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a b s t r a c t

In this paper, we investigate the solutions for a generalized fractional diffusion equation
that extends some known diffusion equations by taking a spatial time-dependent diffusion
coefficient and an external force into account, which subjects to the natural boundaries and
the generic initial condition. We obtain explicit analytical expressions for the probability
distribution and study the relation between our solutions and those obtained within the
maximum entropy principle by using the Tsallis entropy.
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1. Introduction

Recently, anomalous diffusion equations have been extensively investigated because of their wide-ranging physical
applications. In fact, fractional diffusion equations and the non-linear fractional diffusion equations have been successfully
applied to several physical situations such as percolation of gases through porous media [1], thin saturated regions in
porous media [2], in the transport of fluid in porous media and in viscous fingering [3], thin liquid films spreading under
gravity [4], modeling of non-Markovian dynamical processes in protein folding [5], relaxation to equilibrium in systems
(such as polymer chains and membranes) with long temporal memory [6], anomalous transport in disordered systems [7],
diffusion on fractals [8], and the multi-physical transport in porous media, such as electroosmosis [9,10]. Note that the
physical systems mentioned above essentially concern anomalous diffusion of the correlated type (both sub and super-
diffusion; see [11] and references therein) or of the Lévy type (see [12] and references therein). The anomalous correlated
diffusion usually has a finite second moment 〈x2

〉 ∝ tσ (σ > 1,σ = 1 and 0 < σ < 1 corresponding to super-diffusion,
normal diffusion and sub-diffusion, respectively; σ = 0 corresponds basically to localization). Due to the breadth of the
problems involving anomalous diffusion, one needs to apply different kinds of theoretical approach such as nonlinear
Fokker–Planck equation (or modified porous media equation), fractional Fokker–Planck equation, Fokker–Planck equation
with spatial dependent diffusion coefficient, and generalized Langevin equations. The properties concerning these equations
have been intensively investigated [13–17] and the lattice Boltzmann method was used to get the numerical solutions for
the equations which govern the multi-physical transport in porous media.

In order to cover the above situations, we employ a spatial time-dependent diffusion coefficient, in other words, our
work is aimed at the investigation of solutions for a fractional diffusion equation having a spatial time-dependence for
the diffusion coefficient and an external force (drift) into account. More precisely,we focus our attention on the following
equation:

∂γ

∂tγ
ρ(x, t) =

∫ t

0
dt′
∂

∂x

{
D(x, t − t′)

∂µ−1

∂xµ−1 [ρ(x, t)]
ν

}
−
∂

∂x
{F(x)ρ(x, t)}, (1)
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where 0 < γ ≤ 1,µ, ν ∈ R, the diffusion coefficient is given by D(x, t) = D(t)|x|−θ, which is a spatial time-dependent
diffusion coefficient, and F(x) = − ∂V(x)

∂x
is an external force (drift) associated with the potential V(x). Here, we use the

Caputo operator [18] for the fractional derivative with respect to time t, and we work with the positive spatial variable x.
Later on, we will extend the results to the entire real x-axis by the use of symmetry (in other words, we are working with
∂/∂|x| and ∂µ−1/∂|x|µ−1). Also, we employ, in general, the initial condition ρ(x, 0) = ρ̃(x) (ρ̃(x) is a given function), and the
boundary condition ρ(x→±∞, t) → 0. For Eq. (1), one can prove that

∫
+∞

−∞
dxρ(x, t) is time independent (hence, if ρ(x, t)

is normalized at t = 0, it will remain so forever). Indeed, if we write Eq. (1) as ∂γt = −∂xJ, and, for simplicity, assume the
boundary conditions J(±∞) = 0, it can be shown that

∫
+∞

−∞
dxρ(x, t) is a constant of motion (see [19] and references therein).

