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Eukaryotic genomes are organized hierarchically into chromatin structures by histones. Despite
extensive research for over 30 years, not only the fundamental structure of the 30-nm chromatin
fiber is being debated, but the actual existence of such fiber remains hotly contested. In this review,
we focus on the most recent progress in elucidating the structure of the 30-nm fiber upon in vitro
reconstitution, and its possible organization inside the nucleus. In addition, we discuss the roles of
linker histone H1 as well as the importance of specific nucleosome-nucleosome interactions in the

formation of the 30-nm fiber. Finally, we discuss the involvement of structural variations and
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epigenetic mechanisms available for the regulation of this chromatin form.
© 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

In eukaryotic cells, the genomic DNA must be tightly packaged
into chromatin to fit inside a nucleus that has a diameter of only a
few microns. During the last three decades, the structure of chro-
matin has been extensively studied. Early studies had already
revealed that the basic repeating structural unit of chromatin is
the nucleosome, and it is now well established that it is comprised
of the core particle and linker DNA [1]. The nucleosome core parti-
cle (NCP) consists of 147 base pairs (bp) of DNA wrapped around
an octamer of histones, with two copies of each H2A, H2B, H3
and H4, and about 1.7 superhelical turns arranged in a left-handed
manner [2]. The nucleosome cores are connected by linker DNA,
which typically ranges from 10 to 90 bp in length, to form a
“beads-on-a-string” nucleosomal array with a diameter of 11 nm.
The nucleosomal array represents the first level of DNA com-
paction [3]. Linker histones (H1 and H5) bind to the DNA linker
regions in close proximity to the sites of DNA entry and exit to
the NCP, and organize the nucleosomal arrays into a more con-
densed 30-nm chromatin fiber, regarded as the second level of
DNA compaction [4,5]. The structure of the NCP has been deter-
mined by X-ray crystallography at 1.9-2.8 A resolution [2,6].
However, despite considerable efforts during the last three dec-
ades, the structure of the 30-nm fibers, together with the role of
linker histones in its formation, still remains to be resolved [3,7].
Whilst biochemical and structural data suggest that the folding

E-mail addresses: liguohong@sun5.ibp.ac.cn (G. Li), zhup@ibp.ac.cn (P. Zhu)

http://dx.doi.org/10.1016/j.febslet.2015.04.023

of nucleosome arrays is mainly driven by nucleosome-nucleosome
interactions, the precise path of the linker DNA within the fiber is
still incompletely understood. Since a high-resolution crystal
structure of the chromatosome (NCP with linker DNA and linker
histone) is still lacking, the precise location of the linker histone
in the chromatosome remains under debate [8,9].

The organization of genomic DNA into a chromatin structure
plays a critical role in the regulation of gene transcription and all
other biological processes involving DNA, such as DNA replication,
repair and recombination. The 30-nm fiber has been shown to be
the first level of transcriptionally dormant chromatin by in vitro
experiments [10], thus one critical function of the 30-nm chro-
matin fiber in such processes might be to regulate the accessibility
of trans-acting factors via dynamic transitions between the more
compact 30-nm chromatin fiber and more accessible nucleosomal
arrays [3,10]. Understanding the structure of the 30-nm chromatin
fiber is of great importance to illuminate in detail the functions and
molecular mechanisms of chromatin dynamics in epigenetic regu-
lation during gene expression and other DNA-related processes [3].
However, essential details regarding the formation and regulation
of the 30-nm chromatin fiber are less well understood. In this
review, we focus on the most recent progress in elucidating the
structure of the 30-nm chromatin fiber reconstituted in vitro as
well as its organization within the nucleus. In addition, we discuss
the roles of linker histone H1 and nucleosome-nucleosome interac-
tions in the formation of 30-nm chromatin. Lastly, we will summa-
rize our current knowledge concerning the structural variations
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and dynamics of the 30-nm chromatin fiber in the epigenetic reg-
ulation of eukaryotic gene expression.

