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ABSTRACT

Let %, be the set of all 3 X3 unitary matrices, and let A and B be two 3 X3
complex norinal matrices. In this note, the authors first give a necessary and sufficient
condition for a 3X3 doubly stochastic matrix to be orthostochastic and then use this
result to consider the structure of the sets UW(A)={DiagUAU*:U €Uy} and
W(A,B)={TrUAU*B: U €2;}, where * denotes the transpose conjugate.

1. INTRODUCTION

Let A and B be two n X n complex matrices, and let U, be the set of all
nXn atri efine W (A)={Diag JAU*: n:6)| 1and WA RB)

1 X n unitary matrices. Define “l (A)= {DiagU U, } and W(A,B)
={TrUAU*B:U €, }, where * denotes the transpose conjugate. Horn [3]
proved that if A is Hermitian, then U (A) is convex. Au-Yeung and Sing [1]
proved that if A is normal, then W(A) is convex if and only if the
eigenvalues of A are collinear. Williams [7] characterized the structure of
AU (A) for a 3X3 normal matrix A. Westwick [6] (in an equivalent form)
proved that if A is normal and the eigenvalues of A are collinear, then
W(A, B) is convex. He also gave an example of two 3 X3 normal matrices A
and B such that W(A, B) is not convex.

An n X n doubly stochastic (d.s.) matrix (g, ) is said to be orthostochastic
(0.s.) if there exists (u;) €U, such that a;= |u,,] The purpose of this note is
(1) to give a necessary and ‘Ssufficient condition for a 3X3 d.s. matrix to be
0.5, (2) to give another characterization of the structure of W (A) for a
normal 3 X3 matrix A and (3) to give a necessary and sufficient condition for
the convexity of W(A,B) in terms of the eigenvalues of A and B for 3X3
normal matrices A and B.
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2. ORTHOSTOCHASTIC MATRICES AND THE CONVEXITY
OF GENERALIZED NUMERICAL RANGES

We first give a necessary and sufficient condition for a d.s. matrix to be
o.s.

Tureorem 1. Let (a;) be a 3X3 real matrix such that 33.,a,=1
(i=1,2,3) and 33 a;,=1 (j=1,2,3). Then

(1) if (ay) is 0.s., then for any j#{ and for any 1

3

Vayay, < 21 vV a;dy ; (*)
i=
iwl

(2) conversely, if there exist j#j such that a; >0, a; >0 (i=1,2,3) and
or any 1, the inequality (*) holds, then (a;) is o.s.
Yy quaity i

Proof. Suppose () is o.s.; then there exist real numbers 8, (i,j=1,2,3)
such that (\/a_,-,. eV 1) is unitary. Hence for any j#j’

3
2 V aiiaii' e =1 (0;—6y) = 0’

i=1

and consequently the inequality (*) follows.

Conversely, suppose there exist j 7] such that the inequality (*) holds for
any . For definiteness, we assume j=1 and j’=2. Then the nonnegative
numbers Va,,a,, , Vag18y, , Vay as, form the lengths of the three sides of a
triangle. Hence there exist real numbers 8 and ¢ such that

Va0, +Vagagy ¢+ Vagag, eV 1 = 0.

Let u, =Va,; (i=1,2,3) and u, =Vay,, uy =Vaye' 'Y,
=V V=1¥ and be it vector orthogonal t

U= Vag € , and (3, Ugs, ;) be any unit vector o2 ogonal to (u;,

Ugy, Uyy) and (U5, Ugg, Uge). Then () is unitary and a;; =|uy[" [ ]

In the following we shall use A and B to denote two complex normal
matrices with eigenvalues A, A5, A5 and ), o, pt; respectively. It follows from
the definitions that U (A)={(A;,As,A5)(a;): (ay) is a 3X3 o.s. matrix} and
W(A,B)={()\I,Az,}\a)(a,.,.)(,ul,ug,,u.s)T:(a,-’.) is a 3X3 o.s. matrix}, where T
denotes the transpose. From Theorem 1, we have
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COROLLARY 1. (¥1,72,73) € W(A) (y € W(A, B) respectively) if and only
if (Y Y2 ¥3) = Ap Ao Ag(ay) (v = Ay, A, Ag)(a)( iy, o, )" respectively),
where (a;) is a d.s. matrix satisfying (*) for some j#j' and for any .

