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a  b  s  t  r  a  c  t

The  widely  used  biocide  triclosan  selectively  targets  FabI,  the  NADH-dependent  trans-2-enoyl-acyl  carrier
protein  reductase,  which  is an  important  target  for narrow-spectrum  antimicrobial  drug  development.
In  relation  to  the  growing  concern  about  biocide  resistance,  we  compared  in  vitro  mutants  and  clinical
isolates  of  Staphylococcus  aureus  with  reduced  triclosan  susceptibility.  Clinical  isolates  of S.  aureus  as
well  as  laboratory-generated  mutants  were  assayed  for minimum  inhibitory  concentration  (MIC)  and
minimum  bactericidal  concentration  (MBC)  phenotypes  and  genotypes  related  to reduced  triclosan  sus-
ceptibility.  A  potential  epidemiological  cut-off  (ECOFF)  MBC  of  >4  mg/L  was  observed  for  triclosan  in
clinical  isolates  of S. aureus.  These  showed  significantly  lower  MICs  and  higher  MBCs  than  laboratory
mutants.  These  groups  of  strains  also  had  few similarities  in the  triclosan  resistance  mechanism.  Molec-
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riclosan ular  analysis  identified  novel  resistance  mechanisms  linked  to  the presence  of  an  additional  sh-fabI  allele
derived  from  Staphylococcus  haemolyticus.  The  lack  of  predictive  value  of  in-vitro-selected  mutations  for
clinical  isolates  indicates  that  laboratory  tests  in  the  present  form  appear  to be of  limited  value.  More
importantly,  detection  of  sh-fabI  as  a novel  resistance  mechanism  with  high  potential  for  horizontal  gene
transfer  demonstrates  for  the  first  time  that  a biocide  could  exert  a  selective  pressure  able  to  drive  the

ermi
spread  of  a  resistance  det

. Introduction
There is growing concern worldwide regarding the possible
ffect of biocides on antibiotic resistance. The Food and Drug
dministration (FDA) and the Environmental Protection Agency
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(EPA) in the USA, the Panel on Biological Hazards of the Norwe-
gian Scientific Committee for Food Safety, the Scientific Committee
on Emerging and Newly Identified Health Risks (SCENIHR) and
the Scientific Committee on Consumer Safety (SCCS) in the Euro-
pean Union (EU), and the Australian Microbiological Society have,
amongst others, all expressed concern and have programmes run-
ning to investigate the impact of biocide use on antimicrobial
resistance [1–5]. Bacterial resistance to biocides has been well
studied in vitro, but concrete evidence of clinical resistance is
lacking [6,7]. In view of the new licensing requirements, proto-

Open access under CC BY-NC-ND license.
cols are urgently needed to provide risk assessments on the use
of biocidal products, especially as there is no consensus on the
methodologies to be used to study bacterial resistance towards
biocides.
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The biocide triclosan has received much attention because it
s widely used and reports indicating emergence of triclosan resis-
ance have been published [8–11]. Furthermore, in contrast to other
iocides, triclosan at low concentrations acts similarly to antibi-
tics on a specific cellular target, the enoyl-acyl carrier protein
eductase (FabI), an essential enzyme in bacterial fatty acid syn-
hesis. Triclosan exhibits excellent activity against Staphylococcus
ureus and is used to control the carriage of meticillin-resistant
. aureus (MRSA) in hospitals [shampoo or bath additive with 2%
20 g/L) triclosan] [12]. Laboratory studies with Escherichia coli and
. aureus have shown that mutations in FabI and its overexpression
ecrease bacterial susceptibility to triclosan [9,13,14]. The possi-
le selective pressure exerted by triclosan raises some concern
s FabI is a promising target for new narrow-spectrum antimi-
robials against Mycobacterium tuberculosis, Plasmodium falciparum
nd drug-resistant S. aureus [15–17].

The aim of this study was to analyse the molecular nature and
henotypes of triclosan resistance in S. aureus, with particular focus
n the relationship between in-vitro-selected mutants and clinical
solates.

. Methods

.1. Clinical strains

A  collection of 1388 S. aureus strains collected in 2002–2003
rom different geographical origins, representing hospital and
ommunity-acquired infections, were screened to ascertain tri-
losan susceptibility. Staphylococcus haemolyticus strains were
rom a collection of clinical isolates in Siena (Italy).

