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Abstract Background/purpose: Biofilm formation by Streptococcus mutans is a prerequisite
for the development of caries. Different strains of S. mutansmay differ in their capacity in bio-
film formation and protein expression. The objective of this study was to investigate the
morphological features and proteomes of biofilms of S. mutans clinical isolates.
Materials and methods: Clinical strains isolated from caries-active (SM 593) and caries-free (SM
18) adults were cultured on polystyrene sheets in tryptoneepolypeptoneeyeast extract me-
dium. Biofilm formation and structure were assessed by confocal laser scanning microscopy
and scanning electron microscopy. Proteins were extracted from SM 593 and SM 18 presented
in biofilms and separated with two-dimensional gel electrophoresis, followed by peptide mass
fingerprinting using matrix-assisted laser desorption time-of-flight mass spectrometry analysis.
Results: Initially detected 2 hours after incubation, biofilm formation reached its maximum
level at 20 hours. The biofilm formed by SM 593 was thicker with a higher percentage of viable
bacteria compared with that formed by SM 18. Hydrolase and pantothenate kinase were de-
tected in the SM 593 biofilm only, whereas 6-pyruvoyl tetrahydropterin synthase and phosphor-
ibosylglycinamide formyltransferase were expressed exclusively in the SM 18 biofilm.
Expressions of D-alanyl-D-alanine carboxypeptidase and response regulator homolog of RumR
were most greatly enhanced in the SM 593 and SM 18 biofilms, respectively.
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Conclusion: SM 593 exhibited greater biofilm-forming capacity compared to SM 18. SM 593 and
SM 18 biofilms expressed specific proteins involved in nucleic acid metabolism and interme-
diary metabolism, respectively, which may account for the differences in their biofilm-
forming abilities.
Copyright ª 2015, Association for Dental Sciences of the Republic of China. Published by Else-
vier Taiwan LLC. All rights reserved.
Introduction

One of the greatest challenges facing any pathogen
attempting to cause dental caries is simply surviving the
complex environment of the oral cavity. Considerable
research has shown that the cells growing in biofilms are
more antibiotic resistant and acid tolerant than their
planktonic counterparts.1e3 Dental biofilm formation is the
prerequisite for bacteria to adhere and grow, and to with-
stand dynamic changes in oral cavity environment as well.4

Polysaccharides produced by exoenzymes from Strepto-
coccus mutans are the main constituents of the matrix of
cariogenic plaque biofilms and are recognized as essential
virulence factors associated with dental caries.5 Among
important virulence factors of this pathogen, the ability of
S. mutans to form and sustain a polysaccharide-encased
biofilm is vital not only to its survival and persistence in
the oral cavity, but also for its pathogenicity.6

Although S. mutans are generally considered to be the
principal etiological agent of dental caries,7,8 they are
widely distributed in both caries-active populations9,10 and
populations having no or low caries experience.11,12 In
order to find the possible explanation for their presence in
caries-free individuals, several studies have been carried
out to investigate the genetic heterogeneity among S.
mutans strains.13,14 However, the relationship between
caries activity and the genetic diversity of S. mutans still
remains controversial.15,16

Protein is the product of gene expression and is the final
executor of function of gene. Surface-associated proteins
play an important role in cariogenicity. Research has shown
that biofilm regulatory protein A and glucan-binding pro-
teins expressed by S. mutans are essential for survival of
bacteria and biofilm formation within the host, and play a
fundamental role in the interaction between the bacterial
cell and its environment.17,18 Our previous study demon-
strated that, compared with those in planktonic status,
clinical isolations of S. mutans in biofilms have higher
expression of certain surface-associated proteins that are
presumed to be essential for formation of biofilms.19

Based on the importance of biofilm-forming capability
and surface-associated protein expression by S. mutans in
the initiation and progression of caries, we hypothesized
that differences exist between biofilm-forming capability
and surface-associated protein expression by strains of S.
mutans isolated from caries-active and caries-free in-
dividuals. To testify this, the process of biofilm formation
by S. mutans strain was monitored with confocal laser
scanning microscopy (CLSM) and scanning electron micro-
scopy (SEM); expression of surface-associated proteins in
bacteria was detected using two-dimensional gel
electrophoresis (2-DE) followed by matrix-assisted laser
desorptioneionization time-of-flight mass spectrometry
(MALDI-TOF-MS).

