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Abstract LetG = (V,E) an undirected graph,V corresponds to the set of vertices andE corresponds

to the set of edges, we focus on the graph coloring problem (GCP), which consist to associate a color to

each vertex so that two vertices connected do not possess the same color. In this paper we propose a

new hybrid genetic algorithm based on a local search heuristic calledDBG to give approximate values

of v(G) for GCP. The proposed algorithm is evaluated on the DIMACS benchmarks and numerical

results show that the proposed approach achieves highly competitive results, compared with best

existing algorithms.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The graph coloring problem (GCP) is the combinatorial opti-
mization problem the most studied in computer science and
mathematics. It is related to several traditional applications
in various fields such as telecommunications, bioinformatics

and Internet. Among these applications we find, timetable
problem (de Werra, 1985; Burke et al., 1994), crew scheduling
(Gamache et al., 2007; Zufferey et al., 2008), supply chain and

logistics optimization (Lim and Wang, 2005), air traffic flow
management (Barnier and Brisset, 2002) and frequency
assignment problem (Gamst, 1986; Park and Lee, 1996). Garey

et al. in 1979 demonstrated that the k-coloring problem is
NP-complete and that the determination of the chromatic
number v(G) is NP-hard (Garey and Johnson, 1979). There-

fore several methods and heuristics have been proposed to
solve this problem. The first used algorithms were constructive
algorithms. Among the most employed include RFL (Leighton,

1979) and DSATUR (Brelaz, 1979), both approaches use an
order constructed dynamically on the vertices. Subsequently
a large number of local search algorithms have been intended

to solve the coloring problem. Among these methods the tabu
search is in the first place, several authors have introduced this
technique in their works (Hertz and de Werra, 1987; Dorne
and Hao, 1998; Gonzlez-Velarde and Laguna, 2002). There

exist other variants of this local research: reactive partial tabu
search given by Blochliger et al. in 2008 (Blochliger and
Zufferey, 2008), adaptive memory method (AMM) proposed

by Galinier et al. (2002), this latter is only an adaptation algo-
rithm of Galinier and Hao (1999), Chiarandini et al. presented
the application of iterated local search (Chiarandini and

Stutzle, 2002). The variable neighborhood search method
was described in Avanthay et al. (2003), Hamiez and Hao
(2002), and finally the variable space search was cited by Hertz
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et al. (2008). These local search methods for GCP include also
the metaheuris-tic simulated annealing (Chams et al., 1987;
Johnson et al., 1991). About the evolutionary algorithms, Da-

vis in 1991 was the first to apply genetic algorithms (GA) for
solving GCP (Davis, 1991). Fleurent et al. adapted their GA
by replacing the mutation operator by the tabu search of Fleu-

rent and Ferland (1996). Malaguti et al. combined memetic ap-
proach and integer linear programing based on the techniques
of column generation method (Malaguti and Monaci, 2008).

Lu et al. introduced a hybrid metaheuristic incorporating a
tabu search with an evolutionary algorithm with effective con-
trol of the balance between diversification and intensification
(Lu and Hao, 2010). Recently, Wu et al. present a method to

extract large independent sets from the graph denoted by
EXTRACOL (Wu and Hao, 2012).

This paper presents the resolution of the graph coloring

problem by combining a genetic algorithm with a local heuris-
tic (DBG) (Douiri and Elbernoussi, 2011). We test multiple in-
stances of graphs imported from the Dimacs library, and we

compare the computational results with the currently best col-
oring methods, showing that the proposed approach achieves
competitive results.

The paper is organized as follows: in Section 2, we present
some definitions, Section 3 describes the proposed approach.
In Section 4, we show computational results and comparisons.
Conclusions are given in the last section.
2. Problem definition

� The graph coloring problem is to assign a color to each ver-

tex so that two adjacent vertices do not have the same color.
If the graph contains an edge (x,y), then x and y will have
different colors.
� A valid k-coloring of vertices in a graph G= (V,E) is an

application c:V fi {1, . . . ,k} such as c(x) „ c(y),"(x,y) 2 E,
the value c(x) associated with vertex x is called color of x. If
(x,y) 2 E and c(x) = c(y) we say that x and y are in conflict.

The vertices of the same color define a color class, such that
there is no edge between two vertices of the same class.
Since each color class induces an independent set of G, a

coloring can also be seen as a partition of V as independent
sets.
� The chromatic number of a graph G denoted v(G) is the
smallest number of colors used to color all vertices of G

with a valid coloring.