.2. Bacterial susceptibility testing

Minimum inhibitory concentrations (MICs) were determined by
roth microdilution according to Clinical and Laboratory Standards
nstitute (CLSI) guidelines, except for the way triclosan was  added
o the cultures [18]. Stock solutions of triclosan (Irgasan; Sigma,
teinheim, Germany) were prepared at 102 400 mg/L in methanol.
wing to the high hydrophobicity of triclosan, serial 16-fold diluted

ubstocks in methanol where prepared from which to prepare sub-
ets of three dilutions in the microtitre plate. This approach was
aken to avoid serial two-fold dilutions in microplates in order to

inimise absorption of triclosan to the plastic and to decrease
he chances of triclosan precipitating out of solution when tri-
losan in methanol was added to water. Minimum bactericidal
oncentrations (MBCs) were determined by subculturing 10 �L
rom each well without visible bacterial growth on Mueller–Hinton
gar plates (Biotec, Grosseto, Italy). After 24 h of incubation at 37 ◦C,
he dilution yielding three colonies or less was scored as the MBC,
s described by the CLSI for starting inocula of 1 × 105 CFU/mL [19].
o neutralisation step was included in the MBC assay as initial
xperiments verified that triclosan carry-over did not occur when
0 �L was inoculated onto agar (data not shown). The sensitivity to
hemical compounds was tested by phenotype microarray utilising
iolog microtitre plates PM11 through PM20 as described (Biolog

nc., Hayward, CA) [20].

.3.  Biocide activity testing

Biocide activity was tested according to the standards defined
y the European standard EN 1276 [21]. In brief, 1.5–5 × 108 CFU
f bacteria in 1 mL  were mixed with 1 mL  of bovine serum albu-

in (BSA) (Sigma) at 0.03 g/L (clean conditions) as interference

ubstance. Afterwards, this bacterial suspension was mixed with
 mL  of a triclosan dilution containing 1.25 times the desired test
oncentration. For the activity assay, preparation of triclosan stock
timicrobial Agents 40 (2012) 210– 220 211

was  performed as follows: 300 mg  of triclosan was diluted in 1 mL
of dimethyl sulphoxide (DMSO) and this mixture was diluted in
200 mL  of hard water (composition defined in EN 1276) [21]. Sub-
sequent dilutions of triclosan were undertaken in hard water. A
solution of hard water containing 0.5% DMSO was tested accord-
ing to EN 1276 against S. aureus to ensure that a solution with
0.5% DMSO does not have bactericidal activity. The concentrations
of triclosan utilised for the assay were 100, 600 and 1000 mg/L.
After 5 min  of contact time between triclosan, BSA and bacteria at
20 ◦C, 1 mL  of the test solution was mixed with 8 mL  of neutraliser
(3 g/L lecithin, 30 g/L polysorbate 80, 5 g/L sodium thiosulfate, 1 g/L
l-histidine and 30 g/L saponin) and 1 mL  of water. After 5 min  of the
neutralisation step, 1 mL  of the neutralisation mix and 1 mL of ten-
fold dilutions were cultured onto tryptic soy agar (TSA) (Liofilchem,
Roseto degli Abruzzi, Italy) plates in duplicate and were incubated
at 37 ◦C for 48 h. CFU/mL were determined and log CFU/mL reduc-
tion was calculated for each strain against each of the three triclosan
concentrations tested. The concentration of 600 mg/L was deter-
mined as the lowest concentration tested that produced a 5 log
reduction in CFU/mL with reference strain S. aureus ATCC 6538.

2.4.  In vitro selection of triclosan-resistant mutants

Triclosan-resistant mutants were selected from S. aureus refer-
ence strains, including the standard laboratory strain RN4220, the
reference strain for biocide testing ATCC 6538, and three MRSA
clinical isolates (MW2,  Mu50 and COL) for which the genome
sequences were available. Single-step mutants were selected by
culturing ca. 1 × 1011 CFU of S. aureus cells, harvested from 30 mL
of liquid culture, on TSA with 0.5 mg/L triclosan (plates con-
tained <0.1% methanol from the biocide stock). Multistep mutants
were selected by serial passage of strains in liquid tryptic soy
broth (Liofilchem) containing two-fold increasing concentrations
of triclosan (0.25 mg/L to 4 mg/L). Single colonies were randomly
selected from each assay and were subcultured for further analysis.

2.5. Statistical correlation test

Three different statistical tests were performed to assess poten-
tial correlations between phenotypes and genotypes of clinical
isolates and laboratory mutants. Fisher’s exact test was used as a
statistical test applied to contingency tables to determine whether
there were non-random associations between two categorical vari-
ables. Spearman’s correlation coefficient was chosen because we
had unknown sample distributions and the tested variables did not
show a linear relationship [22]. Two-sample Kolmogorov–Smirnov
test was  used to compare the fold change distribution of the two
types of strains (clinical isolates and in vitro mutants) [22].