Materials and methods

Bacterial strains and culture conditions

SM 593 was isolated from caries-active adults [the number of
decayed and filled teeth (DFT) Z 10, no missing tooth, 3
cavitated lesions]. SM 18 was isolated from caries-free
adults [the number of decayed, missing, and filled teeth
(DMFT) Z 0] (both SM 593 and SM 18 were isolated in our
previous study). The strains were stored at �80�C in basic
growth medium containing 15% (v/v) glycerol. Bacteria were
cultured anaerobically on tryptoneepolypeptoneeyeast
extract (TPY) (Oxoid, Hampshire, England) at 37�C as
described previously.20 Cultivation of bacteria was per-
formed in an anaerobic environment (80% N2, 10% CO2, and
10% H2). Pure cultures of each test strain were obtained and
suspended in fresh TPY to an optical density (OD) of 1.0 at
630 nm (approximately 108 cells/mL) for the following
experiments.

Biofilm formation on polystyrene sheets and petri
dishes

S. mutans biofilms were formed on sterile plastic sheets
(1 � 1 mm2) and plastic petri dishes (Dow Corning, Wies-
baden, Germany). In one group, the plastic sheets were
immersed in plastic petri dishes containing 19 mL of TPY
and 1 mL of bacterial suspension, as mentioned above. The
plastic sheets were then incubated in an anaerobic cham-
ber at 37�C for 2 hours, 4 hours, 6 hours, 12 hours, 20 hours,
and 24 hours. For the other group, 19 mL of TPY and 1 mL of
bacterial suspension were placed directly in plastic petri
dishes without the plastic sheets and incubated in an
anaerobic chamber at 37�C for 2 hours, 4 hours, 6 hours, 12
hours, 16 hours, and 20 hours.

Colony forming units assay

Biofilms were washed twice with 0.01M phosphate buffered
saline (PBS, pH 7.4) at 2 hours, 4 hours, 6 hours, 12 hours,
16 hours, 20 hours, and 24 hours to remove excess medium
and unattached cells. Then, 100 mL of PBS was added to
each dish, and biofilm cells were scraped off the surface of
the polystyrene petri dishes using a sterile cell scraper. The
detached biofilm cells were serially diluted 10-fold and
inoculated on TPY agar at 37�C for 24 hours in triplicate.
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Colony-forming units (CFUs) were calculated by the method
described by Miles et al.21 Briefly, plates with >30 but <300
colonies were chosen for counting, and the CFU/mL was
calculated as follows: CFU/mL Z (number of
colonies � dilution factor)/volume of culture plate. Mean-
while, the population doubling time was calculated on the
basis of the following formula: ln Z e ln Z0 Z k(t e t0).

22

Each independent assay was performed in triplicate.
CLSM analysis of biofilms

CLSM observation was performed as follows: First, the
biofilms were stained with the L-7012 Live/Dead BacLight
Bacterial Viability Kit (Molecular Probes, Eugene, OR,
USA), according to the manufacturer’s instructions. The
bacterial viability kit contains SYTO 9 and propidium io-
dide, each of which was thoroughly mixed with distilled
water at a ratio of 1.5:1000. Viable bacterial cells were
stained with green fluorescence (SYTO 9), while bacterial
cells with damaged membranes were stained with red
fluorescence (propidium iodide). The biofilms were
washed twice with 0.01M PBS at 2 hours, 4 hours, 6 hours,
12 hours, and 20 hours to remove excess medium and
unattached cells. Each biofilm was immersed in 200 mL of
the above staining solutions, incubated in the dark at
room temperature for 15 minutes, and rinsed with 200 mL
PBS. Second, P-phenylenediamine and PBS were added on
top of the biofilm in succession and covered with a
coverslip. Third, biofilms were examined using a CLSM
(Zeiss LSM 510; Carl Zeiss Microscopy, Jena, Germany)
equipped with argon-ion and heliumeneon lasers set to
emit at 488 nm and 543 nm, respectively. In each exper-
iment, the same settings of exciting laser intensity,
background level, contrast, and electronic zoom size were
maintained. A series of optical cross-section images were
acquired at 1-mm intervals from the surface of the biofilm
to the polystyrene surface using a computer-controlled
motor drive. The total average area covered by bacterial
cells on the surface was obtained from at least four
different images of the same sample. Each biofilm was
scanned from the outside (the side in direct contact with
the planktonic bacteria) to the inside (the side in contact
with the polystyrene sheets). Three series were generated
following optical sectioning at each of these positions.
Finally, image stacks were analyzed using the Java-based
image analysis program Image J (version 1.38; National
Institutes of Health, Bethesda, MD, USA). Image J was
used to count the green and red areas of outer (the
topmost surface of the biofilm that is in direct contact
with planktonic bacteria), medium (the midpoint of all
scanned layers), and inner (the side in direct contact with
the polystyrene sheets) layers of the biofilm. The area
occupied by live and dead bacteria in each layer indicates
the fraction (percentage) of the area occupied by either
component in each image of a stack and provides the
vertical distribution of each of the biofilm components.
The three-dimensional architecture of the biofilm was
visualized using Zeiss LSM software. Further, the thickness
and architecture of the biofilm were determined from the
vertical (xz) sections. The percentage of viable microor-
ganisms was calculated using the following formula: green
areas/(red areas þ green areas) � 100%. The assay was
performed in triplicate on three separate occasions.