2. Structure of the 30-nm chromatin fiber: solenoid vs. zig-zag

Under physiological conditions, nucleosomal arrays have an
inherent propensity to coil into condensed chromatin fibers with
a diameter of ~30 nm. Based on the early studies of native chro-
matin in nuclei or isolated from nuclei by various biochemical
and biophysical studies, a number of models, including the sole-
noid [11,12], twisted-ribbon [13,14], cross-linker [15,16], and
superbead [17] models, had initially been proposed for the three-
dimensional organization of nucleosomes into 30-nm chromatin
fibers. The study of chromatin isolated from nuclei has advantages
in that it presumably represents the “native” state. However,
heterogeneous properties of nucleosomes in native chromatin with
different DNA sequences, variable linker DNA lengths and different
histone modifications/compositions make it difficult to define the
detailed structure of chromatin fibers and to trace the paths of
nucleosomal arrays. In an attempt to reduce the effect of these
variables, scientists have developed a well-defined in vitro recon-
stituted nucleosomal array system that incorporates a strong
nucleosome positioning sequence into the DNA. The positioning
sequence is a 208-bp DNA fragment isolated from a Lytechinus var-
iegatus 5S rRNA gene [18]. Using this system, numerous studies
have shown that the reconstituted nucleosome arrays in the
absence of linker histones can reversibly fold into secondary chro-
matin structures that resemble structures formed by native chro-
matin that lacks H1 [19]. Moreover, nucleosomal arrays
reconstituted with H1 behave similarly to native chromatin, fold-
ing in the presence of monovalent or multivalent ions in vitro
[20]. Thus, the reconstituted system reflects the ability of native
chromatin to form primary, secondary and tertiary chromatin
structures.

Recent development of the synthetic 601 family of nucleosome
positioning sequences [21] has led to the construction of arrays
with extremely well-defined nucleosome positions [22]. This tech-
nology has greatly improved the reproducibility and uniformity for
structural analysis, and allowed for a dissection of the contribution
of different nucleosome repeat lengths (NRLs). Based on the mea-
surements of these reconstituted chromatin fibers in vitro by elec-
tron microscopy and analytical ultracentrifugation, two basic
classes of structural models, namely the one-start solenoid model
and the two-start cross-linker model, have been proposed. In these
models, nucleosomes are either arranged linearly in a one-start
solenoid-type helix with a bent linker DNA, or they zig-zag back
and forth in a two-start stack of nucleosomes connected by a rela-
tively straight linker DNA [22,23]. Dorigo et al. studied the recon-
stituted oligonucleosome arrays containing recombinant core
histones using NRLs of 167, 177 and 208 bp, in either presence or
absence of linker histone H1. EM photographs of these reconsti-
tutes showed two-start flat ribbons with about 5 nucleosomes
per 11 nm in length [22], rather than the helical arrangement with
about 6-7 nucleosomes per 11 in nm length, as observed previ-
ously in isolated native chromatin [11]. In a subsequent landmark
study, Schalch et al. solved the crystal structure of tetranucleosome
with NRL of 167 bp in the absence of linker histones to a resolution
of 9 A, and revealed a structure with nucleosomes stacked perpen-
dicularly to its axis [24]. Although the resolution was relatively
low, the overall structure clearly showed two rows of two nucleo-
some stacks with the three-linker DNA segments criss-crossing
between them, thus supporting the zig-zag (cross-linker) model
of the 30-nm fiber. Importantly, this zig-zag conformation is in
agreement with the in vitro crosslinking studies performed in solu-
tion with longer nucleosomal arrays (12 nucleosome repeats)
[22,25] and in vivo analysis of chromatin fragmentation patterns

generated by ionizing radiation [26]. Their proposed idealized
model is a twisted ribbon with a diameter of about 25 nm and a
compaction density of 5-6 nucleosomes per 11 nm.

In another recent study, Rhodes and colleagues analyzed the
structures of long and regular chromatin fibers reconstituted with
discrete NRL (from 177 to 237 bp, at 10 bp-intervals) by EM and
cryo-EM in the presence of linker histones [23]. Although the
detailed structure could not be resolved, the dimensions measured
allowed the author to propose a one-start interdigitated solenoid
structure with a fiber diameter of 30 nm [23]. Rhodes and col-
leagues found that both linker histone and NRL determine the
structure of chromatin fiber [27]. In the absence of linker histone,
the 167-bp NRL array displayed a highly ordered “ladder”-like
structure consisting of stacked nucleosomes in two-start helix
arrangement, which is reminiscent of that previously observed by
Richmond and colleagues of the 167-bp NRL nucleosome array
[22]. In addition, Robinson et al. also showed that their reconsti-
tutes comprise two additional classes of structures; one with repeat
lengths of up to 207 bp and a diameter of 33 nm, the other with
repeat lengths of 217,227 and 237 bp and a diameter of 44 nm [23].

