Matrices with Permanent Equal to One

Victor A. Nicholson
Department of Mathematics
Kent State University
Kent, Ohio 44242

Submitted by Richard S. Varga

ABSTRACT

We show that a nonnegative square matrix M is nilpotent if and only if the permanent of $M + I$ is one. We also show that a 2-complex obtained by sewing disks to a wedge of circles is collapsible if and only if its incidence matrix has permanent one.

1. INTRODUCTION

We show in Theorem 1 that a nonnegative square matrix M is nilpotent if and only if the permanent of $M + I$ is one. We consider the geometry underlying this result in Corollary 1. Corollary 2 characterizes the square matrices with integer entries that have permanent equal to one. We use this result to characterize the collapsible 2-complexes obtained by sewing disks to a wedge of circles (Theorem 2).

2. MAIN RESULTS

Let M be a nonnegative square matrix and r a positive integer. If r positive elements m_{ij} of M can be arranged to have the form $m_{i_1 j_1}, m_{i_2 j_2}, \ldots, m_{i_r j_r}$, they will be called a positive cycle (of length r) of elements in M. The permanent of an $n \times n$ matrix M with entries m_{ij} is defined by

$$\text{per}(M) = \sum_{\sigma} \prod_{j=1}^{n} m_{i_\sigma(j)}$$

LINEAR ALGEBRA AND ITS APPLICATIONS 12, 185–188 (1975) 185

where the sum extends over all \(n! \) permutations \(\sigma \) of the first \(n \) positive integers. We use \(I \) to denote the \(n \times n \) identity matrix. We say an \(n \times n \) matrix \(M \) is upper triangular if \(m_{ij} = 0 \) for all \(i > j \), and strictly upper triangular if \(m_{ij} = 0 \) for all \(i > j \).

Theorem 1. Let \(M \) be a nonnegative \(n \times n \) matrix. Then the following are equivalent:

1. there exists a permutation matrix \(P \) such that \(PMP^T \) is strictly upper triangular,
2. there is no positive cycle of elements in \(M \),
3. \(\text{per}(M + I) = 1 \),
4. \(M \) is nilpotent.

Proof. (1)\(\Rightarrow \)(2)\(\Rightarrow \)(3). This is immediate.

(3)\(\Rightarrow \)(1). Since \(M \) is nonnegative, \(\prod_{i=1}^{n} (m_{ii} + 1) \geq 1 \). Thus, the permanent of \(M + I \) is equal to the product of its diagonal elements. By Lemma 2 of [1], there is a permutation matrix \(P \) such that \(P(M + I)P^T = PMP^T + I \) is upper triangular. The diagonal elements of \(PMP^T + I \) are all ones because each diagonal element is \(\geq 1 \), \(\text{per}(PMP^T + I) \) is the product of the diagonal elements, and \(\text{per}(PMP^T + I) = 1 \). Thus \(PMP^T \) is strictly upper triangular.

(2)\(\Leftrightarrow \)(4). The matrix \(M \) is nilpotent if and only if all of the eigenvalues of \(M \) are zero. A nonnegative square matrix has a real eigenvalue equal to its spectral radius [5, Theorem 2.7]. Thus \(M \) is nilpotent if and only if \(M \) has no positive eigenvalues. By Theorem 1 of [4], \(M \) has a positive eigenvalue if and only if there is a positive cycle of elements in \(M \).

The following corollary and Fig. 1 make clear the geometry underlying Theorem 1. If \(G \) is a loopless directed graph (we allow \(G \) to have multiple lines) with vertices \(v_1, \ldots, v_n \), then the adjacency matrix \(M = (m_{ij}) \) of \(G \) is given by \(m_{ij} \) the number of arrows from \(v_i \) to \(v_j \). The bipartite graph of a nonnegative square matrix \(M \) is the bipartite graph \(G(M) \) whose points

![Fig. 1.](image-url)
permaments of matrices consist of the two sets $R = \text{(the rows of } M\text{)}$ and $C = \text{(the columns of } M\text{)}$, and whose lines are the ordered pairs (r_i, c_j), where $m_{ij} \neq 0$. The bipartite graph $G(M)$ does not have multiple lines. A 1-factor of a graph is a family F of lines of the graph such that every point of the graph is incident with exactly one line in F.