Obviously, if (v;,Y2,v3) EW(A), then each v, (i=1,2,3) is a convex
combination of A;, A, and A; and y,+ vy, + v3=A,+A;+A;. The following
theorem gives a characterization of “U (A).

TueoreM 2. Suppose A, A, and A, are not collinear and v,= 0‘1}\1

u2/\2'r u3/\3 \u >0, ulTu2"r 0y = 1; Then \Yl’ Yo, YS}CG)L{S‘(A} where Y2—-.U\l

+yA+2Ay, x,4,220, x+y+2=1and y;=TrA —(y,+7v,), if and only if

(i) x<ay,+a; and
(ii) (Vayapx — Vaga, ¥ < (ap+ o,y < (Va,apx + Vaga, )2, where a,

=a,taz—.
Proof. We first observe that

a x l—a—x

(Y Yo ¥s) = ALAAg) | @ Yy 1—ap—y
a; 2z l—oag—2z

Now if (1,72 73) € W (A), then there exists an o.s. matrix (a;) such that

a x l—a;—x
ApApA3) |y 1-ap—y =(>‘1’>‘2’>‘3)(ai7‘)'
ay 2z l—ay—=z

Since A}, A, and A; are not collinear, by comparing the coefficients we see
that

o x l—a;—x

a, Yy l—-ay—y =(aij>'
oy 2 l—ay—z

Consequently, by Theorem 1, (v,,7s5,7;) €EUW(A) if and only if all the
following three inequalities hold:

(1) Vayx < Veagy + Vagz,
() Vay < Vax + Vayz,
@) Vagz < Vax + Vayy .
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If ay+ a3 =0, from (1), x=0 and y can take any value between 0 and 1.
So we may assume a,+ a3 >0 and notice that (1), (2) and (3) together are
equivalent to

(Vayx — Vayz P<agy < (Vayx + Vagz )?
e —2Voaoa.xz (niy—-aix—a_zéz\/nu ~XZ

v 3j838¢ Q&

[ap y — ayx — 03(1 — x — )] <dayapx(l —x— y)

¢

(g + ay)? 2 2o apx+ az(agt ag—x)] y+ [ogx —ag(1— x)2<0

()

(.7 aytagtaz=1)
< [(ag+ 0‘3)2y]2 = 2[aja5x + az(ag + oy — x)][(ay + as)zy]

+ [ a9x — az(1—x)+ a,0,* < 0 (. aytoay+az=1).

Putting £=(ay+ a;3)%, then the above inequality holds for nonnegative real
numbers ¢ if and only if

aza, > 0 and (\/alazx — Vasa, )2 <t< (Valazx + Vaga, )2,
which in turn are equivalent to (i) and (ii), since if a;=0, then
t=o0fy=aax = x=ayx+y) < a, [}

The following theorem shows that the matrix

plays an important role in the consideration of 3 X3 o.s. matrices.

TueoRrEM 3. A convex combination of a 3X 3 o.s. matrix (ay) and Cy is
an o.s. matrix. Furthermore, the matrix C, is the unique o.s. matrix with this

property.

ITheorem 3 and Corollary 2 were also obtained by M. Goldberg and E. Straus (private
communication). The authors are thankful to Straus for giving the second statement of Theorem
3 with a proof which is different from the one given here.
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Proof. Let 0<a<1. Then for any !