Thus, despite three decades of intense research, the precise
structure of the 30-nm chromatin fiber remains elusive, with the
consensus viewpoint being that there is a see-sawing back and
forth between a one-start solenoid and a two-start zig-zag archi-
tecture. In the above studies, the arrangements of nucleosomes
and linker DNA within the 30-nm chromatin fiber have not been
resolved. Most recently, we determined the 3D cryo-EM structure
of the 30-nm chromatin fiber at a resolution of about 11 A. The
fibers were reconstituted in vitro from arrays of 12 nucleosomes
with linker histone H1 (Fig. 1, panel A). Our structures of 30-nm
fibers provide the most detailed view of the intrinsic structure of
a linker histone-containing chromatin fiber, and our structures
clearly reveal a histone H1-dependent, left-handed twist of the
repeating tetranucleosomal structural units [28] (Fig. 1, panel B
and C). The structures constitute the largest fragments of chro-
matin fibers revealed at this resolution, allowing a clear definition
of the spatial location of all individual nucleosomes and tracing the
path of linker DNA (Fig. 1, panel A). Different NRLs (177-bp or
187-bp 601 DNA sequence) did not affect the overall architecture
of 30-nm fibers but changed the fiber dimension, which is consis-
tent with the fundamental prediction of a basic zig-zag two-start
helix model [14,16,22,24]. Interestingly, a tetranucleosomal repet-
itive unit was observed in the cryo-EM structures of the 30-nm
chromatin fiber (Fig. 1, panel B and C; Fig. 2, panel A and B). The
architecture of tetranucleosomal unit appears very similar to the
resolved X-ray structure of a tetranucleosome with the 167-bp
NRL in the absence of linker histone [24] (Fig. 2, panel C and D).
The results indicate that the presence of H1 and the length change
of linker DNA by 10 bp do not affect the interactions within the
nucleosome stack, but affects the separation and rotation between
the two stacks. In addition, the 3D cryo-EM structure also shows
that the packing density of the left-handed helical 30-nm fiber is
about 6.1-6.4 nucleosomes per 11-nm turn, which agrees well
with many other studies [5], but which is lower than the density
of the more compacted fibers (10-12 nucleosomes per 11 nm)
assembled under conditions that favor more charge neutralization
[23]. In principle, a higher packing density could be accommodated
by a concertina-like motion that would reduce the vertical separa-
tion between successive turns of the fiber [29]. Although our 3D
cryo-EM structures for the reconstituted 30 nm chromatin fiber
with NRLs of 177- and 187-bp show a left-handed twist of the
repeating tetra-nucleosomal structural units with a two-start
“Zig-Zag” configuration, other forms of chromatin structures may
exist in different conditions, for example, the one-start
“Solenoid” structure in the presence of H5 and magnesium with
longer NRLs as discussed above [23].
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Fig. 1. 3D structure of 30-nm chromatin fiber. (A) The overall structure of 30-nm chromatin fibers reconstituted on 12 x 187 bp DNA arrays viewed from two angles. (B) The
three tetranucleosomal structural units of the 30-nm chromatin fibers reconstituted on 12 x 187 bp DNA arrays are highlighted in different colors as shown in A. (C) A
schematic representation of the cryo-EM structure of a 30-nm chromatin fiber as shown in B. (D) A pseudo-atomic model built from the cryo-EM structure of the dodeca-
nucleosomal 30-nm fiber. (E) A schematic representation of the cryo-EM structure of the 30-nm chromatin fibers as shown in D. Adapted from [28].

Fig. 2. Arrangement of nucleosomes within a tetranucleosomal unit. (A) The segmented density map (grey) for the tetranucleosomal unit in the 30-nm chromatin fibers
reconstituted on 12 x 187 bp DNA arrays shown with the atomic structure of DNA from a docked mono-nucleosome crystal structure (PDB ID: 1AOI). Different axes are
highlighted by different colors. (B) A schematic representation of the cryo-EM structure for the tetranucleosomal unit as shown in A. (C) A comparison of the 3D cryo-EM map
(grey) with the X-ray structure (PDB ID: 1ZBB, pink) of the tetranucleosome [24]. (D) The strong density where the adjacent H2A-H2B dimer meets is magnified and
highlighted in the interface between the nucleosome cores within each stack. Adapted from [28].

