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Abstract Transforming growth factor-b (TGF-b) is implicated
as a tumor suppressor because it eliminates cancer cells from
normal tissues by inhibiting cell growth and inducing apoptosis.
Although p53 tumor suppressor is required for TGF-b-induced
p21WAF1 expression and cell growth inhibition, its role in
TGF-b-induced apoptosis remains unclear. Here, we report that
TAp73a, which is a member of the p53 family, binds to p53-bind-
ing sites in the promoters of proapoptotic Bax and Puma to acti-
vate their transcription, and mediates TGF-b-induced apoptosis
in gastric cancer cells. Our findings reveal a novel role of
TAp73a in the induction of apoptosis by TGF-b in cancer cells.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Transforming growth factor-b (TGF-b) is a multifunctional

cytokine regulating various biological processes, such as tissue

homeostasis and development. In adult tissues, TGF-b nega-

tively controls cell numbers by inducing growth inhibition

and apoptosis. Recent studies have elucidated the mechanism

of TGF-b signal transduction [1]. Following the binding of

TGF-b, the TGF-b receptor complex activates Smad transcrip-

tion factors (Smads). Activated Smads translocate into the nu-

cleus, where they bind to promoter regions of their target genes

to regulate transcription through direct interactions with their

cofactors. The TGF-b signaling pathway is considered to be a

tumor suppressor pathway because most carcinomas lose cel-

lular responsiveness to TGF-b, which eliminates primary tu-

mor cells from normal tissues by inducing apoptosis [2]. This

proapoptotic effect of TGF-b has been demonstrated in vari-

ous cancer cells such as hepatoma, B cell lymphoma, and pros-

tate cancer cells. Although previous studies have shown that

several proapoptotic genes are activated by TGF-b, the activa-
Abbreviations: TGF-b, transforming growth factor-b; ELISA, enzyme-
linked immunosorbent assay; PI, propidium iodide
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tion mechanism of proapoptotic target genes by TGF-b re-

mains unclarified.

p53 is one of the Smad cofactors that associate with Smads

to induce transcription of TGF-b target genes. A recent report

has shown that the N-terminal phosphorylation of p53 by the

Ras/mitogen-activated protein kinase signaling pathway

enables the interaction of p53 with Smads to induce TGF-b-in-

duced expression of the cyclin-dependent kinase inhibitors

p21WAF1 and p15Ink4b [3]. Although these results suggest that

the p53 and TGF-b signaling pathways cooperate to activate

the transcription of TGF-b target genes for cell growth inhibi-

tion, the role of this cooperation is unclear in relation to TGF-

b-induced apoptosis. p73 belongs to the p53 family consisting

of p53, p63, and p73, and shares sequence homology and func-

tional similarity with p53 and p63 [4]. TAp73a is one of the

alternatively spliced C-terminal isoforms of full-length p73

and mediates apoptosis induced by DNA damage and chemo-

therapeutic agents. DNA damage-dependent accumulation

and acetylation of TAp73a increase its ability to activate proa-

poptotic p53AIP1 and induce apoptosis in colon carcinoma

cells [5]. TAp73a is also induced by various chemotherapeutic

agents [6]. Inhibition of TAp73a induction by p73 siRNA leads

to the suppression of chemotherapy-induced apoptosis in hu-

man colon carcinoma cells. Moreover, functional inactivation

of TAp73a through overexpression of the inhibitory isoform

of p73 lacking the transactivation domain (DNp73) is reported

in neuroblastoma [7], and ovarian, cervical, and breast carci-

nomas [8]. These observations suggest that TAp73a has tumor

suppressive functions by inducing apoptosis in cancer cells. We

report here that TAp73a is responsible for TGF-b-induced

apoptosis via the activation of proapoptotic Bax and Puma

in gastric cancer cells.
2. Materials and methods

2.1. Cell culture, transfection, and reagents
SNU-16 cells were cultured in RPMI 1640 medium (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum. Transfec-
tion of cDNA and siRNA was performed using FuGENE 6 (Roche
Applied Science, Indianapolis, IN) and Lipofectamine 2000 (Invitro-
gen), respectively. Human recombinant TGF-b1 was purchased from
R&D Systems (Minneapolis, MN).
2.2. Plasmid construction
Mutagenesis of the p73PF promoter (�2713/+77) [9] was performed

