Computation of $K_2 \mathbb{Z}[\sqrt{-6}]$

Qin Hourong

Department of Mathematics, Nanjing University, Nanjing 210008, People's Republic of China

Communicated by C.A. Weibel; received 8 March 1993; revised 17 June 1993

Abstract

We show that $K_2 \mathbb{Z}[\sqrt{-6}]$ is trivial (order one). The method used can also be applied to other imaginary quadratic fields.

1. Introduction

Let $F = \mathbb{Q}(\sqrt{d})$ be an imaginary quadratic field, and let O_F denote its ring of integers. Tate [7] developed a method by which he showed that $K_2 O_F$ is trivial for $d = -1, -2, -3, -11,$ and $K_2 O_F \cong \mathbb{Z}/2\mathbb{Z}$ for $d = -7, -15$. We know that M. Skalba has shown that $K_2 O_F$ is also trivial for $d = 5, -19$ (see [3]). In this paper, we propose a method by which we can determine the structure of $K_2 O_F$ for an imaginary quadratic field F. We show that $\#(K_2 O_F) = 1$ for $d = -6$.

2. Notations and some facts

Let F be a number field, O_F be the ring of integers of F and S_F be the set of Archimedean places of F. We know that a finite place can be identified with a discrete valuation v of F. If $S \supset S_F$ then S is a non-empty set of places. We put

$$O_S = \{a \in F | v(a) \geq 0 \text{ for all } v \notin S\}$$

and call O_F the ring of "S-integers". For any $v \notin S$, $k(v) = O_S/P$, where P is the maximal ideal corresponding to the place v. As in [1], we put

$$K_2^S F = \text{the subgroup of } K_2 F \text{ generated by } \{x, y\}, \text{ where } x, y \in O_S = U.$$

We list the finite places of F

$v_1, v_2, \ldots, v_n, \ldots$
so that $N(r_i) \leq N(r_{i+1})$ for all i, where $N(r)$ is the norm of the finite place r which is defined to be $\#(k(r))$. Let $S_m = \{r_1, r_2, \ldots, r_m\} \cup S_r$. Bass and Tate [1] show that there exists a positive integer m such that

$$K_2 O_F = \text{Ker} \left(K_2^{\pm} F \xrightarrow{\tau_i} \bigcup_{r \in S_r} k'(r) \right)$$

For any $\{x, y\} \in K_2^{\pm} F$ and any $r \in S_m$,

$$\tau_r \{x, y\} = (\pm 1)^{\nu(x, y)} \frac{y^{\nu(x)} x^{\nu(y)}}{y^{\nu(y)} x^{\nu(x)}} \pmod{P}.$$

Therefore we aim at seeking for a positive integer m (not too large) such that τ_m is bijective if $m > m$.

Suppose that the ideal P (corresponding to r) is principal, say $P = \pi O_S$. Let β be the map from U to k' defined by $\beta(u) = u \pmod{\pi}$. Denote by U_1 the subgroup of U generated by $1 + \pi U \cap U$. Tate [7] gives the following result.

Lemma 2.1. Suppose that W, C and G are subsets of U such that

1. $W \subset C U_1$ and W generates U.
2. $CG \subset C U_1$ and $\beta(G)$ generates k'.
3. $1 \in C \cap \ker \beta \subset U_1$.

Then τ_r is bijective. \Box.

The following two lemmas are also useful to our computation.

Lemma 2.2 [1, Chapter II, Lemma 3.4]. Suppose we are given subsets $D \subset O_F$ and $W \subset O_F \cap U$. Put

$$E = \{d - d' | d, d' \in D, d \neq d'\}.$$

Then τ_r is bijective provided D and W satisfy the following conditions:

1. $\#(D)^2 > N(r)^2$.
2. $E \subset U$.
3. $1 \in W$ and W generates U.
4. If $e_1, e_2, e_3, e_4 \in E$ and $w \in W$ then
 i. $N(e_1, e_2 - e_3 e_4) < N(r)^2$.
 ii. $N(e_1 w - e_2) < N(r)^2$.

Together with that the ideal P (corresponding to r) is principal. \Box

Lemma 2.3 [7, Lemma M1]. Let F be an imaginary quadratic field. Let M be an ideal in O_F, the prime factorization of which involves only primes in S. Suppose $a, b \in U \cap M$ and $|a| + |b| < N \sqrt{N M}$. If $\beta(a) = \beta(b)$, then $a \in b U_1$. Especially, if $a, b \in U \cap O_F$, $|a| + |b| < N \sqrt{N}$ and $\beta(a) = \beta(b)$, then $a \in b U_1$. \Box
Remark. Lemma 3.4 in Chapter II in [1] has another condition, that is, \(N(c_1 + c_2 + c_3) < N(r) \). We do not need this one because we only discuss \(K_2 \). Now we turn to computation of \(K_2[\sqrt{6}] \).

3. Case 1: \(N_r > 293 \)

From now on, \(F = Q(\sqrt{6}) \), we know that \(h(F) = 2 \) and 2 is ramified in \(O_F = Z[\sqrt{6}] \). Suppose \(Q^2 = 2O_F \), then \(Q = 2O_F + \sqrt{6}O_F = 2Z + \sqrt{6}Z \).

By a discussion similar to that in [7], we can easily show the following.