3. The role of H1 in setting up the 30-nm chromatin fiber
structure

In most eukaryotes, a family of histone proteins named linker
histones (also referred to as H1 and H5), can be found in highly
condensed chromatin, with a stoichiometry of approximately 1:1
of linker histone:nucleosome. Linker histones are typically ~200
amino acids (aa) in length, and are of tripartite organization.
Here, a ~70-80 aa structured globular winged helix domain
(WHD) [30] is flanked by a short, disordered N- terminal tail and
a ~100 aa long, apparently unstructured C-terminal tails that is
highly enriched in lysines [31,32]. Considerable evidence has
shown that the linker histones are located at the entry/exit point
of the linker DNA in the chromatosome [33,34]. Also, the globular
domain of H1/H5 (gH1/gH5) was shown to specifically bind to the
cruciform-like structural organization of DNA at the entry and exit
site protruding from the nucleosome [33-35]. In addition, it has
been shown that the correct positioning of the C-terminal tail of

H1 is required for both its binding to chromatin in vivo [36], as well
as for the formation of a stem structure of linker DNA in vitro
[8,35,37]. However, the N-terminal region of H1 has been shown
not necessary for nucleosome binding; furthermore, the precise
binding sites of the N-terminal region are not yet clearly estab-
lished [33,35].

Histone H1 plays an important role in the formation and stabi-
lization of the 30-nm chromatin fiber [7]. However, both the exact
position of the linker histone H1/H5 on nucleosome within 30-nm
fiber and its precise function during the formation of 30-nm fiber
remains to be determined structurally. Binding of a single linker
histone to nucleosomes protects an additional 20 bp of linker
DNA from micrococcal nuclease digestion [38]. The putative loca-
tion of H1 (or GH1) in the chromatosome have been extensively
discussed elsewhere [39-41]. Two classical models, one symmetri-
cal and one asymmetrical binding model, have been proposed for
the binding of H1 to the nucleosome, as well as for the location
of gH1/gH5 in the chromatosome. Based on micrococcal nuclease
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digestion and DNase I footprinting experiments, a symmetrical
model was proposed, in which gH1/gH5 is centrally located on
the dyad-axis of the nucleosome, probably interacting with both
entry-exit linker DNAs at the dyad, thereby protecting them sym-
metrically (about 10 bp at each end) from further digestion [42,43].
However, more recent studies on a sea urchin 5S rDNA sequence
[44,45] as well as on the thyroid hormone response element [46]
have shown that chromatosome protection was asymmetric, with
the additional 20 bp all at one end of the core particle being
protected.

Interestingly, in our recently published cryo-EM structure of the
dodeca-nucleosomal 30-nm fiber, the twelve H1 molecules are
clearly visible, exhibiting a proper 1:1 stoichiometric association
with the nucleosome cores (Fig. 3, panel A). The globular domain
of histone H1 is shown to be internally located, relative to the axis
of the 30-nm chromatin fiber (Fig. 3, panel A), which is consistent
with previous observations [47]. In addition, our cryo-EM structure
visualized for the first time the location of H1, and thus elucidated
its precise role in the formation of the 30-nm fiber. An apparent
off-axis asymmetric binding of the globular domain of H1 in the
chromatosome can be clearly seen in the cryo-EM structure
(Fig. 3, panel B). This asymmetric location of H1 in the chromato-
some thus confers polarity on the symmetric core nucleosome. In
such a way, successive nucleosomes in the same stack have oppo-
site polarities within the tetranucleosomal unit, which allows the
self-association of the globular domain of the linker histone H1
between tetranucleosomal units in the fiber (Fig. 3, panel A;
Fig. 4, panel A). H1-H1 self-associations had been reported earlier

to play an important role in the organization and stabilization of
the 30-nm chromatin fiber [48,49]. The self-association of the lin-
ker histone H1 between tetranucleosomal units thereby can stabi-
lize coherent stacking in the tetranucleosome unit, and thus impart
an additional twist between each tetranucleosomal structural unit,
ultimately resulting in the formation of the final helical structure
of the 30-nm fiber (Fig. 4, panel A).