using a QuikChange multi site-directed mutagenesis kit (Stratagene,
La Jolla, CA), and the mutations were confirmed by DNA sequencing.
blished by Elsevier B.V. All rights reserved.
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The primers used for mutagenesis were 5 0-GAGAGAACGAATTTG-
CATCTGACTGGGCAGAGCG-30, 5 0-GGCAAGCCCTGCTTGG-
ATGAAAGCAGCCGTTCCCC-3 0, 5 0-GAGCGACGCGATCCAA-
AAGGCGGATGGAAG GAGGC-30, and 5 0-GCTGCCTTCCATC-
GCGCCGGGCTAAAAAGATGCTAACGCCC-3 0.

2.3. Apoptosis detection
Apoptosis was quantified using the cell death detection enzyme-linked

immunosorbent assay (ELISA) PLUS assay kit (Roche Applied Science)
according to the manufacturer�s instructions. Apoptosis was also quan-
tified using an annexin V-fluorescein isothiocyanate apoptosis detection
kit II (BD Biosciences, San Jose, CA). After staining with fluorescein iso-
thiocyanate-conjugated annexin V and propidium iodide (PI), cells were
analyzed by flow cytometry using a FACS vantage (BD Biosciences).
Data were analyzed using Cell Quest software (BD Biosciences).

2.4. Real-time quantitative RT-PCR analysis
Total RNA was isolated using an RNeasy mini kit (Qiagen, Hilden,

Germany) and treated with DNase I using an RNase-free DNase set
(Qiagen). Equal amounts of total RNA were reverse-transcribed using
an Omniscript reverse transcriptase kit (Qiagen). The first-strand
cDNA was used as a template. The primers for human p53, p63,
p73, Bax, Puma, p21WAF1, and GAPDH were purchased from Applied
Biosystems (Foster City, CA).

2.5. Luciferase assay
Cells were transiently transfected with luciferase reporter constructs

and an internal control pRL-TK vector (Promega, Madison, WI).
Luciferase activity was measured after 20 h using the dual-luciferase re-
porter assay system (Promega) in an LB 960 Microplate Luminometer
Centro (Berthold Technologies, Bad Wildbad, Germany).
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Fig. 1. TGF-b-induced apoptosis in SNU-16 cells. (A) Cells were cultured w
Apoptosis induction was assessed by cell death detection ELISA assays. (B)
thereafter stained with annexin V and PI, and then analyzed by flow cytome
2.6. Western blot analysis and immunoprecipitation
Whole-cell lysates were resolved by SDS–PAGE and transferred to

Immobilon-P membranes (Millipore, Temecula, CA). The membranes
were sequentially probed with an appropriate primary antibody and a
horseradish peroxidase-conjugated secondary antibody (Amersham
Biosciences, Buckinghamshire, UK), and immunocomplexes were de-
tected using ECL Western blotting detection reagents (Amersham Bio-
sciences). The mitochondria-enriched heavy membrane fractions were
prepared as described previously [10] and subjected to SDS–PAGE.
For immunoprecipitation, whole-cell lysates were incubated overnight
with an anti-p73 (H-79) or agarose-conjugated anti-p53 (DO-1) anti-
body (Santa Cruz Biotechnology, Santa Cruz, CA), and the immune
complexes were analyzed by Western blot analysis with an anti-p73a
(C-17) or horseradish peroxidase-conjugated anti-p53 (DO-1) antibody
(Santa Cruz Biotechnology). Anti-p63 (4A4) and anti-DN p63 (N-16)
antibodies were purchased from Santa Cruz Biotechnology; anti-
p73b (GC15) antibody was purchased from Millipore; anti-dNp73
(38C674.2) antibody was purchased from Imgenex (San Diego,
CA); an anti-b-actin (AC-15) antibody was purchased from Sigma–Al-
drich (St. Louis, MO); anti-Bax (#2772), anti-Puma (#4976), and
anti-COX (IV) (#4844) antibodies were purchased from Cell Signal-
ing (Danvers, MA); anti-Bax (6A7) antibody was purchased from
BD Biosciences.

