpha_{2}+\alpha_{3}\right)^{2} y^{2}-2\left[\alpha_{1} \alpha_{2} x+\alpha_{3}\left(\alpha_{2}+\alpha_{3}-x\right)\right] y+\left[\alpha_{1} x-\alpha_{3}(1-x)\right]^{2} \leqslant 0 \\
& \\
\Leftrightarrow & {\left[\left(\alpha_{2}+\alpha_{3}\right)^{2} y\right]^{2}-2\left[\alpha_{1} \alpha_{2} x+\alpha_{3}\left(\alpha_{2}+\alpha_{3}-x\right)\right]\left[\left(\alpha_{2}+\alpha_{3}\right)^{2} y\right] } \\
& \quad+\left[\alpha_{1} \alpha_{2} x-\alpha_{3}(1-x)+\alpha_{1}+\alpha_{3}=1\right) \\
& \quad\left(\because \alpha_{3}\right]^{2} \leqslant 0
\end{aligned}
$$

Putting $t=\left(\alpha_{2}+\alpha_{3}\right)^{2} y$, then the above inequality holds for nonnegative real numbers t if and only if

$$
\alpha_{3} \alpha_{0} \geqslant 0 \quad \text { and } \quad\left(\sqrt{\alpha_{1} \alpha_{2} x}-\sqrt{\alpha_{3} \alpha_{0}}\right)^{2} \leqslant t \leqslant\left(\sqrt{\alpha_{1} \alpha_{2} x}+\sqrt{\alpha_{3} \alpha_{0}}\right)^{2}
$$

which in turn are equivalent to (i) and (ii), since if $\alpha_{3}=0$, then

$$
t=\alpha_{2}^{2} y=\alpha_{1} \alpha_{2} x \quad \Rightarrow \quad x=\alpha_{2}(x+y) \leqslant \alpha_{2}
$$

The following theorem shows that the matrix

$$
C_{0}=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

plays an important role in the consideration of 3×3 o.s. matrices.
Theorem 3. ${ }^{1} \quad$ A convex combination of $a \times 3$ o.s. matrix $\left(a_{i j}\right)$ and C_{0} is an o.s. matrix. Furthermore, the matrix C_{0} is the unique o.s. matrix with this property.

[^0]Proof. Let $0 \leqslant \alpha \leqslant 1$. Then for any l

$$
\begin{aligned}
& \left(\sum_{\substack{i=1 \\
i \neq l}}^{3} \sqrt{\left(\alpha a_{i 1}+\frac{1-\alpha}{3}\right)\left(\alpha a_{i 2}+\frac{1-\alpha}{3}\right)}\right)^{2} \\
& =\sum_{\substack{i=1 \\
i \neq l}}^{3}\left(\alpha a_{i 1}+\frac{1-\alpha}{3}\right)\left(\alpha a_{i 2}+\frac{1-\alpha}{3}\right) \\
& +2 \sqrt{\left(\alpha a_{i 1}+\frac{1-\alpha}{3}\right)\left(\alpha a_{i 2}+\frac{1-\alpha}{3}\right)\left(\alpha a_{i^{\prime} 1}+\frac{1-\alpha}{3}\right)\left(\alpha a_{i^{\prime} 2}+\frac{1-\alpha}{3}\right)} \\
& \left(1 \leqslant i<i^{\prime} \leqslant 3, \quad i, i^{\prime} \neq l\right) \\
& \geqslant \sum_{\substack{i=1 \\
i \neq l}}^{3}\left[\alpha^{2} a_{i 1} a_{i 2}+\frac{\alpha(1-\alpha)}{3}\left(a_{i 1}+a_{i 2}\right)+\left(\frac{1-\alpha}{3}\right)^{2}\right]+2 \alpha^{2} \sqrt{a_{i 1} a_{i 2} a_{i^{\prime} 1} a_{i^{\prime} 2}} \\
& \left(1 \leqslant i<i^{\prime} \leqslant 3, \quad i, i^{\prime} \neq l\right) \\
& =\alpha^{2}\left(\sum_{\substack{i=1 \\
i \neq l}}^{3} \sqrt{a_{i 1} a_{i 2}}\right)^{2}+\frac{\alpha(1-\alpha)}{3} \sum_{\substack{i=1 \\
i \neq l}}^{3}\left(a_{i 1}+a_{i 2}\right)+2\left(\frac{1-\alpha}{3}\right)^{2} \\
& \geqslant \alpha^{2} a_{l 1} a_{l 2}+\frac{\alpha(1-\alpha)}{3} \sum_{\substack{i=1 \\
i \neq l}}^{3}\left(a_{i 1}+a_{i 2}\right)+\left(\frac{1-\alpha}{3}\right)^{2} \quad\left[\mathrm{by}\left({ }^{*}\right)\right] \\
& =\alpha^{2} a_{l 1} a_{l 2}+\frac{\alpha(1-\alpha)}{3}\left[2-\left(a_{l 1}+a_{l 2}\right)\right]+\left(\frac{1-\alpha}{3}\right)^{2} \\
& \geqslant \alpha^{2} a_{l 1} a_{l 2}+\frac{\alpha(1-\alpha)}{3}\left(a_{l 1}+a_{l 2}\right)+\left(\frac{1-\alpha}{3}\right)^{2} \quad\left(a_{l 1}+a_{l 2} \leqslant 1\right) \\
& =\left[\sqrt{\left(\alpha a_{l 1}+\frac{1-\alpha}{3}\right)\left(\alpha a_{l 2}+\frac{1-\alpha}{3}\right)}\right]^{2} .
\end{aligned}
$$