The structure of gH5 was solved earlier at 2.5 A resolution by
using multi-wavelength anomalous diffraction on crystals of the
selenomethionyl protein [30]. However, despite several decades
of effort, the structural basis of how H1 interacts with the nucleo-
some remains elusive. Recently, using solution nuclear magnetic
resonance spectroscopy and other biophysical methods, Bai and
colleagues have shown that the globular domain of Drosophila
H1 forms a bridge between the nucleosome core and one 10-base
pair linker DNA in an asymmetric manner. Its o3 helix faces the
nucleosomal DNA near the dyad axis, which confirms earlier bio-
chemical and biophysical evidence [44,45]. Interestingly, it was
also shown that two short regions in the C-terminal tail of H1
and the C-terminal tail of one of the two H2A histones are also
involved in the formation of the H1-nucleosome complex, which
is consistent with previous observations [9,50]. Based on X-ray
and NMR structures of gH5 and gH1, mutation analysis demon-
strated that the globular domain of the linker histones contains
two DNA -binding sites [51]. However, in our cryo-EM structure
of the 30-nm fiber, the H1 directly interacts with both the dyad
and the entering/exiting DNAs in a three-contact mode (Fig. 3,
panel C), which is in agreement with previous suggestion [52]. In

C-terminal

N-terminal

Fig. 3. Asymmetric location of histone H1 in the chromatosome and the 30-nm fiber. (A) The H1 linker histones, which are highlighted by different colors, locate inside 30-nm
chromatin fibers. (B) Asymmetric location of histone H1 in the chromatosome. The putative histone H1 is highlighted in green. (C) Interaction between histone H1 and
nucleosome core. The areas of three-contact interaction between H1 and the nucleosomal core are indicated with red dots. The presumptive H1 densities are magnified and

fitted with the secondary structures of gH5. Adapted from [28].
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Fig. 4. Interactions between the tetranucleosomal units within the 30 nm fibers. (A) The asymmetric H1-H1 interactions between the tetranucleosomal units within 30 nm
fibers. The locations of H1 are highlighted. (B) Interactions between the N-terminus of H4 (Yellow) and the acidic patch of adjacent H2A-H2B dimer (Red) at the interface

between tetranucleosomal units. Adapted from [28].

addition, our structure also revealed that the extended N- and
C-terminal domains of the linker histone H1 can interact with each
of the linker DNAs (Fig. 3, panel C), which would be consistent with
previous observations [37,42].

4. Nucleosome-nucleosome interactions within the 30-nm fiber

Nucleosome-nucleosome interactions have been observed as
crystal packings in the structures of nucleosome cores [2] and his-
tone octamers [53]. Among them, the interactions between the
N-terminus of the H4 and the H2A-H2B acidic patch of a neighbor-
ing nucleosome [2] has been demonstrated to be directly relevant
to the formation of chromatin fibers [22,54], which was not found,
however, within the tetranucleosome crystal [24]. Instead, an
interaction between the H2B-helix a1/aC and the H2A-helix o2
of neighboring octamers in each dinucleosomal stack was observed
within the tetranucleosome crystal structure [24]. Because it is dif-
ficult to build a fiber model by only using this interface due to the
steric clashes, an idealized model had to be constructed by using
the proven H4 tail-acidic patch interaction [24]. Interestingly, our
3D cryo-EM structure reveals that both interaction modes play
important roles in the folding of chromatin fiber, which is in a good
agreement with previous predictions [2,24,55]. However, in con-
trast to previous assumptions of a sequential arrangement of
nucleosomes with uniform orientations, we observed alternating
internucleosomal contacts between spatially adjacent nucleo-
somes in our 3D cryo-EM structure of 30-nm fiber. This observa-
tion is supported by previous the dinucleosomal repeat patterns
in the DNase I digestion [15,56]. In contrast to earlier predictions
[2], the tetranucleosome emerges now as the main constitutive
repeating unit of the fiber, which allows contact between the
exposed surfaces of two H2A-H2B core histone dimers, similar to
that observed previously in the tetranucleosome crystal structure
(Fig. 2, panel D). However, no interaction was observed between
the H4N-terminus and the acidic patch of the neighboring nucleo-
somes within the tetranucleosomal unit. Instead, between the
tetranucleosomal units, there are contacts between the N-terminal
tail of H4, primarily involving residue Arginine 23 and the acidic
patches of the H2A-H2B dimer on the faces of the opposite nucle-
osomes in their respective adjacent units (Fig. 4, panel B), which
also account for the twist between the tetranucleosomal units.
To this end, it is of great interest to note that an ‘arginine-anchor’
binding to the H2A-H2B acidic patch, which plays an important
role in the nucleosomal recognition, has been observed in all chro-
matin factor-NCP crystal structures [57]. In comparison to the clo-
sely stacked nucleosomes within the tetranucleosomal structural