Note that when (µ, γ, ν) = (2, 1, 1), Eq. (1) recovers the standard Fokker–Planck equation in the presence of a drift taking
memory effects into account. The particular case F(x) = 0 (no drift) and D(x, t) = Dδ(t) with (µ, γ) = (2, 1) has been
considered by in [20]. The case D(x, t) = Dδ(t)|x|−θ with (µ, ν) = (2, 1) and the case D(x, t) = D(t) with (µ, ν) = (2, 1) have
been investigated in [21] and [22], respectively.

Explicit solutions play an important role in analyzing physical situations, since they contain, in principle, precise
information about the system. In particular, they can be used as an useful guide to control the accuracy of numerical
solutions. For these reasons, we dedicated to this work to investigate the solutions for Eq. (1) in some particular situations.
In all the particular cases, Eq. (1) satisfies the initial condition ρ(x, 0) = ρ̃(x) (ρ̃(x) is a given function), and the boundary
condition ρ(±∞, t) = 0. The remainder of this paper goes as follow. In Section 2, we obtain the exact solutions for the
special cases. In Section 3, we present our conclusions.

2. Exact solutions for different case

In this section, we start our discussion by considering Eq. (1), in the absence of external force, with D(t) = Dtα−1/Γ(α)
(D(t) = Dδ(t)),(µ, ν) = (2, 1) and γ, θ arbitrary. For this case, Eq. (1) reads

∂γ

∂tγ
ρ(x, t) =

∫ t

0
dt′D(t − t′)

∂

∂x

{
|x|−θ

∂

∂x
ρ(x, t)

}
. (2)

Here, we use the Caputo operator [18] for the fractional derivative with respect to time t. By employing the Laplace transform
in Eq. (2), we obtain

D̃(s)
∂

∂x

{
|x|−θ

∂

∂x
ρ̃(x, s)

}
− sγ ρ̃(x, s) = −sγ−1ρ(x, 0), (3)

where ρ̃(x, s) = L {ρ(x, t)}, D̃(s) = L {D(t)}, and L {f (t)} =
∫
∞

0 dte−stf (t) denotes the Laplace transform of the function f .
This equation can be solved by Green function method [23]. By substituting

ρ̃(x, s) =
∫

dx′G̃(x− x′, s)ρ̃(x′), (4)

into Eq. (3) which yields

D̃(s)
∂

∂x

{
|x|−θ

∂

∂x
G̃(x, s)

}
− sγG̃(x, s) = −sγ−1G(x, 0), (5)

where G(x, t) subjects to the initial condition G(x, 0) = δ(x) and the boundary condition G(±∞, t) = 0.
In order to solve Eq. (5), it is convenient to perform the transform [24]

y = A(s)xv, G̃(x, s) = yδZ(y) (6)

to translate Eq. (5) into the second-order Bessel equation as

y2 ∂
2Z

∂y2 + y
∂Z

∂y
− (λ2

+ y2)Z(y) = −
y2−δ

s
δ

((
y

A(s)

) 1
v
)

(7)

with parameter λ2 under the following conditions:

v =
2+ θ

2
, A(s) =

1
v

[
sγ

D̃(s)

] 1
2

, λ =
1+ θ
2+ θ

, δ =
1+ θ
2+ θ

. (8)

Since Eq. (5) should fit the boundary condition G(±∞, t) = 0, i.e. G̃(±∞, s) = 0, we get the solution of Eq. (5)

G̃(x, s) = C(s)yδKλ(y), (9)
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Fig. 1. The behavior of Green function G(x, t) in Eq. (12) is illustrated by considering C(θ, γ)G(x, t) versus |x|2+θ

(2+θ)2Dtγ
for typical values of γ and θ. Here

C(θ, γ) = 2Γ(1/(2+θ))
2+θ ((2+ θ)2Dtγ)1/(2+θ) .

where Kn(x) is the modified Bessel function of second kind; and C(s) can be determined by the normalization of G(x, t),
i.e.