2.6.  Molecular analysis

The  central part of the fabI gene was  amplified in isolates
showing reduced susceptibility to triclosan. DNA was amplified
with primers TAGCCGTAAAGAGCTTGAA and ATATTTTCACCTG-
TAACGCCA (Eurofins MWG  Operon, Germany), controlled with
Vector NTI- software v.6 (Informax Inc., Bethesda, MD), using
standard PCR conditions and were sequenced by the Sanger
method (BMR Genomics, University of Padova, Italy). For some
selected strains, without mutations in the central part of S. aureus
fabI (sa-fabI), primers GATACAGAAAGGACTAAATCAAA and TTTC-
CATCAGTCCGATTATTATA were used to amplify and sequence
the whole gene. A selection of fabI allele sequences has been

deposited in GenBank (accession nos. JF797286 through JF797303).
Whole-genome sequencing of the S. aureus clinical isolate QBR-
102278-1619 was  performed by the Institute of Applied Genomics
(University of Udine, Italy) using an Illumina Genome Analyzer
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Fig. 1. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) distribution and fabI genotypes of clinical Staphylococcus aureus isolates.
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riclosan susceptibility of 1388 clinical isolates is reported according to their (A) 

riclosan (high MBC) is shown in panels (C) and (D) by sorting strains according to 

utated  sa-fabI (grey), wild-type sa-fabI (open bars) and those heterodiploid for th

I platform (Illumina, San Diego, CA). Open-reading frame (ORF)
rediction was carried out using Prodigal software (Oak Ridge
ational Laboratory, Oak Ridge, TN). Detection of S. haemolyti-

us fabI (sh-fabI) was performed by real-time PCR using primers
GGCGAAGAAGTAGGCAATAT and GCAACAATACTACCACCGTT. The
h-fabI insert in QBR-102278-1619 was deposited in GenBank with
ccession no. JQ712986.

.  Results

Analysis of 1388 clinical isolates of S. aureus revealed a contin-
ous distribution of triclosan MICs from ≤0.015 mg/L to 32 mg/L,
ith a single modal MIC  of 0.03 mg/L (Fig. 1A). In contrast, triclosan
BCs presented a discontinuous distribution (Fig. 1B). After per-

orming sampling of the MBC  data set in order to balance the scale
f observations, we can fit a mixture of normal distributions show-
ng that we have two different populations, suggesting a potential
pidemiological cut-off (ECOFF) [23] MBC  of ≤2 mg/L for the sus-
eptible population and >4 mg/L for ‘resistant’ strains (Fig. 1B).
lthough statistical analysis showed that MIC  and MBC  values of

riclosan of clinical strains were moderately correlated (� = 0.73;
 < 0.001), it would appear that the MBC  is better able to separate
riclosan-non-susceptible strains than the MIC. Sixty-eight strains
resenting reduced susceptibility for this biocide (MBC > 4 mg/L)
ere chosen for further characterisation. The biocide activity assay

ccording to EN 1276 confirms a decreased activity of triclosan for
trains with reduced susceptibility to the biocide (Table 1).

To  assess the molecular basis of resistance to triclosan, mutant
trains were selected in vitro from five S. aureus reference strains.
ingle-step mutants were selected in four of them with frequen-
ies of 2.4 × 10−9 for MW2,  3.4 × 10−10 for Mu50, 3.4 × 10−9 for
OL and 1.4 × 10−9 for ATCC 6538. From strain RN4220, which pre-
ented intermediate susceptibility (MBC = 2 mg/L), only multistep

utants could be selected. Irrespective of the strains from which

hey were selected, the mutants showed triclosan MICs of 1–8 mg/L
modal MIC  = 4 mg/L) and MBCs of 4–32 mg/L (modal MBC  = 8 mg/L)
Fig. 2A and B). Unlike the clinical isolates, MICs and MBCs of
nd (B) MBC. The genotype of those clinical isolates with reduced susceptibility to
IC and MBC, respectively. Shading differentiates triclosan-resistant strains with a

bI gene (black).

triclosan  for in vitro mutants present a strong statistically sig-
nificant non-linear correlation (� = 0.90; P < 0.001). The difference
between the MIC  and MBC  of laboratory mutants was  usually of
one or two dilutions, whilst for clinical strains these differences
were generally much higher (Fig. 2C). This was  the case even when
the in vitro mutants and the clinical isolates presented the same
sa-fabI mutation (Tables 2 and 3 ). This was found to be signif-
icantly different using a two-sample Kolmogorov–Smirnov test
(P < 0.001). Phenotype microarray for chemical sensitivity to over
300 compounds [20] confirmed that the in-vitro-selected triclosan-
resistant mutants did not acquire any further resistance phenotype
in addition to triclosan (data not shown).