SEM analysis of biofilms

The biofilms were removed from the plates after 2 hours, 4
hours, 6 hours, 12 hours, and 20 hours; washed twice with
PBS; and placed in 1% osmium tetroxide for 1 hour. Samples
were then washed in distilled water, dehydrated in
increasing concentrations of ethanol, dried in a desiccator,
sputter-coated with gold, and examined using SEM
(XL30ESM; FEI Co., Amsterdam, the Netherlands). Each
specimen was divided into quadrants. One field of vision
was randomly selected from each quadrant. Each inde-
pendent assay was carried out in triplicate.

Extraction and analysis of biofilm surface-
associated proteins

Biofilm growth was ceased at 20 hours for protein extrac-
tion.23 Cells that did not adhere to the inner surface of
polystyrene petri dishes were removed by immersing poly-
styrene petri dish surfaces in 25 mL of wash medium. The
rinsing procedure was repeated three times with fresh
medium to remove all nonadherent cells. After washing the
inner surfaces of polystyrene petri dishes, a cell scraper
was used to gently scrape the adherent cells (biofilm cells)
off the bottom of the polystyrene petri dishes into a
microcentrifuge tube. The cells were centrifuged at 4000g
(20�C, 5 minutes), then suspended in fresh TPY to an
approximate OD630 of 1.0, and centrifuged again at 4000g
(20�C, 5 minutes); the supernatant was discarded, and the
surface-associated proteins were extracted from the pel-
leted cells according to the method of Wilkins et al.24 Cell
pellets were washed twice in PBS and suspended in PBS
with 0.2% (w/v) N-dodecyl-N,N-dimethyl-3-ammonio-1-
propanesulfonate (Zwittergent; Sigma-Aldrich, Chicago,
IL, USA). The suspensions were incubated at 25�C with
shaking at 50 rpm for 1 hour, and the cells were pelleted at
13,000g (20�C, 10 minutes). The supernatant containing the
extracted cell surface proteins was diluted 1:4 with 50mM
Tris-HCl (pH 7.5), passed through a filter (0.22 mm pore-size
Acrodisc syringe filter) to remove remaining cells, dialyzed
until the liquid in the dialysis bag became clear, and then
four volumes of ice-cold acetone were added. Samples
were stored overnight at �20�C. The cell surface-
associated proteins were collected by centrifugation at
12,000g (4�C, 20 minutes) and subjected to 2-DE, and then
some spots in 2-DE gel, corresponding to proteins of inter-
est, were identified by MALDI-TOF-MS. Image analysis and
protein identification were performed following the
method described by Wilkins et al.24

Statistical analysis

Data were analyzed using repeated-measures analysis of
variance (ANOVA) (time-dependent data) and two-sample
t test. All analyses were conducted using the SPSS software
(SPSS 13.0 for Windows; SPSS, Chicago, IL, USA). The level
of significance was defined as P Z 0.05. There were six
samples in each experiment on three separate occasions.