3. Proposed approach

We solve a series of k-coloring problems each time when we
find a valid coloring. This process takes place as follows: we

start from an initial number of colors equal to k, we choose
our individuals p= < c(1),c(2), . . . ..,c(N)> corresponding
to an assignment of k colors to all vertices of the graph G. If

a valid k-coloring is found the number k is updated
(k ‹ 1 � k). We repeat this procedure as many times that
k-coloring is achieved without conflict and the maximum

iteration number is not reached.
The initialization of the number k of colors, is made using

the algorithm below which partitions V in k independent sets
(k color classes). For this we use the heuristic (DBG) (Douiri
and Elbernoussi, 2011) to determine a maximal independent
set approximation. This heuristic is based on the reduction
of variables through a multiplier w of the surrogate constraint.

Algorithm 1
1. While V „ ;.
2. Apply (DBG) algorithm:

a. Let w = (1, . . . .,1)t and V0 = ;.
b. Calculate the surrogate constraint wtA ¼

P
wk –0ðak;:Þ.

c. Give i = index(min(wtA):(wtA)i „ 0), let xi = 1 and
V0 = V0 [ {i}.

d. For all j2 Nodestar(i) if ak,j = 1, then wk = 0, ifPm
k¼1wk ¼ 0 stop.

Otherwise return to step b.
3. Make V= VnV0.
4. If the vertices of V are disjoint stop, otherwise go to 2.
5. End while.
3.1. Initial population

The individuals of initial population are generated with a slight

modification of the above algorithm. The choice of vertex i is
done this time in a random manner to give different configura-
tions and thus diversify the initial population.

Algorithm 2
1. nbrclr= 1

2. While V „ ;.
3. If nbrclr> k, assign a random color chosen in {1, . . . , k}

for the rest of vertices.Else

4. Apply (DBG) algorithm
a. Let w = (1, . . . .,1)t and V0 = ;.
b. Calculate the surrogate constraint wtA ¼

P
wk –0ðak ; :Þ.

c. Randomly select i = index((wtA):(wtA)i „ 0), let V0 =
V0 [ {i} and c(i) = nbrclr.

d. For all j2 Nodestar(i) if ak,j = 1, then wk = 0, ifPm
k¼1wk ¼ 0 stop.Otherwise return to step b.

5. Make V= VnV0.
6. nbrclr= nbrclr + 1

7. End If
8. End While
3.2. Objective function

We consider an objective function relating to the number of
conflicts for each fixed k, we look during a k-coloring to reduce
at each stage the number of conflicts in order to bring it to

zero, which corresponds to a valid k-coloring. We note
M(i,j) the matrix of conflict and c(i) the associated color of a
vertex i.

Mði; jÞ ¼
1 if cðiÞ ¼ cðjÞ and fi; jg 2 E

0 otherwise

�

The fitness corresponds to the following conflicts sum:
f ¼

P
ði;jÞ2EMði; jÞ.



Table 1 Experimental results.

Graph ŒV Œ ŒE Œ k* kOurs Tavg(s) succ

anna 138 493 11 11 11.63 12/15

david 87 406 11 11 10.89 14/15

huck 74 301 11 11 11.10 15/15

2-Inser-3 37 72 4 4 2.23 15/15

3-Inser-3 56 110 4 4 3.37 15/15

jean 80 254 10 10 9.92 15/15

queen5.5 25 160 5 5 1.20 15/15

queen6.6 36 290 7 7 1.32 15/15
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3.3. Selection operator

Every individual will be duplicated in a new population pro-
portionally to its adaptation value, we carried as much draws
with replacement that there are of elements in the population.

The new probability of each individual to be reintroduced in
the new population is:

1� fðxiÞPN
j¼1fðxjÞ

ð3:1Þ
queen7.7 49 476 7 7 6.91 15/15

queen8.8 64 728 9 9 9.87 11/15

queen9.9 81 1056 10 10 13.96 13/15

miles250 128 387 8 8 4.39 11/15

miles500 128 1170 20 20 14.48 10/15

games 120 120 638 9 9 10.77 15/15

mug88-1 88 146 4 4 4.05 15/15

mug88-25 88 146 4 4 3.67 13/15

mug 100-1 100 166 4 4 8.34 11/15

mug 100-25 100 166 4 4 8.21 13/15

mycie13 11 20 4 4 0.01 15/15

mycie14 23 71 5 5 0.89 15/15

mycie15 47 236 6 6 5.41 15/15

mycie16 95 755 7 7 12.77 11/15

mycie17 191 2360 8 8 20.19 9/15

dsjc 125.1 125 736 5 6 13.12 14/15

dsjc1 125.5 125 3891 17 17 19.71 8/15

dsjc1 125.9 125 6961 44 44 35.87 7/15

dsjc1250.1 250 3218 8 8 26.07 10/15

dsjc1250.9 250 27897 72 72 75.81 6/15

fpso12.i.1 496 11654 65 65 82.03 2/15

fpso12.i.2 451 8691 30 30 69.79 6/15

fpso12.i.3 425 8688 30 30 67.14 4/15

zeroin.i.1 211 4100 49 49 28.24 5/15

zeroin.i.2 211 3541 30 30 83.39 9/15

zeroin.i.3 206 3540 30 30 27.06 6/15

mulsol.i.1 197 3925 49 49 25.75 2/15

mulsol.i.2 188 3885 31 31 22.07 7/15

mulsol.i.3 184 3916 31 31 23.49 5/15

mulsol.i.4 185 3946 31 31 25.22 4/15

mulsol.i.5 186 3973 31 31 28.33 7/15
3.4. Crossing operator

We opt for a simple crossing in one point, we choose randomly

a point inter-gene b in each parent P1 and P2, the crossing is in
the following way:

C1ðiÞ ¼
P1ðiÞ if i 2 ½1; b½
P2ðiÞ if i 2 ½b; n�

�

C2ðiÞ ¼
P2ðiÞ if i 2 ½1; b½
P1ðiÞ if i 2 ½b; n�

�

The individuals C1 and C2 are not necessarily obtained follow-
ing the above rule, but in some cases we make the needed
changes to obtain individuals satisfying our problem’s condi-

tions. If after crossing the color l does not appear in an individ-
ual C we proceed as follows:

If the individual C obtained after crossing has no color l

with 1 6 l 6 k then for 1 6 j 6 b and b 6 i 6 n if C(i) = C(j)
then C(j) = l.

3.5. Mutation operator

Mutation can improve the found coloring and reach solutions
in the search space that the crossing could not explore. This is
done by replacing a solution p by another improved solution

p0. After choosing a random invalid coloring p, we seek on this
coloring a vertex i with a color l which represents the most con-
flicts between all vertices of p, then we change the color l by

another different color l0 2 {1, . . . ,k} and we replace the solu-
tion p by p0 if f(p0) 6 f(p).

4. Experimental results

To evaluate the proposed algorithms on the graph coloring
problem, we present computational results on the 68 bench-

mark graphs from the well-known DIMACS graph coloring
challenge (http://mat.gsia.cmu.edu/COLOR04/, ftp://dimacs.
rutgers.edu/pub/challenge/graph/benchmarks/color/). Accord-

ing to Table 1 where ŒV Œ denotes the vertices number, ŒE Œis
the number of edges, k* is the chromatic number or the best
known bound of the chromatic number, k is the color number
found for each graph using our algorithm, Tavg(s) is the aver-

age execution time in seconds, each instance has been tested 15
times and the best values k as well as Tavg have been preserved,
Column 4 shows the success rate (succ).

The used parameters in each method were chosen after sev-
eral tests on different graphs.

For the genetic algorithm we worked with a population

equal to 120, a crossover probability pc = 0.7, a mutation
probability pm = 0.15, and iteration number varies between
250 and 2000.

From Table 1, except the graph dsjc 125.1 we note that the
results obtained by our approach are identical to the best
known solutions. Generally, except for the six graphs (namely

dsjc125.9, dsjc125.9, fpsol2.i.1, fpsol2.i.2, fpsol2.i.3, zeroin.i.2),
the execution time has not exceeded one minute for most
instances.

In Table 2 we selected difficult graphs because they are the
most challenging ones. We compare our approach with the
best algorithms given in the literature (Chiarandini and Stut-

zle, 2002; Blochliger and Zufferey, 2008; Hertz et al., 2008;
Malaguti and Monaci, 2008; Lu and Hao, 2010; Wu and
Hao, 2012), columns 3 to 8 show their results. Columns 9 indi-
cates the average computation time in seconds needed to find

the k-colorings, last column shows the number of successful
runs (succ), and for each graph, we executed 20 runs. The best
results are shown in bold among the six approaches of the

literature.
If we compare our results with those given in Chiarandini

and Stutzle (2002) on thirteen tested instances, we observe that

http://mat.gsia.cmu.edu/COLOR04/


Table 2 Experimental results.