∫
∞

0 dxG̃(x, s) = 1
2s . After some calculations, we obtain

G̃(x, s) =
2+ θ

Γ
(

1
2+θ

)
s

 1
2+ θ

(
sγ

D̃(s)

) 1
2


3+θ
2+θ

|x|
1+θ

2 K 1+θ
2+θ

 2
2+ θ

(
sγ

D̃(s)

) 1
2

|x|
2+θ

2

 , (10)

where, we used the formula∫
∞

0
dy · yvKλ(ay) = 2v−1a−v−1Γ

(1+ v+ λ

2

)
Γ

(1+ v− λ

2

)
. (11)

Case 1. D(t) = Dδ(t), i.e. D̃(s) = D.
Since Kλ(x) =

1
2H

2 0
0 2[

x2

4 |(−λ/2,1)(λ/2,1)], we can get the Laplace inverse of G̃(x, s) by applying the property of the Laplace
inverse of Fox function, which yields

G(x, t) =
2+ θ

2Γ
(

1
2+θ

) ( 1
(2+ θ)2Dtγ

) 1
2+θ

H2 0
1 2

 |x|2+θ

(2+ θ)2Dtγ

∣∣∣∣∣
(1− γ

2+θ ,γ)

(0,1),( 1+θ
2+θ ,1)

 , (12)

where Hm n
p q [x |

(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq,Bq)

] is the Fox function [25]. Thus, we can find the solution by substituting Eq. (12) into Eq. (4),
which yields

ρ(x, t) =
2+ θ

2Γ
(

1
2+θ

) ( 1
(2+ θ)2Dtγ

) 1
2+θ

∫
+∞

−∞

dx′ρ̃(x′)H2 0
1 2

 |x− x′|2+θ

(2+ θ)2Dtγ

∣∣∣∣∣
(1− γ

2+θ ,γ)

(0,1),( 1+θ
2+θ ,1)

 . (13)

In Fig. 1, we show the behavior of the above equation by considering typical values of γ and θwith ρ̃(x) = δ(x). At this point,
it is interesting to analyze the asymptotic behavior of Eq. (13). For simplicity, we consider ρ̃(x) = δ(x), so ρ(x, t) = G(x, t);
and the asymptotic behavior of ρ(x, t) is

ρ(x, t) ∼
2+ θ

2Γ(1/(2+ θ))
(2− γ)−

1
2 γ

γ
(2+θ)(2−γ)−

1
2

( 1
(2+ θ)2Dtγ

) 1
(2+θ)(2−γ)

|x|
γ−1
2−γ

× exp

−(2− γ)γ
γ

2−γ

(
|x|2+θ

(2+ θ)2Dtγ

) 1
2−γ

 . (14)

In this direction, Eq. (14) can be considered as an extension of the asymptotic behavior of homogeneous and isotropic random
walk models [26].
Case 2. D(t) = Dtα−1

Γ(α)
, i.e. D̃(s) = Ds−α.
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By using the same method as in case 1, we obtain

G(x, t) =
2+ θ

2Γ
(

1
2+θ

) ( 1
(2+ θ)2Dtγ+α

) 1
2+θ

H2 0
1 2

 |x|2+θ

(2+ θ)2Dtγ+α

∣∣∣∣∣
(1− γ+α2+θ ,γ+α)

(0,1),( 1+θ
2+θ ,1)

 , (15)

and

ρ(x, t) =
2+ θ

2Γ
(

1
2+θ

) ( 1
(2+ θ)2Dtγ+α

) 1
2+θ

∫
+∞

−∞

dx′ρ̃(x′)H2 0
1 2

 |x− x′|2+θ

(2+ θ)2Dtγ+α

∣∣∣∣∣
(1− γ+α2+θ ,γ+α)

(0,1),( 1+θ
2+θ ,1)

 . (16)

Let us go back to Eq. (1), and consider the external force F(x) ∝ x|x|α−1, D(x, t) = Dδ(t)|x|−θ andµ = 2, ν = 1. In this case,
analytical solution can not easily be obtained for a generic α, θ. However, for θ 6= 0, and α + θ + 1 = 0. By following the
same procedure as in the above case, an exact solution can be obtained and it is given by

ρ(x, t) =
2+ θ

2Γ( 1
2+θ +

K
(2+θ)D )