Hence, by Theorem 1, $\alpha\left(a_{i j}\right)+(1-\alpha) C_{0}$ is o.s. for any $0 \leqslant \alpha \leqslant 1$.

For uniqueness, call any o.s. matrix with such property a center. Let $C=\left(c_{i j}\right)$ be a center and I the 3×3 identity matrix. Then, for any $0 \leqslant \alpha \leqslant 1$, the matrix $(1-\alpha) I+\alpha C$ is o.s., and by Theorem 1 we have

$$
\sqrt{\alpha c_{12}\left[1+\alpha\left(c_{11}-1\right)\right]} \leqslant \sqrt{\alpha c_{21}\left[1+\alpha\left(c_{22}-1\right)\right]}+\sqrt{\alpha^{2} c_{31} c_{32}}
$$

and

$$
\sqrt{\alpha c_{21}\left[1+\alpha\left(c_{22}-1\right)\right]} \leqslant \sqrt{\alpha c_{12}\left[1+\alpha\left(c_{11}-1\right)\right]}+\sqrt{\alpha^{2} c_{31} c_{32}}
$$

Hence

$$
\left(\sqrt{c_{21}\left[1+\alpha\left(c_{22}-1\right)\right]}-\sqrt{c_{12}\left[1+\alpha\left(c_{11}-1\right)\right]}\right)^{2} \leqslant \alpha c_{31} c_{32}
$$

for any $0<\alpha \leqslant 1$. This implies $c_{21}=c_{12}$. It is obvious that if C is a center, then for any permutation matrices P_{1} and $P_{2}, P_{1} C P_{2}$ is also a center. Therefore, by the above argument we have $c_{i j}=\frac{1}{3}$ for $i, j=1,2,3$.

Corollary 2. For any $u \in \mathscr{O}(A)(x \in W(A, B)$ respectively) and any $0 \leqslant \alpha \leqslant I, \alpha(\gamma, \gamma, \gamma)+(1-\alpha) u \in \circlearrowleft(A)$, where $\gamma=\frac{1}{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left((\alpha / 3)\left(\lambda_{1}+\right.\right.$ $\left.\lambda_{2}+\lambda_{3}\right)\left(\mu_{1}+\mu_{2}+\mu_{3}\right)+(1-\alpha) x \in W(A, B)$ respectively $)$.

Let $M_{+}\left(M_{-}\right)$denote the set of all 3×3 even (odd) permutation matrices. Define $\mathscr{V}_{+}=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) P: P \in M_{+}\right\}, \mathscr{V}_{-}=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) P: P \in M_{-}\right\}$, $V_{+}=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) P\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}: P \in M_{+}\right\}, \quad V_{-}=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) P\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}: P \in\right.$ $\left.M_{-}\right\}$. A permutation matrix is o.s. For a convex combination of two permutation matrices, we have the following theorems.

Theorem 4. For any $P_{1} \in M_{+}, P_{2} \in M_{-}$and any $0 \leqslant \alpha \leqslant 1, \alpha P_{1}+$ $(1-\alpha) P_{2}$ is o.s.