Figure 2 Growth rates of SM 593 and SM 18 in biofilms. The
graph shows the mean CFU counts of SM 593 and SM 18 biofilm
cells from 2 hours to 24 hours. Bars indicate standard de-
viations. The data represent the average of triplicate inde-
pendent essays. * Significant difference between SM 593 and SM
18 at P < 0.05. CFU Z colony-forming unit.
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Results

Growth of SM 593 and SM 18 in planktonic bacteria

The mean OD values of SM 593 and SM 18 were similar and
followed the same trend (Fig. 1). Specifically, there was a
steady increase in the mean OD value (from 0 to 0.2) from
0 hour to 2 hours, followed by a dramatic rise in the mean
OD value (from 0.3 to 0.8) between 3 hours and 5 hours. The
OD values plateaued at approximately 1.0 (approximately
108 cells) at 6 hours. Therefore, the 6 hours of cultivation of
SM 593 and SM 18 were chosen to conduct further experi-
ments to assess biofilm formation. There were no signifi-
cant differences between the mean OD values between SM
593 and SM 18 at the various times (P > 0.05).

Growth of SM 593 and SM 18 biofilms

The mean CFUs in biofilms of SM 593 and SM 18 between 2
hours and 24 hours are shown in Fig. 2. The mean CFUs of
SM 593 and SM 18 increased sharply from 2 hours to 12
hours, followed by slow growth until 20 hours, and pla-
teaued between 20 hours and 24 hours. Moreover, the mean
CFUs of biofilms formed by SM 593 were always greater than
those of SM 18 at each time point (P < 0.05). In addition,
the SM 593 biofilm doubling time (122 � 6 minutes) was
significantly lower than that of the SM 18 biofilm (151 � 11
minutes) (P < 0.05).

Thickness of biofilms

Thickness of the biofilms formed by SM 593 and SM 18
increased with time. After a rapid growth from 2 hours to 12
hours, their thickness increased slightly until 16 hours and
was then stabilized up to 20 hours. More important, a sig-
nificant difference in thickness was observed between the
biofilms formed by SM 593 and SM 18 at each time (P < 0.05)
(Fig. 3).

CLSM analysis of biofilms

SM 593 and SM 18 biofilms were mainly composed of viable
bacteria from 2 hours to 20 hours (Fig. 4). Within the initial
2 hours, only a few scattered bacteria were observed,
Figure 1 Growth rates (OD values) of planktonic SM 593 and
SM 18 incubated at pH 7.0 and 37�C. Bars indicate standard
deviations. The data represent the average of triplicate inde-
pendent essays. OD Z optical density.
whereas by 6 hours, the bacteria fused to form a tangle of
flocculation agglomerates. From 12 hours to 20 hours,
numerous viable bacteria emerged, forming a network-like
structure. However, compared with those in the SM 18
biofilm, the number of living bacterial cells was higher and
the structure was denser in the SM 593 biofilm at each time
between 2 hours and 20 hours.

Three-dimensional spatial structure of biofilms at
20 hours

A three-dimensional reconstruction was generated by bio-
films at 20 hours. Both the SM 593 and the SM 18 biofilm had
open and heterogeneous structures. Nevertheless, the SM
593 biofilm was thicker and gully shaped, compared with
the flat SM 18 biofilm (Fig. 5).

Analysis of viable bacteria in biofilms at 20 hours

The biofilms contained an uneven distribution of viable
and dead bacteria, with the ratios of viable to dead
Figure 3 Average thickness of SM 593 and SM 18 biofilms from
2 hours to 20 hours, determined using CLSM. Bars indicate
standard deviations. The data represent the average of tripli-
cate independent essays. * Significant difference between SM
593 and SM 18 at P < 0.05. CLSM Z confocal laser scanning
microscopy.



Figure 4 CLSM analysis of SM 593 and SM 18 biofilms. Time series of CLSM images of development of SM 593 and SM 18 biofilms
stained with live/dead BacLight fluorescent stains (scale bars, 2 mm; original magnification 100�). The images are representative of
three independent experiments. CLSM Z confocal laser scanning microscopy.
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bacteria changing within the different layers. At 20 hours,
the percentage of viable microorganisms in SM 593 and SM
18 biofilms increased gradually from the inner to the outer
layer. Further, the differences among several layers were
statistically significant (P < 0.05). The number of viable
bacteria in the outer layer was greater than that in the
inner layer, and the percentage of viable bacteria in the
SM 593 biofilm was significantly higher than that in the
SM 18 biofilm at each corresponding layer (P < 0.05)
(Fig. 6).