2.7. Chromatin-immunoprecipitation (ChIP) assay
ChIP assay was performed using the chromatin-immunoprecipita-

tion assay kit (Millipore) according to manufacturer�s instructions.
Anti-p73 (H-79) antibody (Santa Cruz Biotechnology) and normal
rabbit IgG were used for immunoprecipitation. The promoter-specific
primer sequences were as follows: Bax (forward) 5 0-TAATCC-
CAGCGCTTTGGAAG-30, Bax (reverse) 5 0-TGCAGAGACCTGG-
ATCTAGC-3 0, Puma (forward) 5 0-TTGCGAGACTGTGGCCTTG-
       24       48 h

ith (filled bars) or without (open bars) TGF-b1 for the indicated times.
Cells were cultured with or without TGF-b1 for 24 h. The cells were
try. VC, viable cell population; EAC, early apoptotic cell population.
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TGTC-30, Puma (reverse) 5 0-GTCGGACACACACACTGACTGG-
GA-3 0, GAPDH (forward) 5 0-TACTAGCGGTTTTACGGGCG-3 0,
GAPDH (reverse) 5 0-TCGAACAGGAGGAGCAGAGAGCGA-3 0.
3. Results

3.1. TGF-b-induced apoptosis in SNU-16 cells

Although most human gastric cancer cell lines lose respon-

siveness to TGF-b to undergo apoptosis, the SNU-16 cell line

is highly responsive [11]. Cell death detection ELISA assays

showed that apoptosis was induced after 24 h and increased

during the 48 h after TGF-b stimulation (Fig. 1A). To quantify

the apoptotic cell fraction, we stained the cells with annexin V

and PI and analyzed them by flow cytometry. The percentage

of early apoptotic cells (EAC; annexin V+, PI�) increased dra-

matically from 3.48% to 28.3% following TGF-b stimulation

(Fig. 1B).

3.2. TAp73a plays an essential role in TGF-b-induced apoptosis

To assess the role of p53 family members in TGF-b-induced

apoptosis, we sorted the unstimulated viable cell (VC; annexin

V�, PI�) and TGF-b-stimulated EAC populations using a flow

cytometer (Fig. 1B) and analyzed the mRNA levels of p53,

p63, and p73 by real-time quantitative RT-PCR. The p73

mRNA level in the EAC population increased by 3.8-fold,

whereas those of p53 and p63 hardly increased (Fig. 2A).

We then examined whether the transcriptional activity of the

p73 promoter is upregulated by TGF-b stimulation. SNU-16

cells were transfected with a luciferase reporter construct under

the control of the p73 promoter or p21WAF1 promoter, which is

one of the target genes of TGF-b. Luciferase assays were per-

formed in the presence or absence of TGF-b. The transcrip-

tional activity of the p73 promoter was greatly increased by

TGF-b, similar to that of the p21WAF1 promoter (Fig. 2B).

The protein levels of p73 isoforms were examined in SNU-16

cells following TGF-b stimulation. The expression of TAp73a,

but not of DNp73, was increased by TGF-b stimulation (Fig.
1
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Fig. 2. p73 is induced in the EAC population. (A) Cells were either left u
populations were sorted by flow cytometry, and the mRNA levels of p53, p63
were transfected with the p73 (p73) or p21WAF1 (p21) promoter reporter constr
bars). Relative luciferase activity was measured in cell lysates after 20 h. (C)
cell lysates were resolved by SDS–PAGE and analyzed by Western blot analys
anti-p53 (DO-1), anti-p63 (4A4), anti-DN p63 (N-16), or anti-b-actin (AC-15)
siRNA (Santa Cruz Biotechnology) and were then left unstimulated or stim
whole-cell lysates. Immune complexes were resolved by SDS–PAGE and anal
cell death detection ELISA assays.
2C); TAp73b was hardly detected. The expression levels of

p53, TAp63, and DNp63 were low and not increased by

TGF-b stimulation. Next, SNU-16 cells were transfected with

control siRNA or p73 siRNA, and were then either left unstim-

ulated or stimulated with TGF-b. Transfection with p73 siR-

NA inhibited the induction of TAp73a but not that of basal

p53 expression (Fig. 2D), and led to a significant decrease in

TGF-b-induced apoptosis (Fig. 2E), indicating that TGF-b-in-

duced TAp73a mediates apoptosis.