Proof. Without loss of generality, we may assume P_{1} to be the identity matrix (otherwise we consider $P P_{1}$ and $P P_{2}$, where P is a permutation matrix). Then P_{2} is obtained from P_{1} by transposing two rows of P_{1}. For definiteness we assume

$$
P_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Then obviously,

$$
\alpha\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+(1-\alpha)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & 1-\alpha \\
0 & 1-\alpha & \alpha
\end{array}\right)
$$

is o.s.

Corollary 3. For any $u \in \mathbb{V}_{+}\left(x \in V_{+}\right.$respectively), $v \in \mathbb{V}_{-}(y \in V)$ and any $0 \leqslant \alpha \leqslant 1$, we have $\alpha u+(1-\alpha) v \in \mathscr{W}(A)(\alpha x+(1-\alpha) y \in W(A, B))$.

Theorem 5. For any distinct P_{1} and P_{2} in M_{+}(or in M_{-}) and any $0<\alpha<1, \alpha P_{1}+(1-\alpha) P_{2}$ is not an o.s. matrix.

Proof. Without loss of generality, we may assume P_{1} to be the identity matrix. For definiteness, we assume

$$
P_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Then for any $0<\alpha<1$,

$$
\alpha\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+(1-\alpha)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\alpha & 1-\alpha & 0 \\
0 & \alpha & 1-\alpha \\
1-\alpha & 0 & \alpha
\end{array}\right)
$$

which, by Theorem I, is obviously not o.s.
Lerer [4] gave an example of a unitary matrix U such that $\mathscr{U}(U)$ is not convex. But by applying Theorem 5 and comparing coefficients, we have the following result.

Corollary 4. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are not collinear, then for any distinct $u, v \in \mathbb{V}_{+}$(or \mathbb{V}_{-}) and uny $0<\alpha<1, \alpha u+(1-\alpha) v \notin \mathscr{W}(A)$.

For any two distinct complex numbers x and y, we shall denote by $L(x, y)$ the line passing x and y.

Corollary 5. If x, y are two distinct points in V_{+}(V_{-}respectively) such that all the points in $V_{-}\left(V_{+}\right.$respectively) lie on one side (the open half plane) of $L(x, y)$, then $\alpha x+(1-\alpha) y \notin W(A, B)$ for any $0<\alpha<1$.

Proof. Suppose there exist $x, y \in V_{+}$(or V_{-}) and $0<\alpha<1$ such that $\alpha x+(1-\alpha) y \in W(A, B)$. Then there exists an o.s. matrix $\left(a_{i j}\right)$ such that

$$
\alpha x+(1-\alpha) y=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\left(a_{i j}\right)\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}
$$

By Birkhoff's theorem (for example, see [5]), $\left(a_{i j}\right)$ is a convex combination of permutation matrices. Since all the points in V_{-}lie on one side of $L(x, y)$, and since the triangles $\mathcal{C}\left(V_{+}\right)$and $\mathcal{C}\left(V_{-}\right)$, [where $\mathcal{C}(X)$ is the convex hull of X] have the same center $c_{0}=\frac{1}{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$, the third point z in V_{+}(or V_{-}respectively) also lies on the same open half plane with the points in V_{-}(or V_{+}). Consequently, we have $\left(a_{i j}\right)=\alpha P_{1}+(1-\alpha) P_{2}$, where P_{1} and P_{2} are in M_{+}(or M_{-}), contradicting Theorem 5.

Theorem 6. $W(A, B)$ is not convex if and only if there exist distinct x and y in V_{+}(or in V_{-}) such that all points in V_{-}(or V_{+}respectively) lie on one side (the open half plane) of $L(x, y)$.