Lemma 3.1. Let \(W = \{ u \in O_F \cap U \ | \ |u|^2 \leq 2Nv \} \); then \(W \) generates \(U \).

Lemma 3.2. Pick \(d \) such that \(d^2 = Nr/9 \). Let \(D = \{ x \in O_F \ | \ |x| \leq d \} \) and \(E = \{ d - d' \ | \ d, d' \in D, d \neq d' \} \). Then \(E \) satisfies (2) and (4) of Lemma 2.2, if \(Nr \geq 137 \).

Proof. First, we have \(E \subseteq U \). In other words, (2) of Lemma 2.2 is satisfied. In fact, for any \(e \in E \), there exist \(d, d' \in D \) such that \(e = d - d' \). Hence \(N(e) \leq (|d| + |d'|)^2 \leq 4/9Nr < Nr \), so \(e \in U \). On the other hand, for \(e_1, e_2, e_3, e_4 \in E, w \in W \), \(N(e_1e_2 - e_3e_4) \leq (|e_1e_2| + |e_3e_4|)^2 \leq (4/9Nr + 4/9Nr)^2 = (8/9Nr)^2 < Nr^2 \). \(N(e_1w - e_2) \leq (|e_1w| + |e_2|)^2 \leq 4/9Nr(|w| + 1)^2 \leq 4/9Nr(\sqrt{2Nr} + 1)^2 \). If \(Nr > 136 \), then \((\sqrt{2Nr} + 1)^2 < 9/4Nr \). Therefore, \(N(e_1w - e_2) < Nr^2 \). Thus (4) of Lemma 2.2 is also satisfied. □

Lemma 3.3. Suppose that \(D = \{ x \in O_F \ | \ |x| \leq d \} \), then

\[
\#(D) = 1 + 2[d] + 2 \left[\frac{d}{\sqrt{6}} \right] + 4 \left(\left[\sqrt{d^2 - 6} \right]^2 + \left[\sqrt{d^2 - 6} \right]^2 + \ldots \right),
\]

where \([x] \) denotes the greatest integer \(\leq x \).

Proof. The rational integers of \(D \) arc: \(0, 1, 2, \ldots, \lfloor [d] \rfloor \).

The elements of \(D \) having the form \(\pm \sqrt{6} \) are: \(\pm \sqrt{6} \).

The elements of \(D \) having the form \(\pm 2\sqrt{6}, \ldots, \pm \lfloor [d\sqrt{6}] \rfloor \sqrt{6} \) are: \(\pm 2\sqrt{6}, \ldots, \pm \lfloor [d\sqrt{6}] \rfloor \sqrt{6} \).

Obviously, by this process we can get all elements of \(D \). □

Lemma 3.4. If \(Nr > 900 \), then \(\tau, \) is bijective.
Proof. Take $d^2 = Nv/9$; by Lemma 3.2, we only need to prove that $(#(D))^3 > Nv^2$ if $Nv > 900$.

By Lemma 3.3,

$$\#(D) = 1 + 2[d] + \frac{d}{\sqrt{6}} + 4\left(\sqrt{d^2 - 6.1^2} + \cdots + \sqrt{d^2 - 6\left(\frac{d}{\sqrt{6}}\right)^2}\right).$$

Therefore,

$$\#(D) > 1 + 2[d] + 2\left(\frac{d}{\sqrt{6}}\right) - 4\left(\frac{d}{\sqrt{6}}\right)$$

$$+ 4\left(\sqrt{d^2 - 6.1^2} + \cdots + \sqrt{d^2 - 6\left(\frac{d}{\sqrt{6}}\right)^2}\right)$$

$$= 1 + 2[d] - 2\left(\frac{d}{\sqrt{6}}\right) + 4\left(\sqrt{d^2 - 6.1^2} + \cdots + \sqrt{d^2 - 6\left(\frac{d}{\sqrt{6}}\right)^2}\right).$$

Let $f(x) = \sqrt{d^2 - 6x^2}$. Then $f(x)$ is a strictly decreasing function when $x \in [0, d/6]$.

$$\sum_{n=1}^{[d/6]} \sqrt{d^2 - 6x^2} > \int_1^{d/6} f(x) \, dx$$

$$= \left(\frac{\sqrt{6}x}{2} \sqrt{\frac{d^2}{6} - x^2} + \frac{d^2}{2\sqrt{6}} \arcsin\frac{\sqrt{6}x}{d}\right)^{d/6}$$

$$= \frac{d^2}{2\sqrt{6}} \arcsin 1 - \frac{1}{2} \sqrt{d^2 - 6} - \frac{d^2}{2\sqrt{6}} \arcsin\frac{\sqrt{6}}{d}.$$

We know that if $|x| \leq 1$ then

$$\arcsin x = x + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{2n} \frac{x^{2n+1}}{(2n)!!}.$$

Hence, if $\sqrt{6}/d < 1$ then

$$\frac{4}{2\sqrt{6}} \frac{d^2}{2\sqrt{6}} = \frac{2d^2}{\sqrt{6}} \left(\left(\frac{\sqrt{6}}{d}\right)^3 + \frac{3 \cdot 1}{4 \cdot 2} \left(\frac{\sqrt{6}}{d}\right)^5 + \cdots\right)$$

$$= 2d + \frac{2}{\sqrt{6}} d^2 \left(\frac{1}{6} \left(\frac{\sqrt{6}}{d}\right)^3 + \frac{3 \cdot 1}{4 \cdot 2} \left(\frac{\sqrt{6}}{d}\right)^5 + \cdots\right).$$
When $d > 1 + \sqrt{7}$, $d - 6/d > 2$, hence $2/(d - 6/d) < 1$.