SEM analysis of biofilms

After 2 hours of culture, the bacteria that attached to the
polystyrene sheets formed long chains with little overlap.
At 6 hours, the bacteria aggregated and began forming a
biofilm, which was completed by 20 hours. However,
compared with SM 18, the number of long chains formed by
SM 593 increased at 2 hours with more overlap. By 20 hours,
the structure of the SM 593 biofilm was denser than that of
the SM 18 biofilm. Further, increased extracellular poly-
saccharides were observed surrounding the bacteria in the
SM 593 biofilm (Fig. 7).

Two-dimensional gel electrophoresis analysis of
surface-associated proteins of SM 593 and SM 18
biofilms

The surface-associated proteins extracted from biofilms
formed by SM 593 and SM 18 were separated using 2-DE.
There were approximately 727 and 575 distinct spots on the
2-DE gels of SM 593 and SM 18, respectively, which were
mainly distributed in the isoelectric point (pI) range of
4.0e7.0 with relative molecular masses ranging from 10 kDa
to 100 kDa (Fig. 8).

Differences between surface-associated proteins
present in biofilms formed by SM 593 and SM 18

Two hundred and twenty-nine proteins in the mass and pI
ranges described above were differentially expressed
(increases or decreases of a factor of 1.3) when the biofilms
formed by SM 593 to SM 18 were compared. Nine and five
proteins were specifically detected in SM 593 and SM 18
biofilms, respectively. Using MALDI-TOF, we determined the
identities of the unique proteins and proteins of interest
expressed at levels that differed between the two biofilms
by a factor of at least 3. A hydrolase of the MutT family,
purine-nucleoside phosphorylase, DNA repair protein RecO,
pantothenate kinase, and heat shock protein DnaJ (HSP40)
were present only in the SM 593 biofilm, and 6-pyruvoyl
tetrahydropterin synthase, phosphoribosylglycinamide for-
myltransferase (GART), ribose 5-phosphate isomerase A,
and ABC transporter (ATP-binding protein, MsmK-like pro-
tein) were present only in the SM 18 biofilm (Table 1). The
expression of D-alanyl-D-alanine carboxypeptidase, glyc-
erol-3-phosphate dehydrogenase, and histidyl-tRNA syn-
thetase (histidine-tRNA ligase) was greatly increased in the
SM 593 biofilms, and the expression of the transcriptional
regulator, response regulator homolog of RumR and ScnR,
tagatose 1,6-aldolase, glycerol-3-phosphate dehydroge-
nase, oxidoreductase, and isopentenyl pyrophosphate
isomerase was greatly increased in the SM 18 biofilms
(Table 2).
Discussion

In nature, most bacteria form biofilms that adhere to the
surfaces of living organisms and inanimate objects.25 Mi-
crobial biofilms can be created by several techniques
in vitro.26 The multispecies biofilm model offers opportu-
nities to explore the inter-relationship among the various
species of oral bacterial communities, while analysis of the
monospecies model contributes significantly to the accu-
rate identification of genes and specific proteins associated
with biofilm formation. In the present study, we established
an S. mutans monospecies biofilm model in vitro. Conse-
quently, biofilm formation and surface-associated protein
expression of S. mutants strains SM 593 and SM 18 were
compared.

CLSM and SEM observations revealed that biofilm for-
mation by SM 593 and SM 18 was dynamic and could be



Figure 5 Three-dimensional structures of 20-hour (A) SM 593 and (B) SM 18 biofilms, reconstructed with Zeiss LSM software.

Figure 6 Percentage of viable (green) and dead (red) bac-
teria in different (interior, middle, and outer) layers of 20-hour
SM 593 and SM 18 biofilms. The images of biofilms were
analyzed using Image J to count the red and green areas of
interior, middle, and outer layers of the biofilms. Bars indicate
standard deviations. The data represent the average of tripli-
cate independent experiments. * Significant difference be-
tween SM 593 and SM 18 at P < 0.05.
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classified into three stages as follows: In the first stage, a
few single bacteria adhere to the surface (0e6 hours). In
the second stage, the primary colonizers proliferate (6e12
hours). The biofilm matures during the final stage (12e20
hours). The structure of the biofilms formed by SM 593 and
SM 18 were typically three dimensional, heterogeneous,
and dispersed, and vary in morphology.