Proof. For any two distinct complex numbers x and y, we denote by $S(x, y)$ the line segment joining x and y. It is known [2] that $\mathcal{C}(W(A, B))=$ $\mathcal{C}\left(V_{+} \cup V_{-}\right)$. By Corollary 3, we see that if $x \in V_{+}$and $y \in V_{-}$, then $S(x, y) \subset W(A, B)$, and by Corollary 2, if $x \in W(A, B)$, then $S\left(x, c_{0}\right) \subset$ $W(A, B)$, where
$c_{0}=\frac{1}{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left(\mu_{1}+\mu_{2}+\mu_{3}\right)=\frac{1}{6} \sum_{x \in V_{+} \cup V_{-}} x=\frac{1}{3} \sum_{x \in V_{+}} x=\frac{1}{3} \sum_{x \in V_{-}} x$.
Therefore, if $W(A, B)$ is not convex, then there exist distinct x and y in V_{+} (or in V_{-}) and $0<\alpha<1$ such that $\alpha x+(1-\alpha) y \notin W(A, B)$. The third point z in V_{+}(in V_{-}respectively) cannot lie on $L(x, y)$; otherwise, $c_{0} \in L(x, y)$ and consequently $S(x, y) \subset W(A, B)$. Now all points in V_{-}(in V_{+}respectively) must lie on the same side with z (equivalently with c_{0}) with respect to $L(x, y)$, since if there exists x_{0} in V_{-}(in V_{+}respectively) such that x_{0} lies on $L(x, y)$ or on the other side of $L(x, y)$, then $S\left(c_{0}, w\right) \subset W(A, B)$ for all $w \in S\left(x_{0}, x\right) \cup S\left(x_{0}, y\right)$ and consequently $S(x, y) \subset W(A, B)$.

The other part of the theorem is a consequence of Corollary 5 . So the proof of the theorem is completed.

3. EXAMPLES

In the following figures, we use O to denote points in V_{+}and \timesto denote points in V_{-}.

Example 1 (see Fig. 1).

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & e^{\sqrt{-1} \pi / 3}
\end{array}\right] \\
B & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & e^{\sqrt{-1} 2 \pi / 3}
\end{array}\right], \\
V_{+} & =\left\{e^{\sqrt{-1} \pi / 3}, e^{\sqrt{-1} 2 \pi / 3}, 0\right\} \\
V_{-} & =\{1,-1, \sqrt{-3}\}
\end{aligned}
$$

$W(A, B)$ is convex.

Fig. 1.
Example 2 (see Fig. 2).

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & \frac{1}{2} e^{\sqrt{-1} \pi / 12}
\end{array}\right], \\
B & =\left[\begin{array}{ccc}
0 & & \\
& 1 & \\
& & e^{\sqrt{-1} \pi / 3}
\end{array}\right] \\
V_{+} & =\left\{\frac{1}{2} e^{\sqrt{-1} \pi / 12}, e^{\sqrt{-1} \pi / 3}, 1+\frac{1}{2} e^{\sqrt{-1} 5 \pi / 12}\right\} \\
V_{-} & =\left\{1, \frac{1}{2} e^{\sqrt{-1} 5 \pi / 12}, \frac{1}{2} e^{\sqrt{-1} \pi / 12}+e^{\sqrt{-1} \pi / 3}\right\}
\end{aligned}
$$

$W(A, B)$ is convex.

Fic. 2.
Example 3 (see Fig. 3).

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & \alpha
\end{array}\right], \\
B & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & \bar{\alpha}
\end{array}\right], \quad \alpha \text { is not real, } \\
V_{+} & =\{\alpha, \bar{\alpha}, 1+\alpha \bar{\alpha}\} \\
V_{-} & =\{1, \alpha \bar{\alpha}, \alpha+\bar{\alpha}\} .
\end{aligned}
$$

$W(A, B)$ is not convex.

Fig. 3.
Example 4 (see Fig. 4).

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & \sqrt{-1}
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & \sqrt{-1}
\end{array}\right], \\
V_{+} & =\{\sqrt{-1}, \sqrt{-1}, 0\} \\
V_{-} & =\{1,-1,2 \sqrt{-1}\} .
\end{aligned}
$$

$W(A, B)$ is not convex. (Westwick [6] has considered this example.)

Fig. 4.

REFERENCES

1 Y. H. Au-Yeung and F. Y. Sing, A remark on the generalized numerical range of a normal matrix, Glasgow Math. J. 18:179-180 (1977).
2 P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J. 12:110-116 (1971).
3 A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76:620-630 (1954).

4 L. E. Lerer, On the diagonal elements of normal matrices (in Russian), Mat. Issled. 2:156-163 (1967).
5 L. Mirsky, Proofs of two theorems on doubly-stochastic matrices, Proc. Amer. Math. Soc. 9:371-374 (1958).
6 R. Westwick, A theorem on numerical range, Linear and Multilinear Algebra 2:311-315 (1975).
7 J. P. Williams, On compressions of matrices, J. London Math. Soc. 3:526-532 (1971).

[^0]: ${ }^{1}$ Theorem 3 and Corollary 2 were also obtained by M. Goldberg and E. Straus (private communication). The authors are thankful to Straus for giving the second statement of Theorem 3 with a proof which is different from the one given here.