Therefore,

$$\#(D) > 1 + 2[d] - 2\left[\frac{\sqrt{d}}{6}\right] + 4 \cdot \sum_{n=1}^{[\sqrt{d}]\wedge 1} \sqrt{d^2 - 6n^2}$$

$$> 1 + 2d - 2 - \frac{2d}{\sqrt{6}} + \frac{2d^2}{\sqrt{6}} \cdot \frac{\pi}{2} - 2d - 2d - \alpha$$

$$> \frac{\pi}{\sqrt{6}} d^2 - 2 \left(\frac{1 + \sqrt{6}}{\sqrt{6}}\right) d - 2 \quad (0 < \alpha < 1).$$

Write $g(x) = (\pi/\sqrt{6}) x^2 - 2((1 + \sqrt{6})/\sqrt{6}) x - 2 - (3x)^{4/3}$. Then $g'(x) > 0$ when $x = 5$, $g''(x) > 0$ when $x = 0.65$. It follows that $g(x)$ is a strictly increasing function when $x \geq 5$. On the other hand, $f(10) > 0$, so, if $x \geq 10$, then $g(x) > 0$. Hence, if $d > 10$, equivalently, $Nv > 900$, then $\#(D) > (3d)^{4/3}$, in other words, $(\#(D))^2 > (9d^2)^2 = Nv^2$.

Lemma 3.5. Let $D = \{x \in O_\ell | |x| \leq d\}$, and let E and W be as in Lemma 2.2. If $d^2 < Nv^2/(4(1 + \sqrt{2Nv})^2)$ then for $e_1, e_2, e_3, e_4 \in E$ and $w \in W$, $N(e_1 e_2 - e_3 e_4) < Nv^2$, $N(e_1 w - e_2) < Nv^2$.

Proof. For any $e \in E$, $e = d' - d''$, where $d', d'' \in D$, $|e|^2 \leq (|d'| + |d''|)^2 \leq (2|d|)^2 = 4d^2 < Nv^2/(1 + \sqrt{2Nv})^2$.

$$N(e_1 e_2 - e_3 e_4) = |e_1 e_2 - e_3 e_4|^2 \leq (|e_1 e_2| + |e_3 e_4|)^2$$

$$< \frac{4Nv^4}{(1 + \sqrt{2Nv})^4} < \frac{4Nv^4}{(\sqrt{2Nv})^4} = \frac{4Nv^4}{4Nv^3} = Nv^2.$$
By Lemma 3.1, for any \(w \in W \), \(|w| \leq \sqrt{2N_v} \), hence,

\[
\begin{align*}
N(e_1w - e_2) &= |e_1w - e_2|^2 \\
&\leq (|e_1w| + |e_2|)^2 \\
&\leq (\max(|w| + 1))^2 \\
&< \frac{N_v^2}{(1 + \sqrt{2N_v})^2} (\sqrt{2N_v + 1})^2 = N_v^2. \quad \Box
\end{align*}
\]

Lemma 3.6. When \(293 < N_v < 1045 \), \(\tau_v \) is bijective.

Proof. The smallest \(N_v \) satisfying \(N_v > 293 \) is \(N_v = 313 \). Choose \(d = 6 \), then \(d^2 = 36 < 313^2 / (4(1 + \sqrt{2 \cdot 313})^2) \). In this time, \(\#(D) = 49, 49^{3.2} = 343 > 313 \).

347 is the smallest of all primes which are larger than 343. Choose \(d^2 = 40 \), then \(\#(D) = 53, 53^{3.2} > 385. \)

Choose \(d^2 = 44 \), then \(\#(D) = 57, 57^{3.2} > 430. \)

Choose \(d^2 = 50 \), then \(\#(D) = 63, 63^{3.2} > 500. \)

Choose \(d^2 = 58 \), then \(\#(D) = 77, 77^{3.2} > 675. \)

Choose \(d^2 = 79 \), then \(\#(D) = 103, 103^{3.2} > 1045. \)

By Lemma 2.2, \(\tau_v \) is bijective if \(293 < N_v < 1045. \) \(\Box \)

4. Case 2: \(11 \leq N_v \leq 293 \)

Lemma 4.1. Assume \(Q^2 = 2O_F \). If we view \(Q \) as a lattice in \(C \), then the maximum distance from \(Q \) to \(C \) is \(\sqrt{10}/2. \)

Lemma 4.2. Suppose \(M \) is a non-principal ideal, then every residue class \((\text{mod } M) \) can be represented by an element \(c \in O_F \) with \(Nc \leq (5/4) NM \).

Lemma 4.3. Let \((b) \) be a principal ideal prime to \(Q \), then every residual class \((\text{mod } (b)) \) can be represented by an element \(c \in Q \) with \(Nc \leq (5/2)Nb \).

The proofs of the above three lemma are analogous to similar results in [7].