1~a)

< l-a
> o+ 152 ) (et 152
i=1
i<l

3

l-a 1-a

= aq, + ——)(aa,.2+ —-—)

2 (oot 5% oot 3
izl

l—a)(aa ¥ l-a)
(1 3

1-a l-a
+2\/(aa“+ —3——)(aa,.2+ T)(aa“+ 3
(1<i<i’'<3, i,i'#l)

3
1- 1—a\? N
> 2 [’“2‘11'1“42"' E<—3_"x_) (@, +a) +( 3 - ) } +2a*Va,a,,0,10,

im]

i9el
(1<i<i’'<3, i,i'+#l)

% (ai1+ai2)+2(1;a)2

2

+ a(l—a)

3
= “2['2 vV &G 3 <~

ot il

- 3 — 2
> o+ LT S g+ + (155 [y ()]
il
— — 2
al —a) [2—(a”+a,2)]+(13a)

— 2
= a‘a,a;,, + —————3

all—a
> o’ + _<T—)(all+alz) + ( 3

l—a) ]2.

- [Vom+ 552 o 552

Hence, by Theorem 1, a(a,)+(1—a)C, is os. for any 0<a < L.
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For uniqueness, call any o.s. matrix with such property a center. Let

C=(c;;) be a center and I the 33 identity matrix. Then, for any 0<a <1,
the matrix (1— a)I+ aC is o.s., and by Theorem 1 we have

\/(:(,‘12[ 1+afc,;—~1)] < \/aczl[ 1+ a(cyy—1)] +VaPcs 5

and

\/a021[1+a(022—-1)] <\/a012[1+a(cu—1)] +\/a2031632 .

Hence

(\521[1"'“(022“1)] _\/012[1+a(011_1)] )2 < aCyCy

for any 0 <a < 1. This implies ¢,; = c,,. It is obvious that if C is a center,
then for any permutation matrices P, and P,, P,CP, is also a center.
Therefore, by the above argument we have = % fori,j=1,2,3. [ ]

CoroLLARY 2. For any u€UW(A) (xE W(A, B) respectively) and any
0<a<l, a(y,y,7)+ (1 - a)u €UW(A), where y=3 (A, +A3+A;) ((a/3)A,+
Ao+ Ag)( g + g + pa) + (1 a)x € W(A, B) respectively).

Let M, (M_) denote the set of all 3X3 even (odd) permutation
matrices. Define V, = {A, A, \)P:PEM ), V_={AL2A,A)P:PEM _},
V= {AuAg APy o) s PEM ), Vo= (A, Mg M) Py, g, )" : P €
M_}. A permutation matrix is o.s. For a convex combination of two
permutation matrices, we have the following theorems.

TueoreM 4. For any P.eM,, P,eM_ and any 0<a<l, aP +
{(Y—a)P, is o0.s.

Proof. Without loss of generality, we may assume P; to be the identity
matrix (otherwise we consider PP, and PP,, where P is a permutation matrix).
Then P, is obtained from P, by transposing two rows of P,. For definiteness
we assume
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Then obviously,
1 0 0 1 0 0 1 © 0
alo0 1 o|+(1-a)l0 0 1l=(0 « 1—a
0 0 1 01 0

is 0.s. n

CoRroLLaRY 3. For any u€V, (xEV, respectively), vEV_ (yEV_)
and any 0<a <1, we have au+(1—a)v EW(A) (ax+(1—a)y € W(A, B)).

THEOREM 5. For any distinct P, and Py in M, (or in M_) and any
0<a<1l, aP,+(1— a)P, is not an o.s. matrix.

Proof. Without loss of generality, we may assume P, to be the identity
matrix. For definiteness, we assume

0 1 0
1 0 0
Then for any 0<a <1,
1 0 O 0 1 o a 1—a 0
a0 1 Oo[+(1—-a)jO0 0 1i=| O « l1-af,
0 0 1 1 0 0 1—a 0 o
which, by Theorem 1, is obviously not o.s. ]

Lerer [4] gave an example of a unitary matrix U such that U (U) is not
convex. But by applying Theorem 5 and comparing coefficients, we have the
following result.

CororrarRY 4. If ALAyA; are not collinear, then for any distinct
u,0€V, (or V_) and any 0<a <1, au+(1—a)o&W(A).

For any two distinct complex numbers x and y, we shall denote by
L(x,y) the line passing x and y.