Image analyses of biofilms demonstrate that bacterial
aggregates are separated by fluid-filled channels that
facilitate oxygen transport throughout the biofilm.27,28

During investigation of the distribution of dead and viable
bacteria during biofilm formation, CLSM and fluorescent
staining techniques revealed an uneven spatial distribution,
with an escalating percentage of viable cells located to-
ward the outer layer, which is consistent with the results of
another study.29 The following biofilm features were
observed in both SM 593 and SM 18: In the outer layer of the
biofilm, bacteria enjoy ready access to nutrients, and toxic
metabolic products are removed more efficiently.
Conversely, bacteria in the inner layer live under conditions
of inadequate nutrition, which inhibits their proliferation.
Further, relatively more metabolites are accumulated,
leading to cytotoxicity, within the inner layer of the bio-
film. In contrast, bacteria residing on the top layers of
dental plaque are directly exposed to adverse stimuli from
the oral environment. Therefore, the present study con-
ducted in vitro may not completely represent the clinical
situation.

Although biofilm formation by SM 593 and SM 18 was
similar as described above, there were still the following
significant differences: First, the mean number of CFUs of
the SM 593 biofilms was always higher compared with those
of the SM 18 biofilms. This may be because of the stronger
adherence of SM 593 to the matrix.30 Second, SM 593 bio-
films contained more cells and were denser, compared with
SM 18 biofilms, from 2 hours to 20 hours. These properties
may enhance the adaptation of SM 593 to the environment.
Third, in all three stages of biofilm formation, SM 593 bio-
films grew faster, which may be due to their lower popu-
lation doubling time. Moreover, the percentage of viable
cells in the biofilms was significantly greater at each cor-
responding layer. Finally, the biofilms of SM 593 were al-
ways thicker, as the SM 593 biofilm contained more living
and dead bacteria, as well as higher amounts of exopoly-
saccharides,31 which are a key component of the biofilm
matrix.32

The behavior of bacteria in biofilms depends on the
number of viable cells, as well as on the structure and
thickness of the biofilm.32,33 The thickness of a mature
biofilm plays a key role in bacterial survival and is of pivotal
importance during immune evasion and induction of resis-
tance to antibacterial agents.28 The superior ability of SM
593 to form biofilms is consistent with the significant dif-
ferences in cariogenicity between planktonic SM 593 and SM
18 in our previous work.19,30,34

To further define the differences between S. mutans
biofilms, surface-associated proteins that may influence
biofilm formation were extracted from 20-hour biofilm
cells. Approximately 727 and 575 protein spots were
detected in 20-hour extracts of SM 593 and SM 18 biofilms,
respectively. We identified proteins uniquely expressed by
either SM 593 or SM 18, and proteins expressed by SM 593 or
SM 18 whose levels differed by at least a factor of 3. We
found that hydrolase (MutT family), purine-nucleoside
phosphorylase, DNA repair protein RecO, and putative
pantothenate kinase were expressed only by SM 593, and
histidyl-tRNA synthetase (histidine-tRNA ligase) was
expressed at higher levels by SM 593 (20-hour biofilm cells).
Phosphoribosylglycinamide synthetase, formyltransferase
(GART) and ribose 5-phosphate isomerase A were expressed



Figure 7 Time series SEM images of SM 593 and SM 18 biofilms formed on surfaces of polystyrene sheets (scale bars, 2 mm; original
magnification 10,000�). The data represent three independent experiments. SEM Z scanning electron microscopy.
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only by SM 18 (20 hours). These proteins are all involved in
nucleic acid metabolism, DNA and RNA synthesis.35,36 The
findings are partially consistent with the results of Rathsam
et al37,38 that competence-related proteins, such as DNA-
processing protein, in S. mutans biofilms were upregulated.