Lemma 4.4. Suppose that \(P \) (corresponding to \(v \)) is a non-principal prime ideal with \(11 \leq N_v \leq 293 \), then \(\tau_v \) is bijective.

Proof. Apply Lemma 2.1. We construct \(C, G \) and \(W \) for each \(P \) (corresponding to \(v \) with \(11 \leq N_v \leq 293 \)).

Let \(C' = \{ c \in O_F | |c|^2 \leq (5/4)Nv \} \), \(W = \{ w \in O_F \cap U | |w|^2 \leq 2Nv \} \). Put \(T = \{ t_1, \ldots, t_r | t_i \in C', \ t_i \notin U, \ 1 \leq i \leq r \} \), \(S = \{ s_1, \ldots, s_r | s_i \equiv t_i \ (\text{mod } P), \ s_i \in U, \ 1 \leq i \leq r \} \). Let \(C = (C' \setminus T) \cup S, \ m = \max_{c \in C} |c| \). By Lemma 2.3 we know that

(1) if \(\sqrt{2N_v} + m < N_v \), then \(W \subset CU_1 \),

(2) if \(G = \{ g \} \) and \(m|g| + m = m(|g| + 1) < N_v \), then \(CG \subset CU_1 \),
Suppose that $PP = p = Nr$, where P is an ideal in O_r and p is a prime in Z.

If we construct C, G and W for P, then we need not to do so for \tilde{P} because C, G, W will suit \tilde{P}.

Now we give T, S, $G = \{g\}$ and m for every non-principal prime ideal P (corresponding to r with $11 \leq Nr \leq 293$). Direct computations show that in each case conditions (1), (2) and (3) are satisfied.

egin{align*}
Nr = 11, & \quad P = (11, 4 + \sqrt{-6}), \\
T = S = \emptyset, & \quad g = 2, \quad m \leq \frac{1}{3} \sqrt{55}. \\
Nr = 29, & \quad P = (29, 2 + 3\sqrt{-6}), \\
T = \{3 \pm \sqrt{-6}, 5 - \sqrt{-6}\}, & \quad S = \{3 - 2\sqrt{-6}, -4\}, \\
g = 2, & \quad m \leq \frac{1}{3} \sqrt{143}. \\
Nr = 53, & \quad P = (53, 10 + \sqrt{-6}), \\
T = S = \emptyset, & \quad g = 2, \quad m \leq \frac{1}{3} \sqrt{265}. \\
Nr = 59, & \quad P = (59, 8 + 3\sqrt{-6}), \\
T = \{7 + 2\sqrt{-6}, 7 - 2\sqrt{-6}\}, & \quad S = \{1 - \sqrt{-6}, -2 + 2\sqrt{-6}\}, \\
g = 2, & \quad m \leq \frac{1}{3} \sqrt{295}. \\
Nr = 83, & \quad P = (83, 4 + 5\sqrt{-6}), \\
T = \{1 + 4\sqrt{-6}, 1 - 4\sqrt{-6}, 7 + 3\sqrt{-6}, 7 - 3\sqrt{-6}\}, \\
S = \{3 - \sqrt{-6}, 5 - \sqrt{-6}, 7 - 2\sqrt{-6}, 7 + 2\sqrt{-6}\}, \\
g = 2, & \quad m = \sqrt{145}. \\
Nr = 101, & \quad P = (101, 14 + \sqrt{-6}), \\
T = \{7 + 3\sqrt{-6}, 7 - 3\sqrt{-6}\}, & \quad S = \{-7 + 2\sqrt{-6}, -7 - 4\sqrt{-6}\}, \\
g = 2, & \quad m = \sqrt{145}. \\
Nr = 107, & \quad P = (107, 8 + 5\sqrt{-6}), \\
T = \{11 + \sqrt{-6}, 11 - \sqrt{-6}\}, & \quad S = \{3 - 4\sqrt{-6}, 3 - 6\sqrt{-6}\}, \\
g = 2, & \quad m = \sqrt{225}.
\end{align*}
\(Nv = 131, \quad P = (131, 16 + \sqrt{-6}), \)
\(T = \{ 1 + 5\sqrt{-6}, 1 - 5\sqrt{-6} \}, \quad S = \{ -15 + 4\sqrt{-6}, 17 - 4\sqrt{-6} \}, \)
\(g = 2, \quad m = \sqrt{385}. \)

\(Nv = 149, \quad P = (149, 2 + 7\sqrt{-6}), \)
\(T = \{ 1 + 5\sqrt{-6}, 1 - 5\sqrt{-6} \}, \quad S = \{ -1 - 2\sqrt{-6}, 3 + 2\sqrt{-6} \}, \)
\(g = 2, \quad m \leq \frac{1}{2}\sqrt{745}. \)

\(Nv = 173, \quad P = (173, 14 + 5\sqrt{-6}), \)
\(T = \{ 13 + 2\sqrt{-6}, 13 - 2\sqrt{-6}, 7 + 5\sqrt{-6}, 7 - 5\sqrt{-6} \}, \)
\(S = \{ -1 - 3\sqrt{-6}, -2 + 5\sqrt{-6}, -7 - 8 + 2\sqrt{-6} \}, \)
\(g = 2, \quad m \leq \frac{1}{2}\sqrt{865}. \)