To identify the genotypes conferring reduced triclosan suscep-
tibility, the fabI gene was  sequenced. Among the 68 clinical isolates
with reduced susceptibility to triclosan, 30 presented a mutation
in sa-fabI, whilst 38 strains had a wild-type sa-fabI allele (Table 2;
Fig. 1C and D). Of the 30 strains with a mutated sa-fabI, 22 car-
ried previously described mutations, whilst 8 strains showed four
novel mutations, which is in accordance with other published data
[9,10] (Table 2; Fig. 3A). Clustering was observed for the TTC611TGC
mutation, only found in strains from Italy (4 of 5) and France (2
of 7) and the four GCA593GGA-CTT622TTT double mutants, which
were isolated at different cities in the USA and Canada. Most in-
vitro-selected mutants had previously characterised fabI mutations
[9–11,17], with the exception of RN4220 mutants, which all showed
a GAC301TAC mutation, and one ATCC 6538 derivative, which had
a TTC611TCC change (Table 3; Fig. 3A). Only two  of six mutations
selected in vitro (GCA593GGA and TTC611TGC) matched muta-
tions detected in clinical isolates (Fig. 3A). Two clones (MO035 and
MO079) showed no variation in the sa-fabI gene despite high MICs
and MBCs to triclosan (Table 3).

To identify further the molecular basis of reduced triclosan sus-
ceptibility of clinical isolates with a wild-type fabI allele, the whole

genome of one strain with a triclosan MIC  of 4 mg/L and MBC of
32 mg/L (QBR-102278-1619) was sequenced. A 3016 bp chromoso-
mal insert carrying an additional fabI gene, showing 84% nucleotide
and 91% amino acid identity to sa-fabI, and an insertion sequence
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Table 1
Testing of triclosan activity on Staphylococcus aureus strains following Clinical and Laboratory Standard Institute (CLSI) and European standard EN 1276 guidelines.

Strain MIC  (mg/L) MBC  (mg/L) EN 1276 (log reduction CFU/mL)a Note

100 mg/L 600 mg/L 1000 mg/L

ATCC 6538 0.12 0.25 0.33 5.45 >5.48 Wild-type
QBR-102278-1177 4 32 0.18 4.04 5.48 Mutated sa-fabI
QBR-102278-1219  4 32 0.27 3.96 4.01 Mutated sa-fabI
QBR-102278-1619 4 32 0.41  4.67 5.45 sh-fabI
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IC, minimum inhibitory concentration; MBC, minimum bactericidal concentratio
a Values report logarithmic reduction (R) of bacterial counts within 5 min  contac

S1272 (Fig. 3B) was found in an intergenic region of the S. aureus
hromosome (MW2  position 141825) (Fig. 3B). The integration
ccurred in the loop of a hairpin with an 18 bp inverted repeat
tem, which determined an insert between two short direct repeats.
atabase searches with this additional fabI gene showed its pres-
nce, with 100% identity, in the chromosome of S. haemolyticus
Fig. 3B), which does not have any further fabI gene. This strongly
uggests that the sh-fabI allele most likely belongs to the core
enome of S. haemolyticus. Supporting this statement, PCR anal-
sis demonstrated the presence of sh-fabI in a selection of five
. haemolyticus clinical strains, irrespective of their susceptibility
o triclosan (MBC range 1–32 mg/L). Further searches for sh-fabI
howed multiple hits in different staphylococci, including S. aureus
nd Staphylococcus epidermidis, where sh-fabI was  located on plas-
ids that also carry the multidrug resistance (MDR) efflux pump

or quaternary ammonium compounds QacA (GenBank accession
os. FR821778 and GQ900465) [24,25]. The fact that these plasmids
arry the 3016 bp insert bordered by parts of the inverted repeat
f the S. aureus chromosome indicates the direction of horizontal
ransfer.
PCR assays of the 68 clinical isolates with reduced susceptibility
o triclosan identified sh-fabI in 24 of the 38 strains with wild-
ype fabI and in 4 of the 30 strains with mutated fabI (Table 2).
istribution of sh-fabI in S. aureus strains with reduced triclosan

ig. 2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration 

f  laboratory strains, including reference strains and mutants, is reported according to 

ifferentiating susceptible reference stains (wild-type sa-fabI, open bars) and triclosan-re
istribution  of the MBC/MIC fold change of strains with reduced susceptibility to triclosan

n  = 68) (black).
 and subsequent neutralisation (product is considered active if log R > 5).

susceptibility showed geographical clustering, with positivity in
9/10 isolates from Mexico, 7/10 from Canada, 5/10 from Brazil and
4/8 from Japan, with no strains from other countries including the
USA, Italy, Spain and Germany. Only one of the sh-fabI-positive clin-
ical isolates was positive for the MDR  efflux determinant qacA (data
not shown). Clinical strains with decreased susceptibility to tri-
closan had a strong association with the presence of a mutated fabI
gene or the alternative sh-fabI gene (Fisher’s exact test, P < 0.001).