Proteins always exist as an unfolded polypeptide or
random coil when translated.39 Therefore, heat shock
protein DnaJ (HSP40), which was expressed only in SM 593
biofilm cells and is involved in protein fate (folding, modi-
fication, and destination), could effectively fold into its
characteristic and functional three-dimensional structure
from a random coil to function as a DnaK-dependent
chaperone, which is critical for biofilm formation by
providing adequate levels of the required proteins.40

Moreover, lack of expression of this protein by SM 18 may
adversely affect biofilm development.
Figure 8 Two-dimensional gel electrophoresis protein profiles of
separated by isoelectric focusing in the pH range of 4e7 in the fir
dimension. (A) Protein expression by SM 593. (B) Protein expression
SM 593 biofilm cells or SM 18 biofilm cells. The proteins indicated wit
SM 18 biofilm cells or SM 593 compared with each other. The gels
terest: black arrow label, “3X” spots of interest: green arrow la
electrophoresis.
D-alanyl-D-alanine carboxypeptidase is required during
the final steps of peptidoglycan synthesis and for biofilm
formation by S. mutans.41 This enzyme was expressed at
6.5 times higher levels by SM 593, indicating that it
enhanced biofilm formation. Downregulation of D-alanyl-D-
alanine carboxypeptidase by SM 18 would slow biofilm for-
mation. The 6.2-fold enhanced expression of glycerol-3-
phosphate dehydrogenase in the SM 593 biofilms might
impart greater stability to the biofilm by maintaining the
cells in the stationary phase of growth.42

Interestingly, oxidoreductase and isopentenyl pyro-
phosphate isomerase, which function in intermediary
metabolism, were upregulated in SM 18 biofilm cells by at
least four-fold in contrast to SM 593. This may explain the
enhanced formation of biofilms by SM 593. The decreased
levels of intermediary metabolism in SM 593 biofilm cells
20-hour SM 593 and SM 18 biofilm cells. Extracted proteins were
st dimension and a gradient (12e14%) SDS-PAGE in the second
by SM 18. Proteins indicated by “CHY” were expressed by either
h “3X” were enhanced or diminished by more than three-fold in
represent three independent experiments. “CHY” spots of in-
bel. SDS-PAGE Z sodium dodecyl sulfate polyacrylamide gel



Table 1 Identification of proteins expressed only in 20-hour SM 593 or SM 18 biofilm cells.

Protein function Spot no. Mr (Da) pI Gene ID Protein

Only expressed in SM 593 biofilm cells
Nucleic acid metabolism 58 19,850 4.92 SMU.0561 Putative hydrolase (MutT family)

167 26,976 5.63 SMU.2126 Putative purine-nucleoside phosphorylase
251 29,354 6.20 SMU.0025 Putative DNA repair protein RecO
371 35,738 6.12 SMU.1126 Putative pantothenate kinase

Protein fate 473 40,858 6.28 SMU.0083 Heat shock protein DnaJ (HSP40)
Unknown 44 18,911 5.05 SMU.0984 Hypothetical protein

52 19,746 4.85 SMU.0393 Hypothetical protein
244 29,098 6.42 SMU.0725 Hypothetical protein
257 31,512 6.25 SMU.1428 Hypothetical protein

Only expressed in SM 18 biofilm cells
Transport proteins 63 17,711 6.16 SMU.0917 6-Pyruvoyl tetrahydropterin synthase

448 42,325 6.05 SMU.1571 ABC transporter, ATP-binding protein,
MsmK-like protein

Nucleic acid metabolism 89 20,640 5.22 SMU.0035 Phosphoribosylglycinamide
formyltransferase (GART)

142 24,568 4.74 SMU.1234 Ribose 5-phosphate isomerase A
Unknown 320 32,859.81 6.43 SMU.2099 Conserved hypothetical protein

Spot number refers to 2-DE gels in Fig. 8.
Mr Z relative molecular mass; 2-DE Z two-dimensional gel electrophoresis.
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might allow SM 593 to readily adapt to an experimental
environment that limits bacterial growth.43

The ABC transporter (ATP-binding protein, MsmK-like
protein) and 6-pyruvoyl-tetrahydropterin synthase were
detected only in SM 18 biofilm cells. ABC transporters
mediate the flux of essential substances such as carbohy-
drate, amino acids, proteins, lipids, inorganic ions, and
complex molecules required for biofilm formation by SM
18.44 Sugar transport is also mediated by 6-pyruvoyl-tetra-
hydropterin synthase.45 These two proteins may likely
compensate for protein functions absent in the SM 18 bio-
films. In contrast, other enzymes involved in intermediary
metabolism, including hydrolase (MutT family), purine-
nucleoside phosphorylase, DNA repair protein RecO, puta-
tive pantothenate kinase, glycerol-3-phosphate dehydro-
genase, and histidyl-tRNA synthetase (histidine-tRNA
Table 2 Identification of proteins enhanced in 20-hour SM 593