3.3. TAp73a-induced Bax and Puma mediate apoptosis induced

by TGF-b
We analyzed the induction of proapoptotic Bax and Puma

whose promoters have p53-binding sites in the VC and EAC

populations by real-time quantitative RT-PCR. The mRNA

levels of Bax and Puma in the EAC population significantly in-

creased, as well as that of p21WAF1 (by 3.0-, 2.6-, and 4.0-fold,

respectively) (Fig. 3A). Next, we examined whether TAp73a
activates the Bax and Puma promoters. SNU-16 cells were

transfected with a luciferase reporter construct under the con-

trol of the Bax or Puma promoter, with or without the

TAp73a expression plasmid. TAp73a markedly increased the

transcriptional activities of the Bax and Puma promoters by

4.5- and 4.1-fold, respectively. In contrast, the activities of

the mutant Bax and Puma promoters, both of which lack

the p53-binding sites, were not stimulated by TAp73a (Fig.

3B). To confirm direct binding of TAp73a to the Bax and

Puma promoters, we performed ChIP assay. As shown in

Fig. 3C, TGF-b stimulation enhanced TAp73a binding to both

the Bax and Puma promoters in SNU-16 cells.

The protein levels of both Bax and Puma were significantly

increased in the EAC population (Fig. 3D). We performed

Western blot analysis on the mitochondria-enriched heavy

membrane fraction using an anti-Bax 6A7 antibody that de-

tects active Bax. Bax was found when the cells were stimulated

with TGF-b (Fig. 3E). Following apoptotic stimuli, Puma pro-

motes conformational change and mitochondrial localization

of Bax. We investigated the effect of siRNA-mediated Puma
TGF-β:   -   +    +
Control siRNA:   +   +    - 

p73 siRNA:   -    -    +

IP: anti-p73

IP: anti-p53

Lysate

-TAp73α

-p53

-β-actin

+

-β-actin

-p53

-ΔNp63

-TAp63

-TAp73α

-TAp73β

-ΔNp73

Ap
op

to
si

s 
(A

bs
40

5-
49

0n
m

)

0

0.5

1.0

1.5

2.0

2.5

3.0

TGF-β:    -       +       +
Control siRNA:    +       +       -

p73 siRNA:    -        -       + 

ED

nstimulated or stimulated with TGF-b1 for 24 h. The VC and EAC
, and p73 were determined by real-time quantitative RT-PCR. (B) Cells
uct and left unstimulated (open bars) or stimulated with TGF-b1 (filled

Cells were either left unstimulated or stimulated with TGF-b1. Whole-
is with an anti-p73a (C-17), anti-p73b (GC15), anti-dNp73 (38C674.2),
antibody. (D and E) Cells were transfected with control siRNA or p73

ulated with TGF-b1. (D) p73 and p53 were immunoprecipitated from
yzed by Western blot analysis. (E) Apoptosis induction was assessed by



Bax     Puma     p21       p53
1

10

Fo
ld

 C
ha

ng
e 

of
 m

R
N

A 
Le

ve
l

   
 (E

ar
ly

 A
po

pt
ot

ic
/V

ia
bl

e)

R
el

at
iv

e 
Lu

ci
fe

ra
se

 A
ct

iv
ity

   
   

   
(A

rb
itr

ar
y 

U
ni

ts
)