4. Discussion

FabI is the target of isoniazid, an important agent for the treat-
ment of tuberculosis, and is one of the drug targets that has been
rediscovered in recent years for rational antimicrobial drug devel-
opment [17,26]. In this context, careful analysis of the effect of
triclosan, a widely utilised biocide and disinfectant, which also tar-
gets FabI, on the susceptibility of staphylococci is of prime interest.

To address the molecular basis of triclosan resistance in S. aureus,
68 strains with reduced susceptibility to the biocide selected from a
worldwide collection of clinical and community-acquired S. aureus

were analysed. As FabI is the only known target of triclosan
[9,13,14], attention was  focused on the nucleotide sequence of
fabI. Surprisingly, only approximately one-half of the strains show-
ing high MBC  values to triclosan had detectable mutations in the

(MBC) distribution and fabI genotypes of laboratory mutants. Triclosan susceptibility
their (A) MIC  and (B) MBC. Genotypic data are shown by shading of the columns
sistant mutants with mutated sa-fabI (black) and wild-type sa-fabI (open bars). (C)

 selected in vitro (n = 28) (open bars) and isolated from the clinical strain collections
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Table 2
fabI  gene sequences of Staphylococcus aureus clinical isolates and reference strains.

Isolate

Polymorphic sites in fabI a

sh–fabI sa-fabI

MIC 

(mg/L) MBC  (mg/L) Comm ent b

122222223333333334444455556666677

3801256780133677883567947891126802

3446651241589338149081801330120783

COL CTAGGCTACGCGCTTATGTCCTCAGACTTCTTTT – wt 0.25 1 Reference strain

QBR-102278-1619 .................................. + wt 4 32 wt all ele in 16 sequence d genomes

QBR-102278-2351 ............................. + wt 8 32 wt all ele in 16 sequence d genomes

QBR-102278-1888 ............................. – wt 0.03 16 wt all ele in 16 sequence d genomes

QBR-102278-2376 ............................. + wt 4 32 wt all ele in 16 sequence d genomes

QBR-102278-2175 ............................. + wt 0.25 16 wt all ele in 16 sequence d genomes

QBR-102278-2138 ............................. + wt 4 32 wt all ele in 16 sequence d genomes

QBR-102278-2365 ............................. + wt 2 32 wt all ele in 16 sequence d genomes

QBR-102278-2305 ............................. – wt 4 64 wt all ele in 16 sequence d genomes

QBR-102278-2321 ............................. – wt 4 32 wt all ele in 16 sequence d genomes

QBR-102278-2092 ............................. + wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-1219 ...........................G. – Mutated 4 32 TT C611TGC known mutation

QBR-102278-1192 ...........................G. – Mutated 4 32 TT C611TGC known mutation

QBR-102278-1177 ...........................G. – Mutated 4 32 TT C611TGC known mutation

QBR-102278-1522 ...........................G. – Mutated 4 32 TT C611TGC known mutation

QBR-102278-1503 ...........................G. – Mutated 4 32 TT C611TGC known mutation

QBR-102278-1505 ...........................G. – Mutated 2 16 TTC611TGC known mutation

QBR-102278-1508 ...........................G. – Mutated 2 8 TT C611TGC known mutation

QBR-102278-1865 .........................G... – Mutated 0.5 16 GCA593GGA known mutation

QBR-102278-1970 .........................G... – Mutated 0.5 32 GCA593GGA known mutation

QBR-102278-1917 .........................G..T – Mutated 2 16 GCA593GGA, CTT622TTT known mutations

QBR-102278-1207 ......C..T.T.CTCT...C...T.... – Mutated 0.12 8 ACA583TCA new allele

QBR-102278-1353 ......C..T.T.CTCT...C...T.... – Mutated 0.12 16 ACA583TCA new allele
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Table 2 (continued )

QBR-102278-1935 ......C..T.T.CTCT...C...T.... – Mutated 0.25 16 ACA583TCA new allele

QBR-102278-1277 ......C..T.T.CTCT...C...T.... – Mutated 0.25 128 ACA583TCA new allele

QBR-102278-1919 ......C..T.T.CTCT...C...T.... – Mutated 0.12 16 ACA583TCA new allele