Corollary 1. Let G be a loopless directed graph and M its adjacency matrix. Then G is acyclic if and only if the bipartite graph $G(M + I)$ has a unique 1-factor.

Proof. The graph G is acyclic if and only if M has no positive cycles. By Theorem 1, M has no positive cycles if and only if the permanent of $M + I$ is one. It is easy to see that the permanent of $M + I$ is one if and only if $G(M + I)$ has a unique 1-factor.

Corollary 2. Suppose M is an $n \times n$ matrix with nonnegative integer entries. Then the permanent of M is one if and only if there exist $n \times n$ permutation matrices P and Q such that PMQ is upper triangular with all ones on the main diagonal.

Proof. Suppose the permanent of M is one. Since M is nonnegative, there is a permutation σ such that $\prod_{i=1}^{n} M_{\sigma(i)i} = 1$. Since each entry is an integer, $M_{\sigma(i)i} = 1$ for each $i = 1, \ldots, n$. Let $R = (r_{ij})$ be the $n \times n$ permutation matrix with $r_{\sigma(i)j} = 1$ for each $j = 1, \ldots, n$. Then $RM = N + I$ for some nonnegative matrix N. Since $\text{per}(N + I) = 1$, Theorem 1 implies that there exists a permutation matrix S such that SNS^T is strictly upper triangular. Let $P = RS$ and $Q = S^T$. Then $PMQ = SRMST = S(N + I)S^T = SNS^T + I$, which is upper triangular with ones down the main diagonal. The converse is immediate.

3. **Application**

A 2-complex K obtained by sewing disks to a wedge of circles is collapsible if it is possible to order the disks D_1, D_2, \ldots, D_n so that for each $i = 1, \ldots, n$ there is a circle S_i that D_i is sewn onto exactly once but that D_j is not sewn onto for all $j > i$. Intuitively, we are able to grasp D_1 at the part of its edge that is sewn to S_1, pluck D_1 from K as one plucks a petal from a flower, and continue to pluck the remaining disks. If K is not collapsible, there will be a stage at which no disk has an edge that we can grasp. For a discussion of collapsing see [3, p. 42].
THEOREM 2. Let $\langle a_1, a_2, \ldots, a_n : w_1 = w_2 = \cdots = w_n = 1 \rangle$ be a free group with n generators and n relations. Let K be the 2-complex formed by sewing n disks to a wedge of n simple closed curves by the words w_1, \ldots, w_n. Let $M = (m_{ij})$ be the n-square nonnegative matrix formed by $m_{ij} = \text{the sum of the absolute values of the exponents on } a_i \text{ in } w_j$. Then K collapses to a point if and only if the permanent of M is one.

Proof. Let D_i denote the disk corresponding to the word w_i, and let S_i be the curve corresponding to generator a_i, for each $i = 1, 2, \ldots, n$. The complex K collapses to a point if and only if there is an ordering of the disks $D_{a(1)}, D_{a(2)}, \ldots, D_{a(n)}$ and a permutation β such that, for each $i = 1, 2, \ldots, n$, $S_{\beta(i)}$ is sewn to $D_{a(i)}$ exactly once and is not sewn to $D_{a(j)}$ for any $j > i$. Suppose the permanent of M is one. Then, by Corollary 2, there exist permutation matrices P and Q such that $PMQ = (x_{ij})$ is upper triangular with ones down the main diagonal. Since P interchanges the rows of M and Q interchanges the columns, there exist permutations α and β such that $x_{ij} = M_{\alpha(i)\beta(j)}$ for all $i = 1, \ldots, n$ and $j = 1, \ldots, n$. Since $x_{ii} = 1$, $S_{\beta(i)}$ is sewn to $D_{a(i)}$ exactly once for each $i = 1, \ldots, n$. Since $x_{ij} = 0$ whenever $i > j$, $S_{\beta(i)}$ is not sewn to $D_{a(j)}$ whenever $j > i$ for each $i = 1, \ldots, n$. Thus K collapses to a point. Conversely, if K collapses to a point, then the two permutations α and β give rise to permutation matrices P and Q, so that PMQ is upper triangular with ones on the diagonal. By Corollary 2, the permanent of M is one.

The author wishes to thank R. S. Varga for his very helpful comments during the preparation of this work.

REFERENCES