( 1
(2+ θ)2Dtγ

) 1
2+θ

H2 0
1 2

 |x|2+θ

(2+ θ)2Dtγ

∣∣∣∣∣
(1− γ

2+θ ,γ)

( K
(2+θ)D ,1),

(
1+θ
2+θ ,1

)
 , (17)

where, for simplicity, we are considering the initial condition ρ(x, 0) = δ(x), and the external force (drift) F(x) = Kxα. The
second moment is given by < x2 >∝ t

2γ
2+θ , which scales with the exponent 2γ

2+θ and clearly depends only on γ and θ. So,
when 2γ

2+θ < 1,= 1 and> 1, the system is sub-diffusion, normal diffusion and super-diffusion respectively.
The presence of the external force in Eq. (1) is now changed into F(x) = −k1x+ k2x−1−θ. In order to obtain the solution of

Eq. (1), we expand ρ(x, t) in terms of the eigenfunctions, i.e. we employ ρ(x, t) =
∑
∞

n=0 φn(t)ψn(x) with ψn(x) determined
by the spatial equation

− λnψn(x) = D
∂

∂x

{
x−θ

∂

∂x
ψn(x)

}
+
∂

∂x
{(k1x+ k2x

−1−θ)ψn(x)} (18)

and φn(t) determined by the time equation

∂γ

∂tγ
φn(t) = −λnφn(t). (19)

The solution for the time equation is given by in terms of the Mittag–Leffter function

φ(t) ∝ Eγ(−λnt
γ). (20)

In order to get the solution for Eq. (18), we perform the transform

ψn(x) = e−yyδZ(y), y = Axv (21)

to translate Eq. (18) into the associated Laguerre equation

yZ′′(y)+ (α+ 1− y)Z′(y)+ nZ(y) = 0 (22)

with parameter α under the following condition:

α =

k2
D
− 1− θ
2+ θ

, v = 2+ θ, A =
k2

(2+ θ)D
, δ =

k2

(2+ θ)D
, λn = (2+ θ)nk1. (23)

Then, using the Green function methods and after some calculations, it is possible to show that

ρ(x, t) =
∫
∞

−∞

dx0ρ̃(x0)G(x, x0, t), (24)

G(x, x0, t) =
(

k1

(2+ θ)D

) k2+D
(2+θ)D
|x|

k2
D e−

k1
(2+θ)D |x|

2+θ ∞∑
n=0

(2+ θ)Γ(n+ 1)

Γ(n+ k2+D
(2+θ)D )

Eγ(−λnt
γ)

× L(α)n

(
k1

(2+ θ)D
|x|2+θ

)
L(α)n

(
k1

(2+ θ)D
|x0|

2+θ
)

, (25)

where L(α)n (x) is the associated Laguerre polynomial and it is the solution for Eq. (22). Here, we used the formula∫
∞

0
dyyαe−yL(α)n (y)L(α)n (y) =

Γ(n+ α+ 1)

Γ + 1
. (26)

Notice that Eq. (25) contains the usual Ornstein–Uhlenbeck process [27] and the usual Rayleigh process [28] as particular
cases and it extends the results obtained in [21]. In this context, in the presence of an constant absorbent force, i.e. α̃ρ(x, t),
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we can obtain the solution for Eq. (1) only need to change the argument of the Mittag–Leffler function present in Eq. (20) to
λn + α̃.

Let us now discuss Eq. (1) by considering a mixing between the spatial and time fractional derivatives. For simplicity,
we consider Eq. (1) in the absence of the external force with (ν, θ) = (1, 0) and γ, µ arbitraries. Applying the Fourier and
Laplace transform to Eq. (1) and employing the Riesz representation for the spatial fractional derivatives, we have

sγ ˆ̃ρ(k, s)− sr−1ρ̂(k, 0) = −D̃(s)|k|µ ˆ̃ρ(k, s), (27)

where ρ̂(k, t) = F {ρ(x, t)} =
∫
+∞

−∞
ρ(x, t)e−ikxdx, so ρ̂(k, 0) = 1. Here, we consider the diffusion coefficient given by