Graph ŒV Œ Wu and

Hao (2012)

Lu and

Hao (2010)

Blochliger and

Zufferey (2008)

Hertz

et al. (2008)

Malaguti and

Monaci (2008)

Chiarandini and

Stutzle (2002)

kOurs Tavg(s) succ

dsjc250.5 250 * 28 * * 28 28 28 89 18/20

dsjc500.1 500 * 12 12 12 12 12 12 112 15/20

dsjc500.5 500 * 48 48 48 48 49 48 147 18/20

dsjc500.9 500 * 126 127 126 127 126 126 190 19/20

dsjc 1000.1 1000 20 20 20 20 20 * 20 4982 9/20

dsjc1000.5 1000 83 83 89 86 83 89 83 2164 13/20

dsjc1000.9 1000 222 223 226 224 224 * 224 8092 7/20

dsjr500.1c 500 * 85 85 85 85 * 85 581 16/20

dsjr500.5 500 * 122 125 125 122 124 124 728 13/20

r250.5 250 * 65 66 * 65 * 65 261 17/20

r250.1 250 * * * * 8 * 8 308 20/20

r250.1c 250 * * 64 * 64 * 64 266 18/20

r1000.1 1000 * * * * 20 * 20 895 10/20

r1000.1c 1000 101 98 98 * 98 * 98 1329 6/20

r1000.5 1000 249 245 248 * 234 * 242 1507 3/20

le450_15c 450 * 15 15 15 15 15 15 93 20/20

le450_15d 450 * 15 15 15 15 15 15 228 20/20

le450_25c 450 * 25 25 25 25 26 25 740 20/20

le450_25d 450 * 26 25 25 25 26 25 382 18/20

flat300_20_0 300 * * * * 20 * 20 241 20/20

flat300_26_0 300 * 26 * * 26 26 26 275 16/20

flat300_28_0 300 * 29 28 28 31 31 28 319 18/20

flat1000_50_0 1000 50 50 50 50 50 * 50 802 9/20

flat1000_60_0 1000 60 60 60 60 60 * 60 1344 5/20

flat1000_76_0 1000 82 82 87 85 82 * 82 3795 7/20

C2000.5 2000 146 148 * * * * 151 8421 8/20

C2000.9 2000 409 * * * * * 411 7368 5/20

C4000.5 4000 260 272 * * * * 282 212881 2/20

latin_sqr_10 900 * 99 * * 101 99 99 1267 11/20
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we have improved five results for graphs (namely dsjc500.5,
dsjc1000.5, le450_25c, le450_25d, flat300_28_0), for the rest

we have obtained the same values.
Concerning results obtained by Blochliger and Zufferey

(2008) on twenty tested instances, our approach has improved

seven instances (namely dsjr500.5, dsjc500.9, dsjc1000.5,
dsjc1000.9, r250.5, r1000.5, flat1000_76_0), and twelve results
remained identical.

When comparing with the results reported in Hertz et al.
(2008) on sixteen tested graphs, our algorithm is better on
three graphs (namely dsjc1000.5, dsjr500.5, flat1000_76_0),
we obtain the same values for the rest of instances.

Versus to the results presented in Malaguti and Monaci
(2008) on twenty six tested instances, we have improved three
results for the graphs (namely dsjc500.9, flat300_28_0,

latin_sqr_10) and worse on two graphs (namely dsjr500.5,
r1000.5).

Our algorithm provides better results than (Lu and Hao,

2010) on three graphs (namely r1000.5, le450_25d,
flat300_28_0) and worse on three graphs (namely dsjr500.5,
C2000.5, C4000.5).

Compared to the EXTRACOL method given by Wu and

Hao (2012) tested on eleven graphs, we provide best results
for two graphs (namely r1000.1c, r1000.5), five results are
similar (namely dsjc1000.1, dsjc1000.5, flat1000_50_0,

flat1000_60_0, flat1000_76_0) and worse on four graphs
(namely dsjc1000.9, C2000.5, C2000.9, C4000.5).

For reaching the smallest k-coloring, majority of the

instances have an execution time, not exceeding one hour
(between 1min29s and 36min06s), but for some hard graphs,
the CPU time was very large (namely dsjc1000.1, dsjc1000.9,

flat1000_76_0, C2000.5, C2000.9, C4000.5) it ranges between
1h3min15s and 59h7min21s.

For large random graphs (namely dsjc1000.1, dsjc1000.5,

r1000.1c, r1000.1, flat1000_50_0, flat1000_60_0,
flat1000_76_0), our method can find the previous best known
result with computation time not exceeding 2 hours. About

the graph C4000.5 it needs an execution time of approximately
60 h, which shows the difficulty degree for its coloring.

5. Conclusion

In this paper we have proposed a hybrid genetic algorithm
which combines a genetic algorithm with a local search heuris-
tic (DBG) to solve the graph coloring problem. The computa-

tional experiments, carried out on a set of 68 benchmark
graphs were imported from the DIMACS library among them
twelve largest graphs with 900, 1000, 2000 and 4000 vertices,

show that the results obtained by our approach is very compet-
itive compared to the current best known results reported in 6
state-of-art published in the literature.
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