\(Nv = 179, \quad P = (179, 8 + 7\sqrt{-6}), \)
\(T = \{ 13 + 2\sqrt{-6}, 13 - 2\sqrt{-6}, 7 + 5\sqrt{-6}, 7 - 5\sqrt{-6} \}, \)
\(S = \{ -1 - 3\sqrt{-6}, -2 + 5\sqrt{-6}, -7 - 8 + 2\sqrt{-6} \}, \)
\(g = 2, \quad m \leq \frac{1}{2}\sqrt{895}. \)

\(Nv = 227, \quad P = (227, 20 + 3\sqrt{-6}), \)
\(T = \{ 5 + 6\sqrt{-6}, 5 - 6\sqrt{-6}, 11 + 5\sqrt{-6}, 11 - 5\sqrt{-6} \}, \)
\(S = \{ -15 + 3\sqrt{-6}, -4 + 4\sqrt{-6}, -9 + 2\sqrt{-6}, -5\sqrt{-6} \}, \)
\(g = 2, \quad m \leq \frac{1}{2}\sqrt{1135}. \)

\(Nv = 251, \quad P = (251, 4 + 9\sqrt{-6}), \)
\(T = \{ 11 + 5\sqrt{-6}, 11 - 5\sqrt{-6}, 17 + 2\sqrt{-6}, 17 - 2\sqrt{-6} \}, \)
\(S = \{ 7 - 4\sqrt{-6}, -16 - 3\sqrt{-6}, -10 + 4\sqrt{-6}, -10 \}, \)
\(g = 6, \quad m \leq \frac{1}{2}\sqrt{1255}. \)

\(Nv = 269, \quad P = (269, 22 + 3\sqrt{-6}), \)
\(T = \{ 11 + 5\sqrt{-6}, 11 - 5\sqrt{-6}, 17 + 2\sqrt{-6}, 17 - 2\sqrt{-6} \}, \)
Now we turn to dealing with principal prime ideals. Write \(C' = \{ z \in \mathbb{Q} \mid Q^3 = 2O \}, \)
\[|z| \leq (5/2)Nc, \]
\[T = \{ t_1, \ldots, t_r \in C' \mid t_i \notin U, \quad 1 \leq i \leq r \}, \]
\[S = \{ s_1, \ldots, s_r \in \mathbb{Q} \subseteq C' \mid s_i \in U, \quad s_i \equiv t_i \pmod{P}, \quad 1 \leq i \leq r \}. \]
Let \(C = \{ 1 \} \cup (C' \setminus T) \cup S, \) \(m = \max_{z \in C} |z|, \)
\(W = \{ w \in O_F \cap U \mid |w|^2 \leq 2Nc \}. \)

Applying Lemma 2.3, we conclude that

1. if \(|g| + 1 < Nc \) then \(WC \subseteq C_U, \)
2. suppose that \(G = \{ g \}, \) if \((|g| + 1)m < \sqrt{2Nc} \) and \(|g| + m < Nc \) then \(CG \subseteq C_U, \)
3. if \(m + 1 < Nc \) then \(1 \in C \cap \ker \beta \subseteq C_U. \)

It is easy to see that (2) implies (3). \(\square \)

Lemma 4.5. If \(P \) (corresponding to \(v \)) is a principal prime ideal with \(11 \leq Nc \leq 293, \) then \(\tau_v \) is bijective.

Proof. As in the proof of Lemma 4.4, we give \(S, T \) and \(G = \{ g \} \) for each \(P. \) Of course, we only do with one prime ideal for each \(Nc. \) In all cases below conditions (1) and (2) are satisfied.

\[Nc = 31, \quad P = (5 + \sqrt{-6}). \]
\[T = S = 0, \]
\[g = 3, \quad m \leq \sqrt{135}. \]

\[Nc = 73, \quad P = (7 + 2\sqrt{-6}). \]
\[T = \{ 4 + 5\sqrt{-6}, 4 - 5\sqrt{-6} \}, \quad S = \{ -10 + \sqrt{-6}, -8 + \sqrt{-6} \}. \]
\[g = 5, \quad m \leq \sqrt{385}. \]

\[Nc = 79, \quad P = (5 + 3\sqrt{-6}). \]
\[T = \{ 4 + 5\sqrt{-6}, 4 - 5\sqrt{-6} \}, \quad S = \{ -6 - \sqrt{-6}, -14 \}. \]
\[g = 3, \quad m \leq \sqrt{\frac{395}{2}}. \]

\[N_r = 97, \quad P = (1 + 4\sqrt{-6}). \]
\[T = \left\{ 14 + \sqrt{-6}, 14 - \sqrt{-6}, 8 + 5\sqrt{-6}, 8 - 5\sqrt{-6} \right\}. \]
\[S = \left\{ 2 + 2\sqrt{-6}, 2.6 + \sqrt{-6}, 10 - \sqrt{-6} \right\}. \]
\[g = 5, \quad m \leq \sqrt{\frac{485}{2}}. \]

\[N_r = 103, \quad P = (7 + 3\sqrt{-6}). \]
\[T = \left\{ 8 + 5\sqrt{-6}, 8 - 5\sqrt{-6} \right\}. \]
\[S = \left\{ 6 - \sqrt{-6}, 10 + 2\sqrt{-6} \right\}. \]
\[g = 5, \quad m \leq \sqrt{\frac{515}{2}}. \]