D(t) = Dtα−1

Γ(α)
, i.e. D̃(s) = Ds−α and ρ(x, 0) = δ(x). By using the inverse of Laplace transform, we obtain

ρ̂(k, t) = Eγ+α,1(−D|k|
µtγ+α)

= H1 1
1 2[D|k|

µtγ+α |(0,1)
(0,1),(0,γ+α)]. (28)

This solution recovers the usual one for (µ, γ) = (2, 1) and forµ 6= 2 it extends the results found in [29]. In order to perform
the inverse of Fourier transform, we employ the procedure presented in [30]. Then we can obtain

ρ(x, t) =
1

2µ
√
π(Dtγ+α)

1
µ

H2 1
2 3

 |x|

2(Dtγ+α)
1
µ

∣∣∣∣∣
(1−1/µ,1/µ),(1−(γ+α)/µ,(γ+α)/µ)

(0,1/2),(1−1/µ,1/µ),(1/2,1/2)

 . (29)

The stationary solution that emerges from this process is a Levy distribution.
Now, we consider a particular case of Eq. (1) for γ = 1 and nonzero values ofµ and θ, and consider a linear drift,i.e. F(x) =

−Kx. For simplicity, we employ D(t) = Dδ(t) and the initial condition ρ(x, 0) = δ(x), then Eq. (1) yields to

∂

∂t
ρ(x, t) = D

∂

∂x

{
|x|−θ

∂µ−1

∂xµ−1 [ρ(x, t)]
ν

}
+
∂

∂x
{Kxρ(x, t)}. (30)

Let us investigate time dependent solutions for Eq. (30). We use similarity methods to reduce Eq. (30) to ordinary differential
equations. The explicit form for these ordinary differential equations depends on the boundary conditions or restrictions in
the form of conservation laws. In this direction, we restrict our analysis to find solution that can be expressed as a scaled
function of the type [31]

ρ(x, t) =
1
φ(t)

ρ̃(z), z =
x

φ(t)
. (31)

Inserting Eq. (31) into Eq. (30), we obtain

−

(
˙φ(t)

φ(t)2 +
K

φ(t)

)
∂

∂z
[zρ̃(z)] =

D

φ(t)θ+µ+ν
∂

∂z

[
z−θ

∂µ−1

∂zµ−1 ρ̃(z)
ν

]
. (32)

By choosing the ansatz

˙φ(t)

φ(t)2 +
K

φ(t)
=

kD

φ(t)θ+µ+ν
, (33)

where k is an arbitrary constant which can be determined by the normalization condition. By solving Eq. (33), we have that

φ(t) =
[
(φ(0))θ+µ+ν−1e−(θ+µ+ν−1)Kt

+
Dk

K
(1− e−(θ+µ+ν−1)Kt)

] 1
θ+µ+ν−1

. (34)

By substituting Eq. (33) into Eq. (32), we obtain

∂

∂z

[
z−θ

∂µ−1

∂zµ−1 ρ̃(z)
ν

]
= −k

∂

∂z
[zρ̃(z)]. (35)

Then, we perform an integration and the result is

z−θ
∂µ−1

∂zµ−1 ρ̃(z)
ν
= −kzρ̃(z)+ C, (36)

where C is another arbitrary constant. Also, we use the following generic result [32]:

Dδx[x
α(a+ bx)β] = aδ

Γ [α+ 1]
Γ [α+ 1− δ]

xα−δ(a+ bx)β−δ (37)
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Fig. 2. Behavior of φ(t)ρ(x, t) versus x/φ(t), which illustrates Eq. (40) with typical values forµ and θ satisfying 0 < µ < −1− θ and θ ≥ 0. We notice that
the distribution vanishes at the abscissa equal±1, and remains zero outside of this interval.

with Dδx ≡ dδ/dxδ and δ = α+ β+ 1. By defining g(x) ≡ x
α
ν (a+ bx)

β
ν and λ ≡ α(1− 1

ν
)− δ, and rearranging the indices, Eq.