Protein function Spot no. Mr (Da) pI Gene ID

Enhanced in SM 593 biofilm cells
Cellular processes 162 27,845 6.10 SMU.007
Lipid metabolism 443 37,312 5.74 SMU.032
Nucleic acid metabolism 710 48,896 5.70 SMU.210

Enhanced in SM 18 biofilm cells
Regulatory functions 70 21,853 5.35 SMU.128

183 26,244 6.65 SMU.114

Intermediary metabolism 218 26,752 6.31 SMU.037
409 37,309 6.37 SMU.093

Unknown 279 30,537 6.54 SMU.110

Spot number refers to 2-DE gels in Fig. 8.
Mr Z relative molecular mass; 2-DE Z two-dimensional gel electroph
ligase) were expressed uniquely or at enhanced levels by SM
593.36,42 This may explain why SM 593 formed thicker bio-
films more rapidly. Thus, it was speculated that SM 593 has
the intrinsic ability to produce substances required for
biofilm formation, whereas biofilm formation by SM 18 re-
quires exogenous supplementation.

Response regulator homolog of RumR and ScnR was
elevated 5.3-fold in the SM 18 biofilm than in the SM 593
biofilm. However, biofilm formation capacity of SM 18 was
much lower than that of SM 593, suggesting that response
regulator homolog of RumR and ScnR was not a key regu-
lator of S. mutans biofilm formation. Similarly, it was re-
ported in a previous study that inactivation of scnR in S.
mutans caused no change in biofilm formation.46

Transcription factors are a set of sophisticated proteins
that could promote and regulate diverse metabolic
or SM 18 biofilm cells.

Protein Enhanced (fold)

5 D-alanyl-D-alanine carboxypeptidase 6.5
3 Glycerol-3-phosphate dehydrogenase 6.2
2 Histidyl-tRNA synthetase

(histidine-tRNA ligase)
3.0

2 Transcriptional regulator 5.9
6 Response regulator homolog of

RumR and ScnR
5.3

4 Oxidoreductase 4.7
9 Isopentenyl pyrophosphate isomerase 4.1
8 Conserved hypothetical protein 3.3

oresis.
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processes.47,48 In addition, different transcriptional regu-
lators play different roles in biofilm formation.49 Therefore,
the function of the transcriptional regulator (spot #70), 5.9-
fold upregulated expression in SM 18, in the biofilm for-
mation process is still unclear, and more investigations are
needed to analyze the subgroup of this protein spot #70.

Furthermore, apart from the above-identified proteins,
in accordance with the previous studies,38,50 several
conserved hypothetical proteins with unknown functions
and biological roles were altered or uniquely expressed in
the present study. Therefore, there is abundant room for
further progress in S. mutans biofilm proteome study.

Surprisingly, in contrast to previous studies reporting
that glucosyltransferase and glucan-binding proteins were
upregulated by S. mutans biofilm,38,51,52 the expression of
these two proteins were not elevated in this comparative
proteome analysis study. This discrepancy may attribute to
these two proteins being essential for S. mutans biofilm
formation,53,54 playing the same role in both SM 593 and SM
18 biofilms.

In conclusion, two clinical isolates of S. mutans, SM 593
and SM 18, from caries-active and caries-free individuals,
respectively, exhibited significant differences in their
abilities to form biofilms and in their profiles of protein
expression. These findings may indicate that S. mutans
strains from caries-active individuals are able to form more
robust biofilms compared with those from caries-free in-
dividuals, which contributes to their higher cariogenicity.
Proteins expressed differently by SM 593 and SM 18 present
in biofilms are likely to be associated with biofilm devel-
opment. Undoubtedly, the limitations of this study focus on
S. mutans single species biofilm is obvious. Further research
is required for understanding the physiology of multispecies
biofilms formed by many other caries-related microbial
species.
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