Bax        mutBax       Puma     mutPuma

0

50

100

150

200

250

300

350

TAp73α:      -   +           -    +           -   +           -   +

-TAp73αIP

Input            IgG        p73

-      +          -     +     -     +   : TGF-β
-Bax
-Puma
-GAPDH

-TAp73α
-TAp73β

IB

VC  EAC

-Puma

-Bax

-β-actin

Bax-

COX(IV)-

TGF-β:    -    +

A

C

D E

B
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silencing on TGF-b-induced apoptosis. Puma siRNA, but not

control siRNA, suppressed TGF-b-induced Puma expression
(Fig. 4A) and apoptosis (Fig. 4B). These results demonstrate

that TGF-b-induced apoptosis in SNU-16 cells occurs through

the mitochondrial pathway.
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3.4. E2F1 is not responsible for activation of p73 following TGF-

b stimulation

The E2F1 transcription factor regulates the expression of

various genes involved in DNA synthesis, cell proliferation,

and apoptosis. The p73PF promoter (�2713/+77) has six con-

sensus E2F-binding sites [9]. Inactivation of the six E2F-bind-

ing sites by mutations (the mutant p73 promoter) dramatically

decreased the transcriptional activation of the promoter by

E2F1 in the SAOS2 osteosarcoma cell line (data not shown).

SNU-16 cells were transfected with a luciferase reporter con-

struct under the control of the p73PF promoter or the mutant

p73PF promoter. Luciferase assays were performed in the pres-

ence or absence of TGF-b. The transcriptional activities of

both promoters were similarly increased in the presence of

TGF-b (Fig. 5), suggesting that E2F1 does not mediate p73

induction by TGF-b in SNU-16 cells.
4. Discussion

The apoptotic and cytostatic functions of TGF-b suggest its

role in tumor suppression. Loss of responsiveness to TGF-b
leads to hyperproliferative disorders and cancer progression

in vivo. Here, we show that TAp73a is an essential mediator

of TGF-b-induced apoptosis in gastric cancer cells and that

both Bax and Puma are targeted by TGF-b-induced TAp73a.

It has been reported that wild-type p73 is frequently overex-

pressed in gastric adenocarcinoma [12]. However, it was demon-

strated that not only TAp73 but also DNp73 is overexpressed in

more than 60% of primary adenocarcinomas of the stomach and

esophagus, and that DNp73 strongly inhibits the transcriptional

and apoptotic activities of TAp73a and TAp73b [13]. Recent

studies have shown that the frequency of the CpG island meth-

ylation of the p73 promoter, which causes loss of p73 expression,

is specifically high in Epstein–Barr virus-associated gastric car-

cinoma [14,15]. Moreover, TAp73a is an important mediator of

apoptosis in response to anticancer chemotherapeutic agents [6].

TAp73a expression is induced by various chemotherapeutic

agents, such as camptothecin, etoposide, and cisplatinum, which

induce apoptosis in cancer cells. These observations suggest that

TAp73a acts as a tumor suppressor in vivo. Here, we demon-

strated that TAp73a was responsible for the tumor suppressive

proapoptotic function of TGF-b in gastric cancer cells. Since

p73 is rarely mutated in cancer unlike p53, therapeutic modula-

tion of TAp73a expression might be used to target various can-

cers with p53 mutations.

Several proapoptotic genes, including the TGF-b-inducible

early-response gene (TIEG), death-associated protein kinase

(DAPK), Src homology 2 domain-containing 5 0 inositol phospha-

tase (SHIP), and GADD45b have been shown to be activated

by TGF-b in the induction of apoptosis [1]. Although the pro-

moters of DAPK, SHIP and GADD45b are activated by

Smads, the consensus Smad-binding site is only found in the

DAPK promoter. We could not find any consensus Smad-

binding sites in the p73, Bax, and Puma promoters. Although

overexpressed E2F-1 directly binds to the p73 promoter and

increases its transcriptional activity to promote apoptosis in

an osteosarcoma cell line [16,17], our present results showed

that E2F1 was not involved in the activation of the p73 pro-

moter by TGF-b in gastric cancer cells (Fig. 5). Further studies

will be required to ascertain the activation mechanism of proa-

poptotic target genes by TGF-b.
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