QBR-102278-1883 .....C...T.T.CTCT...C....G..T – Mutated 2 8 GCA593GGA CTT 622TTT known mutations

QBR-102278-2345 .....C...T.T.CTCT...C........ – wt 1 2 wt all ele in 4 sequence d genomes

QBR-102278-2363 ...........T.CTCT............ + wt 16 32 wt all ele in 23 sequence d genomes

QBR-102278-1878 ......C..T.T.CTCT...C....G..T – Mutated 2 16 GCA593GGA,  CTT 622TTT known mutations

QBR-102278-2069 ......C..T.T.CTCT...C....G..T – Mutated 2 32 GCA593GGA, CTT 622TTT known mutations

QBR-102278-1894 GT....C..T.T.CTCT...C....G..T – Mutated 2 16 GCA593GGA,  CTT 622TTT known mutations

QBR-102278-1651 ......C..T.T.CTCT........G... – Mutated 2 32 GCA593GGA known mutation

QBR-102278-1653 ......C..T.T.CTCT........G... – Mutated 2 32 GCA593GGA known mutation

QBR-102278-2019 ......C..T.TCCTCT.........G.. – Mutated 0.25 16 TT C610GTC new all ele

ATCC 25923 ...A...C..T.T.CTCT....T........A.. – wt 0.06 1 Reference strain

QBR-102278-1097 ....TTC.....T.CTCT............ – Mutated 0.25 32 GGT226TGT,GGC255GGT new all ele

QBR-102278-1203 T...........T.CTCT................ + wt 2 16 wt all ele in 4 sequence d genomes

QBR-102278-2105 ...........T.CTCT............ + wt 2 32 wt all ele in 4 sequence d genomes

QBR-102278-1091 ...........T.CTCT............ + wt 4 32 wt all ele in 4 sequence d genomes

QBR-102278-11 07 T...........T.CTCT................ + wt 4 32 wt all ele in 4 sequence d genomes

QBR-102278-1052 T...........T.CTCT............C... + wt 0.5 64 wt all ele in 4 sequence d genomes

QBR-102278-1544 ...........T.CTCT........G... – Mutated 2 64 GCA593GGA known mutation

QBR-102278-11 44 ...........T.CTCT..........G. – Mutated 1 32 TT C611 TGC known mutation,  new all ele

MW2 ...........T.TTCT............ – wt 0.5 1 Reference strain

QBR-102278-2311 ...........T.C............... – wt 1 64 wt all ele in 4 sequence d genomes

QBR-102278-2212 ...........T.C............... + wt 2 32 wt all ele in 4 sequence d genomes

QBR-102278-2221 ...........T.C............... + wt 0.5 16 wt all ele in 4 sequence d genomes

QBR-102278-2605 .....C...T.T.C......C........ + wt 32 64 wt all ele in 4 sequence d genomes

QBR-102278-2546 ....TC....CT.C............... + Mutated 1 64 GGC255GGT,  GGC338GCT  new all ele

QBR-102278-2342 ...................T..T..G... + Mutated 2 32 GCA593GGA known mutation

QBR-102278-2348 ...................T..T..G... + Mutated 0.5 32 GCA593GGA known mutation

QBR-102278-2254 ...................T.....G... + Mutated 1 32 GCA593GGA known mutation

QBR-102278-2194 ...................T.....G... – Mutated 0.5 32 GCA593GGA known mutation
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Table 2 (continued ).

Mu50 ...................T..T...... – wt 0.25 0·5 Reference strain

QBR-102278-2346 ...................T..T...... – wt 2 32 wt all ele in 23 sequence d genomes

QBR-102278-2222 ...................T..T...... + wt 1 32 wt all ele in 23 sequence d genomes

QBR-102278-2210 ...................T..T...... + wt 1 32 wt all ele in 23 sequence d genomes

QBR-102278-1889 ...................T..T...... – wt 8 16 wt all ele in 23 sequence d genomes

QBR-102278-2269 ...................T..T...... + wt 1 32 wt all ele in 23 sequence d genomes

QBR-102278-2207 ...................T..T...... + wt 4 32 wt all ele in 23 sequence d genomes

QBR-102278-1730 ...................T..T...... – wt 4 32 wt all ele in 23 sequence d genomes

QBR-102278-2205 ...................T......... + wt 1 16 wt all ele in 19 sequence d genomes

QBR-102278-2204 ...................T......... + wt 1 16 wt all ele in 19 sequence d genomes

ATCC 6538 ....................T..T......CAC. – wt 0.12 0·25 wt new all ele

QBR-102278-1236 ....................T..T......CAC. – wt 4 16 wt all ele in 23 sequence d genomes

QBR-102278-1607 ....................T..T......CAC. – wt 0.12 32 wt all ele in 23 sequence d genomes