\[N_r = 127, \quad P = (11 + \sqrt{-6}). \]
\[T = \left\{ 16 + \sqrt{-6}, 16 - \sqrt{-6}, 2 - 7\sqrt{-6} \right\}. \]
\[S = \left\{ 6 - \sqrt{-6}, 8 - 6 - 3\sqrt{-6}, 4\sqrt{-6}, 4 + 4\sqrt{-6} \right\}. \]
\[g = 3, \quad m \leq \sqrt{\frac{635}{2}}. \]

\[N_r = 151, \quad P = (1 + 5\sqrt{-6}). \]
\[T = \left\{ 14 + 5\sqrt{-6}, 14 - 5\sqrt{-6}, 8 + 7\sqrt{-6}, 8 - 7\sqrt{-6} \right\}. \]
\[S = \left\{ 12 - 5\sqrt{-6}, 16 - 3\sqrt{-6}, 6 - 3\sqrt{-6}, 10 + 3\sqrt{-6} \right\}. \]
\[g = 6, \quad m \leq \sqrt{\frac{755}{2}}. \]

\[N_r = 193, \quad P = (13 + 2\sqrt{-6}). \]
\[T = \left\{ 20 + 3\sqrt{-6}, 20 - 3\sqrt{-6} \right\}. \]
\[S = \left\{ 6 - \sqrt{-6}, 6 - 7\sqrt{-6} \right\}. \]
\[g = 5, \quad m \leq \sqrt{\frac{985}{2}}. \]

\[N_r = 199, \quad P = (7 + 5\sqrt{-6}). \]
\[T = \left\{ 20 + 3\sqrt{-6}, 20 - 3\sqrt{-6} \right\}. \]
\[S = \left\{ 6 - 7\sqrt{-6}, 10 + 4\sqrt{-6} \right\}. \]
\[g = 3, \quad m \leq \sqrt{\frac{995}{2}}. \]

\[N_r = 223, \quad P = (13 + 3\sqrt{-6}). \]
\[T = \left\{ 20 + 3\sqrt{-6}, 20 - 3\sqrt{-6}, 6.4 + 9\sqrt{-6}, 4 - 9\sqrt{-6}, 2.22 + 3\sqrt{-6}, 3.62 - 3\sqrt{-6} \right\}. \]
\[S = \{-6 - 3\sqrt{-6}, -6 - 9\sqrt{-6}, 22 - 4\sqrt{-6}, -14 + 4\sqrt{-6}, -4 - 3\sqrt{-6}, 4 + 10\sqrt{-6}\}, \]
\[g = 3, \quad m \leq \sqrt{\frac{11145}{2}}. \]
\[N_r = 241, \quad P = (5 + 6\sqrt{-6}), \]
\[T = \{4 + 9\sqrt{-6}, 4 - 9\sqrt{-6}, 22 + 3\sqrt{-6}, 22 - 3\sqrt{-6}, 10 + 9\sqrt{-6}, 10 - 9\sqrt{-6}\}, \]
\[S = \{-6 - 3\sqrt{-6}, 14 + 3\sqrt{-6}, -14 + 8\sqrt{-6}, -14 + 2\sqrt{-6}, -3\sqrt{-6}, 20 + 3\sqrt{-6}\}, \]
\[g = 7, \quad m \leq \sqrt{\frac{1205}{2}}. \]
\[N_r = 271, \quad P = (11 + 5\sqrt{-6}), \]
\[T = \{10 + 9\sqrt{-6}, 10 - 9\sqrt{-6}, 22 + 5\sqrt{-6}, 22 - 5\sqrt{-6}\}, \]
\[S = \{-12 - \sqrt{-6}, -20 + 2\sqrt{-6}, -5\sqrt{-6}, -8 + 6\sqrt{-6}\}, \]
\[g = 6, \quad m \leq \sqrt{\frac{1335}{2}}. \]

When \(11 \leq N_r \leq 293\), there exist two inert prime ideals, one is \((13)\) and the other is \((17)\).

For \((13)\), take \(C = \{a + b\sqrt{-6} | -6 \leq a, b \leq 6 \text{ and } a, b \text{ are integers}\} \cup \{\pm 8 \pm 6\sqrt{-6}\}\} \cup \{\pm 5 \pm 6\sqrt{-6}\}. \]
\[W = \{w \in O_F \cap U \mid |w|^2 < 2 \cdot 169\}, \quad G = \{1 + \sqrt{-6}\}. \]

Apply Lemma 2.1 to show \(\tau_r\) is bijective.

For \((17)\), applying Lemma 2.2, we choose \(d = \sqrt{33}\) and let \(D = \{x \in O_F \mid |x| \leq d\}\) then \(#(D) = 47\) and \(d^2 < N_r^2/(4(1 + \sqrt{2N_r})^2)\). Note that \(47^2 > 289^2 = N_r^2\), hence \(\tau_r\) is bijective.

This completes the proof. \(\square\)

We conclude from Sections 3 and 4 the following.

Theorem 4.6. Suppose that \(S\) consists all finite places with \(N_r \leq 7\) and Archimedean places in \(F = \mathbb{Q}(\sqrt{-6})\). Then \(K_2O_F \subset K_2^3 F\).