(37) can be rewritten as follows:

Dδx[g(x)]
ν
= aδ

Γ [α+ 1]
Γ [α+ 1− δ]

xλg(x). (38)

For this case, we consider the ansatz ρ̃(z) = N z
α
ν (1+ bz)

β
ν . By using the property of Eq. (38) in Eq. (36) and, for simplicity,

choosing C = 0, we find

α =
(2− µ)(µ+ θ)

1− 2µ− θ
,

β = −
(µ− 1)(µ− 2)

1− 2µ− θ
, (39)

ν =
2− µ

1+ µ+ θ
.

In this case, we have

ρ(x, t) =
N

φ(t)

[
z(µ+θ)(1+µ+θ)

(1+ bz)(1−µ)(1+µ+θ)

] 1
1−2µ−θ

, (40)

where φ(t) is given above, N = [−k Γ(−β)
Γ(α+1)

]
µ+θ+1

1−2µ−θ and b is an arbitrary constant (to be taken, later on, as ±1 according
to the specific solutions that are studied). Several regions can be analyzed. For simplicity, we illustrate two of them:
−∞ < µ < −1 − θ with θ ≥ 0, and 0 < µ < 1/2 with 0 ≤ θ < 1/2 − µ. Let us start by considering the region
−∞ < µ < −1− θ. Without loss of generality, we choose b = −1. The normalization condition implies (see Fig. 2)

N
∫ 1

−1

[
z(µ+θ)(1+µ+θ)

(1+ bz)(1−µ)(1+µ+θ)

] 1
1−2µ−θ

dz = 1. (41)

So

N =
Γ [1− µ− θ]

2Γ
[
µ2+µθ−2θ−2µ

1−2µ−θ

]
Γ
[

1−µ+µ2+θ2+2µθ
1−2µ−θ

] . (42)

Let us now analyze the region 0 < µ < 1/2 with 0 ≤ θ < 1/2 − µ. Again without the loss of generality, we choose b = 1.
The normalization condition implies (see Fig. 3)

N =
Γ
[

1+θ−µ2
−µθ

1−2µ−θ

]
2Γ

[
1−µ+µ2+θ2+2µθ

1−2µ−θ

]
Γ [µ+ θ]

. (43)



L.-J. Lv et al. / Journal of Computational and Applied Mathematics 225 (2009) 301–308 307

Fig. 3. Behavior of φ(t)ρ(x, t) versus x/φ(t), which illustrates Eq. (40) with typical values for µ and θ satisfying 0 < µ < 1/2 and 0 ≤ θ < 1/2 − µ. We
notice that the distribution vanishes at infinity.

Let us finally mention a connection between the results obtained here and the solutions that arise from the optimization
of the nonextensive entropy [33]. These distributions do not coincide for arbitrary value of x. However, the comparison of
the |x| → ∞ asymptotic behaviors enables us to identify the type of tail. By identifying the behavior exhibited in Eq. (40)
with the asymptotic behaviors 1/|x|2/(q−1) that appears in [33] for the entropic problem, we obtain

q =
3+ µ+ θ
1+ µ+ θ

. (44)

This relation recovers the situation for θ = 0.

3. Summary and conclusions

We have analyzed the generalized fractional diffusion equations by considering an external force F(x) ∝ x|x|α−1 and
a spatial time-dependent diffusion coefficient D(x, t) = D(t)|x|−θ. By using the Laplace transform, Fourier transform, the
Green function method and normalized scaled function we can find the explicit solutions ρ(x, t) which are subject to the
natural boundary condition ρ(±∞, t) = 0 and the initial condition ρ(x, t) = ρ̃(x). In a word, we have extended the results
previously obtained by the other authors by taking an external force and a spatial time-dependent diffusion coefficient into
account. We have also discussed the connection with nonextensive statistics, providing the relation between our solutions
and those obtained within the maximum entropy principle by using the Tsallis entropy. Finally, we expect that the results
obtained here may be useful to the discussion of anomalous diffusion systems where fractional diffusion equations play an
important role.
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