QBR-102278-2072 ....................T..T......CAC. + wt 0.25 32 wt all ele in 23 sequence d genomes

QBR-102278-1210 ...................T..T...... – wt 0.25 16 wt all ele in 23 sequence d genomes

QBR-102278-2070 ...................T..T...... – wt 0.12 32 wt all ele in 23 sequence d genomes

QBR-102278-11 58 G.................GT......... – wt 2 8 wt new all ele

QBR-102278-1969 ........................A......... – wt 0.25 32 wt new all ele

QBR-102278-2018 ........................A......... + wt 0.5 16 wt new all ele

RN4220 ........................A......... – wt 1 2 Reference strain

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; wt,  wild-type.
aPolymorphic sites are indicated with respect to the fabI sequence of S. aureus COL.
bGenBank last accessed in December 2011.
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Table 3
Genotype and phenotype of in vitro multistep and single-step exposure mutants.

ID

Polymorphic sites in fabI  a

FabI sa-fabI MIC (mg/L) MBC (mg/L) Comment

122222223333333334444455556666677

3801256780133677883567947891126802

344665124158933814908180133012078 3

COL CTAGGCTACGCGCTTATGTCCTCAGACTTCTTTT wt 0.12 1 Reference strain

MO0 82 ........T......................... Ala95Val Mutated 8 16 SS M

MO0 83 ........T....................... .. Ala95Val Mutated 4 16 SS M

MO0 84 ........T........................ . Ala95Val Mutated 4 8 SS M

MW2 ........T...T.TTCT................ wt 0.12 0.12 Reference strain

MO0 75 ........T...T.TTCT.............. .. Ala95Val Mutated 4 16 SS M

MO0 76 ........T...T.TTCT................ Ala95Val Mutated 4 8 SS M

MO0 77 ........T...T.TTCT.............. .. Ala95Val Mutated 8 32 SS M

Mu5 0 ....................T..T.......... wt 0.06 0.12 Reference strain

MO0 79 ....................T..T.......... wt 4 16 SS M

MO0 80 ........T...........T..T.......... Ala95Val Mutated 4 4 SS M

ATCC 6538 ....................T..T......CAC . wt 0.12 0.25 Reference strain

CR001 ....................T..T..G...CAC.   Ala198Gly Mutated 4 8 SS M

CR002 ....................T..T....G.CAC. Phe204Cys Mutated 4 8 SS M

CR003 ....................T..T....G.CAC. Phe204Cys Mutated 2 8 SS M

CR004 ....................T..T....G.CAC. Phe204Cys Mutated 2 8 SS M
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Table 3 (continued ).

d2 ....................T..T....G.CAC. Phe204Cys Mutated 1 4 MSM

d7 ..................C.T..T......CAC . Tyr147His Mutated 2 8 MSM

MO0 51 ........T...........T..T......CAC. Ala95Val Mutated 4 8 MSM

MO0 52 ....................T..T....C.CAC. Phe204Ser Mutated 8 16 MSM

MO0 53 ........T...........T..T......CAC. Ala95Val Mutated 4 8 MSM

MO0 54 ........T...........T..T......CAC. Ala95Val Mutated 4 8 MSM

MO0 55 ........T...........T..T......CAC . Ala95Val Mutated 4 8 MSM

MO0 56 ........T...........T..T......CAC. Ala95Val Mutated 4 8 MSM

MO0 57 ........T...........T..T......CAC. Ala95Val Mutated 4 8 MSM

RN4220 ........................A......... wt 1 2 Reference strain

MO0 34 ...... ...T..............A....... .. Asp1 01Tyr Mutated 8 8 MSM

MO0 35 ........................A......... wt 8 8 MSM

MO0 36 .........T..............A......... Asp1 01Tyr Mutated 4 8 MSM

MO0 47 .........T..............A....... .. Asp1 01Tyr Mutated 4 8 MSM

MO0 48 .........T..............A....... .. Asp1 01Tyr Mutated 4 4 MSM

MO0 49 .........T..............A......... Asp1 01Tyr Mutated 4 8 MSM

MO0 50 .........T..............A....... .. Asp1 01Tyr Mutated 4 8 MSM

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; SSM, single-step mutant; MSM,  multistep mutant.
aPolymorphic sites are indicated with respect to the fabI sequence of Staphylococcus aureus COL.
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Fig. 3. Schematic map  of mutations in the Staphylococcus aureus fabI (sa-fabI) and of Staphylococcus haemolyticus fabI (sh-fabI) genes. (A) Mutations in sa-fabI are reported on
a  schematic map. Mutations detected in clinical isolates are mapped above the sequence, whilst mutations selected in vitro are shown below the sequence. (B) Schematic
alignment of the sh-fabI gene region of strain QBR-102278-1619 to S. haemolyticus (NC 007168) and S. aureus MW2  (NC 003923). Gene numbering of the QBR-102278-1619
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oding region of sa-fabI. Whole-genome sequencing of one of these
trains showed the presence a 3 kb genomic islet carrying an addi-
ional fabI gene identical to that belonging to the core genome of
. haemolyticus sh-fabI. By cloning sa-fabI onto a plasmid vector, it
as been demonstrated that triclosan resistance can be achieved by