5. The determination of \(K_2\mathbb{Z}[^\sqrt{-6}]\)

Theorem 5.1. Let \(O_F = \mathbb{Z}[\sqrt{-6}]\), the ring of integers of \(F = \mathbb{Q}(\sqrt{-6})\). Then \(#(K_2O_F) = 1\).
Proof. Write $S = S \cup \{Q, P_1, P_2, P_3, P_4, P_5\}$, where $Q^2 = O_F$, $P_1^2 = 3O_F$, $P_2 = (5, 2 + \sqrt{-6})$, $P_3 = P_2$, $P_4 = (1 + \sqrt{-6})$, $P_5 = P_4$. By Lemma 4.6, $K_2O_F < K_2F$. We observe below the relations of generators of K_2F. By Browkin [2], for any $x \in F$, we have the following identities: $\{x, x + 1\}^2 = 1$, $\{x, x^2 + x + 1\}^3 = 1$, $\{x, x^2 + 1\}^4 = 1$. By Browkin and Schinzel [4], $r_2(K_2O_F) = 0$.

Thus $\{-1, -1\} = 1$, $\{-1, 1\} = 1$.

It is easy to show that $u_0 = -1$, $u_1 = 2$, $u_2 = -6$, $u_3 = 1 + \sqrt{-6}$, $u_4 = 1 - \sqrt{-6}$, $u_5 = 2 + \sqrt{-6}$, $u_6 = 2 - \sqrt{-6}$ are the generators of $U = O_5$. We have that:

$\{u_0, u_i\} = 1$ for $0 \leq i \leq 6$.

$\{u_1, u_2\} = \{2, -6\} = \{2, 3\} = \{2, -2\} = 1$.

$\{u_1, u_5\} = \{2, -2 + 4\sqrt{-6}\} = \{2, 1 + 2\sqrt{-6}\}$,

$\{2, -1 + 2\sqrt{-6}\} = \{1 - \sqrt{-6}, 1 + 2\sqrt{-6}\}$

$= \{2, 2\sqrt{-6} - 1 + 2\sqrt{-6}\} = 1$,

$\{1 - \sqrt{-6}, 1 + 2\sqrt{-6}\}$

$= \{1 - \sqrt{-6}, 2\sqrt{-6}\}^{-1} \cdot \{1 - \sqrt{-6} + 2\sqrt{-6}\}^{-1}$,

because

$(1 - \sqrt{-6})^4 + 1 = -4 - 2\sqrt{-6}$, $\{1 - \sqrt{-6}, -4 - 2\sqrt{-6}\}^4 = 1$,

$\{1 - \sqrt{-6}, 2\sqrt{-6}\}^{-1} = \{1 - \sqrt{-6}, -2\}^{-4} = \{1 - \sqrt{-6}, 2\}^{-4}$.

$\{2, 2 + \sqrt{-6}\} = \{2, 10\}$, $\{2, 10\} = 1$.

$\{u_1, u_3\} = 1$.

$\{u_1, u_4\} = 1$.

$\{u_2, u_5\} = \{\sqrt{-6}, -2 + 4\sqrt{-6}\} = \{\sqrt{-6}, -2\} \cdot \{\sqrt{-6}, 1 - 2\sqrt{-6}\}$

$= \{\sqrt{-6}, -2\} \cdot \{2\sqrt{-6} - 1 + 2\sqrt{-6}\}^{-1}$

$= \{\sqrt{-6}, -2\} \cdot \{2, 1 - 2\sqrt{-6}\}^{-1}$.

$\{u_2, u_6\} = \{\sqrt{-6}, 10\} \cdot \{\sqrt{-6}, 2 + \sqrt{-6}\}^{-1} \cdot \{\sqrt{-6}, 10\}^4 = 1$.

$\{u_3, u_4\} = \{(1 + \sqrt{-6})/2, (1 - \sqrt{-6})/2\} \cdot \{2, 1 - \sqrt{-6}\} \cdot \{2, 1 + \sqrt{-6}\}^{-1}$

$= \{2, 1 - \sqrt{-6}\} \cdot \{2, 1 + \sqrt{-6}\}^{-1}$.
since \((1 + \sqrt{-6})/2 + (1 - \sqrt{-6})/2 = 1\).

\[\{u_3, u_5\}^2 = 1.\]

\[\{u_3, u_6\} = \{1 + \sqrt{-6}, -1\}^{-1} \{1 + \sqrt{-6}, 2\}^{-1} \{1 + \sqrt{-6}, -4 + 2\sqrt{-6}\}.\]

\[\{1 + \sqrt{-6}, -4 + 2\sqrt{-6}\}^4 = \{1 + \sqrt{-6}, (1 + \sqrt{-6})^2 + 1\}^{-1}.\]

\[\{u_3, u_5\}^2 = \{1 - \sqrt{-6}, -2 + 4\sqrt{-6}\} = \{1 - \sqrt{-6}, 2\}^{-1}.\]

\[\{u_4, u_6\} = \{1 - \sqrt{-6}, -1 + 2\sqrt{-6}\} = \{1 - \sqrt{-6}, 2\}^{-1}.\]

\[\{u_4, u_6\}^2 = 1.\]

\[\{u_5, u_6\} = \{2 + \sqrt{-6}, 4/3\}^{-1} \{4, 4\}^{-1}.\]

\[\{u_5, u_6\} = \{2 + \sqrt{-6}, 4/3\}^{-1} \{4, 4\}^{-1}.\]

\[\{u_5, u_6\} = \{2 + \sqrt{-6}, 4/3\}^{-1} \{4, 4\}^{-1}.\]