CoroLLARY 5. If x,y are two distinct points in V. (V_ respectively)
such that all the points in V_ (V. respectively) lie on one side (the open
half plane) of L(x,y), then ax+(1— a)y & W(A,B) for any 0<a<1.
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Proof. Suppose there exist x,y €V, (or V_) and 0 <a <1 such that
ax+ (1~ a)y € W(A, B). Then there exists an o.s. matrix (a;) such that

ax+ (1—a)y = (>\1’}\2’>\3)(aﬁ)( By, P'z’lj‘s)T-

By Birkhoff’s theorem (for example, see [5]), (g;) is a convex combination of
permutation matrices. Since all the points in V_ lie on one side of L(x,y),
and since the triangles C(V, ) and C(V_), [where C(X) is the convex hull of
X] have the same center c,=3 (A, + Ay +Ag)( i + o + 1y, the third point z in
V. (or V_ respectively) also lies on the same open half plane with the points
in V_ (or V). Consequently, we have (a;)=aP;+(1—a)P,, where P; and
P, are in M (or M _), contradicting Theorem 5. [ ]

THEOREM 6. WI(A, B) is not convex if and only if there exist distinct x
and y in V. (or in V_) such that all points in V_ (or V_ respectively) lie on
one side (the open half plane) of L(x,y).

Proof. For any two distinct complex numbers x and y, we denote by
S(x,y) the line segment joining x and y. It is known [2] that C(W(A,B))=
C(V,uUV_). By Corollary 3, we see that if x€V, and yEV_, then
S(x,y)C W(A,B), and by Corollary 2, if x€ W(A,B), then S(x,c,)C
W(A,B), where

> ox
xEV_

o=

2 x=
xEV,

o =

1
(A1+>‘2+>‘3)(M1+H2+N3)=§ 2 x =
xEV,UV_

o=

Cy =

Therefore, if W(A,B) is not convex, then there exist distinct x and y in V
(or in V_) and 0 <a <1 such that ax+ (1 — a)y & W(A, B). The third point z
in V, (in V_ respectively) cannot lie on L(x,y); otherwise, ¢, € L(x,y) and
consequently S(x,y) C W(A,B). Now all points in V_ (in V, respectively)
must lie on the same side with z (equivalently with ¢,) with respect to
L{x,y), since if there exists x, in V_ (in V__ respectively) such that x, lies on
L(x,y) or on the other side of L(x,y), then S(c,w)C W(A,B) for all
w € S(xq,x) U S(x4,y) and consequently S(x,y) C W(A, B).

The other part of the theorem is a consequence of Corollary 5. So the
proof of the theorem is completed. [ ]

3. EXAMPLES

In the following figures, we use O to denote points in V, and X to
denote points in V_.
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ExampLE 1 (see Fig. 1).

eV -127/3

vV, = {e\/—_l w/S’e\/—_I27r/3’0}’

V_={1,-1,V-3}.
W(A, B) is convex. x

V—-175/3

Y /
% k4 X
Fic. 1.
ExamrLE 2 (see Fig. 2).
(0
A= 1
%e\/ﬁ n/12
L
(0
B= 1 ,
L e\/TI 7/3

vV, = {%eV—1 -rr/12,e\/—1 1r/3,1+%e\/—15ﬂ/12}’

V. = {1’%6\/-1 57/12 e\/—17/12+e\/—17r/3}'

1
’2

W(A, B) is convex.
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Frc. 2.
ExampLE 3 (see Fig. 3).
0
A= 1 ,
[24 J
‘0 N
B = 1 , «a is not real,
a)

V, = {a,&l+aa},

V_={Laa,a+a}.
W(A, B) is not convex.
o
o.
17~
I ~a
I \\\
l \\
| S~ o
) ~ &
X i X X ;O 1+ aa
1 -
1 -
\ P
I P
" -
o/
&
Fic. 3.

V=1 V-1
vV,={V-1,V-1,0},
V_={1,-1,2V -1 }.
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W(A, B) is not convex. (Westwick [6] has considered this example.)

X

o V-1
:
]
]
|
[}
1
|
i
i
X —&- X
0
Fic. 4.
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