ncreasing the amount of target [14]. In a similar way, the presence
f sh-fabI together with sa-fabI constitutes a completely novel resis-
ance mechanism, acting by increasing the target amount through
eterologous target duplication. The only known mechanisms of
riclosan resistance at the time of writing this article were due to
hromosomal mutations. One of the most important observations
n this work is the identification of likely horizontal transfer of this
ovel biocide resistance mechanism.

Detection of the inverted repeat sequences gained by insertion
n the S. aureus genome indicates that the direction of transfer is
rom S. haemolyticus to S. aureus and from the S. aureus chromosome
o plasmids [24,25]. Further identification of sh-fabI in numerous
taphylococci in metagenome and microbiome databases indicates
hat the gene is actively spreading.

It is difficult to unequivocally establish the selective forces that
ause selection of a specific mechanism of resistance, especially

hen determinants can confer simultaneous resistance to different
rugs or when several different resistance elements are associated

n the same gene transfer element [27]. For biocides that can pro-
uce cross-resistance to antibiotics, it is difficult to know whether
lignment performed with the web version of the Artemis Comparison Tool (Sanger
me in strain QBR-102278-1619. Overall nucleotide identity in the shaded areas is

the  selective agent has been the biocide or the antibiotic itself.
In the case of FabI, this enzyme is targeted only by triclosan in S.
aureus. Identification of a resistance mechanism to triclosan acting
by heterologous target duplication excludes other antimicrobials
as being selective forces. This finding is a direct demonstration that
the biocide triclosan produces a selective pressure on S. aureus and
other staphylococci and is the first clear evidence that utilisation
of biocides can drive development of biocide resistance in clinical
isolates.

Agencies such as the FDA request a risk–benefit assessment for
human antibiotics that includes evaluating the risks of resistance
generation. For antibiotics used in animals, these resistance risks
are an important safety issue that is addressed in all antibiotic
submissions. Recently, the need for such requirements has been
raised for biocides. For instance, a recent EU proposal for licens-
ing of biocides asks that ‘compounds should have no unacceptable
effects on the target organisms, in particular unacceptable resis-
tance or cross-resistance’ [28]. In view of the requirements posed,
the possibility of devising an in vitro assay for testing bacterial
resistance to the biocide triclosan was  evaluated. It is known that
triclosan-resistant fabI mutants can be selected in vitro [9–11].

The aim was  to assess whether such mutants have any predic-
tive value for resistance observed in clinical isolates [29]. Mutants
were selected by two distinct procedures in five different refer-
ence strains, but a mutation that was  also detected in clinical
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solates was found in only 5 of 28 mutants, albeit the most prevalent
ne. A second very important aspect is that all in-vitro-generated
utant strains show similar MIC  and MBC  values, indicating that

riclosan remained bactericidal for these strains. This is in contrast
o clinical isolates where MICs were much lower than MBCs, indi-
ating a more bacteriostatic action of triclosan in these resistant
trains. This difference was also observed in the in vitro mutants
nd clinical isolates carrying the same mutation and suggests that
linical isolates might have accumulated compensating mutations
hat modify the phenotype and allow a reduction in the probable
tness cost given by the mutations generated in vitro [27]. Thus,
oth the phenotypic profile and the genotype of mutations differed

n vitro from those detected in clinical isolates. With respect to the
equest by current legislation to run in vitro tests before placing
n active compound on the market, we can conclude that such

 test is feasible for triclosan, but that such a test does not yield
esults of clinical relevance if performed according to a standard
xperimental set-up. However, the data from this study suggest
hat an ECOFF MBC  of >4 mg/L may  be a good indicator of tri-
losan ‘resistance’. We  plan to undertake further studies to assess
his.

Summarising, a novel resistance mechanism was identified in
linical isolates based on ‘heterodiploidy’ due to an additional copy
f sh-fabI from S. haemolyticus. Detection of the same sh-fabI islet
n staphylococcal plasmids indicates that this novel resistance ele-

ent is being actively transferred, most likely due to positive
election by triclosan.
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