It follows from the relations we just obtained that for any generator \(x\) of \(K_2^F\), there exist non-negative integers \(n, n_1\) and \(n_2\) such that \(x^{2n} = \{1 + \sqrt{-6}, 2\}^{n_1} \cdot \{1 - \sqrt{-6}, 2\}^{n_2}.\) On the other hand, \(\{1 + \sqrt{-6}, 8\} = \{1 - \sqrt{-6}, 8\} = \{7, 8\} = 1.\)

Let \(m = (1 + \sqrt{-6})/2.\) Then \(m^2 + m + 1 = -3/4.\) Hence \(\{m + \sqrt{-6}, -3/4\}^3 = 1.\)

Let \(l = -\frac{1}{3}.\) Then \(l^2 + l + 1 = 3/4.\) Hence \(\{-1/2, 3/4\} = 1.\)

Note that

\[\{1 + \sqrt{-6}, 2\}^{n_1} \cdot \{1 - \sqrt{-6}, 2\}^{n_2} = \{1 + \sqrt{-6}, 8\} = \{1 - \sqrt{-6}, 8\} = \{7, 8\} = 1.\]

Therefore \(\{1 - \sqrt{-6}, -3/4\} = \{1 - \sqrt{-6}, 1/8\};\) it follows \(\{1 - \sqrt{-6}, 8\}^3 = 1.\)

Because \(r_2(K_2^O_F) = 0,\) for any non-negative integer \(n\) and \(x \in K_2^O_F,\) the order of \(x^{2n}\) is the same as that of \(x.\) But

\[\tau_r(\{1 + \sqrt{-6}, 2\}^{-n_1} \cdot \{1 - \sqrt{-6}, 2\}^{-n_2}) = \begin{cases} 2^{-n_1} \pmod{P}, & \text{if } P = (1 + \sqrt{-6}), \\ 2^{-n_2} \pmod{P}, & \text{if } P = (1 - \sqrt{-6}), \\ 1 \pmod{P}, & \text{if } P \neq 7. \end{cases}\]

Thus we have \(\{1 + \sqrt{-6}, 2\}^{n_1} \cdot \{1 - \sqrt{-6}, 2\}^{n_2} \in K_2^O_F\) if and only if \(n_1 \equiv n_2 \equiv 0 \pmod{3}.\) Hence for any \(x \in K_2^O_F,\) there exist non-negative integers \(n, n'\) such that \(x^{2n} = \{1 + \sqrt{-6}, 8\}^{n'} .\)

Therefore, \(#(K_2^O_F) = 1\) or \(#(K_2^O_F) = 3.\)

Let \(h = 1 + \sqrt{-6},\) then \(h^2 + h + 1 = -3(1 - \sqrt{-6}).\) For any place \(v\) (corresponding to \(P\)) of \(F,\)

\[\tau_v(\{1 + \sqrt{-6}, -3(1 - \sqrt{-6})\} \{\frac{1}{3}, 1 - \sqrt{-6}\}) = 1 \pmod{P}.\]
Remark. The main point of the method used in [1] may be to get a reasonably low value of \(m \) such that \(K_2O_F \subseteq \mathbb{K}_2F \). In [7], Tate uses Proposition 1 (Lemma 2.1 in the present paper) to construct \(W \), \(C \) and \(G \) for \(d = 1, -2, -3, -7, -11, -15 \). If \(C \) is constructed by Tate's method, then \(C \subseteq U \) in all cases above. But it is not hard to see that in other cases \(C \not\subseteq U \) if \(C \) is done as in [1]. One step of the improved method which we propose in this paper is to construct \(t \) such that \(C \subseteq U \), of course. \(C \) will also satisfy some others. Here, \(C \) may be quite "large". The other step is to use an analytical method to get \(m \), which is different from Tate's method. Although this method is based on a theorem due to Bass and Tate, we can see that our method can be used to deal with other imaginary quadratic fields. Using this method, the author proves that \(K_2O_F \cong \mathbb{Z}/2\mathbb{Z} \) for \(F = \mathbb{Q}(-\sqrt{-35}) \) (see [5]).

Note added in proof. After finishing this paper, the author has found a paper of M. Skalba (see [6]). In [6] Skalba proposes a method which is different from ours and by which he shows that \(K_2O_F = 1 \) for \(F = \mathbb{Q}(\sqrt{-5}) \) and \(F = \mathbb{Q}(\sqrt{-19}) \). This can also be proved by our method. In fact, to do this we need fewer computations as compared with the case of \(F = \mathbb{Q}(\sqrt{-6}) \). Since both discriminants of \(F = \mathbb{Q}(\sqrt{-5}) \) and \(F = \mathbb{Q}(\sqrt{-19}) \) are less than that of \(F = \mathbb{Q}(\sqrt{-6}) \).

Acknowledgement

I wish to heartily thank Professor Zhou Boxun (Cheo Peh-Hsuen) and Professor Tong Wenting.

References

[5] Qin Hourong. Computation of \(K_2O_F \cong \mathbb{Z}/142\mathbb{Z} \) for \(F \in K \). to appear.