unit, the apparent gaps present between the tetranucleosomal
units may provide a platform for histone modifications or other
architectural proteins, allowing the modulation of the inter-
nucleosomal surface interactions required for the regulation of
the 30-nm fiber structure. Our results also fully agree with recent
cryo-electron tomography studies carried out in situ on chromatin
fibers of chicken erythrocyte nuclei [58]. Using a chromatin model
system containing up to four nucleosomes, Shogren-Knaak and col-
league found that the ligated tetranucleosomal arrays undergo
intra-array compaction in a histone H4 tail-independent manner
[59], suggesting that the interaction between H4 tail and the acidic
patch of adjacent nucleosomes is not responsible for the com-
paction of the tetranucleosomal unit. Interestingly, the cryo-EM
structure of histone octamer helical tubes suggested that an inter-
nucleosomal twofold symmetric four-helix bundle, formed
between pairs of H2B-a3 and H2B-aC helices of neighboring octa-
mers, stabilizes the chromatin fiber [60]. However, the H2B-o3/aC
internucleosomal four-helix bundle was not observed in our cryo-
EM map of reconstituted chromatin fiber.

5. The polymorphisms of the 30-nm chromatin fiber and its
epigenetic regulation

Although the precise details remain unknown, it is becoming
clear that chromatin is of polymorphic nature, and that every state
depends on both internal and external factors [3]. Deciphering the
factors involved in chromatin folding is not only important for the
understanding of DNA compaction, but also for the understanding
of the mechanisms that regulate the accessibility to the primary
DNA sequence of regulatory factors and complexes that modulate
chromatin metabolism, such as DNA transcription, replication,
repair and recombination [3,61].

The length of the linker DNA, as expressed in terms of the nucle-
osome repeat length (NRL), is one of the important internal factors
known to affect the structure of the chromatin fiber [61]. In the
native chromatin, the NRL is known to be highly variable, and
the question arises as to what happens to the chromatin fiber when
NRLs of differing sizes are assembled rather than being of constant
length, as used in previous models. Crystal structures of nucleo-
some core particles indicate that the nucleosome core particle is
very rigid, and that the ends of the 147 bp DNA are well defined.
Therefore, an addition of 1 bp to the linker DNA changes the orien-
tation of a nucleosome with respect to its adjacent neighbors by
approximately 36°. Our knowledge as to whether NRLs of the fibers
are discrete units or whether they change continuously is limited.
This is in part due to the fact that micrococcal nuclease (MNase)



2898 G. Li, P. Zhu/FEBS Letters 589 (2015) 2893-2904

digests rarely provide a resolution higher than +4 bp. Genomic
studies of the preferred internucleosome separation lengths in sev-
eral organisms have shown some partial preference for multiples
of 10-10.6 bp, but also some pronounced intermediate lengths
between 200 and 210 bp [62,63]. The NRL variability poses a major
methodological problem, as it is extremely difficult to obtain crys-
tallographic or high-resolution images on the basis of such hetero-
geneous chromatin. To circumvent the NRL variability problem,
and to gain highly detailed structural information, computational
efforts in modeling the structure of compact chromatin fibers have
focused primarily on the role of electrostatic internucleosomal
interactions, as well as the length and local geometry of linker
DNA [64-66]. These studies showed that the twist-angle of the
nucleosomes along the DNA plays an important role in determin-
ing the straight-linker superhelical structure. In particular, the
nucleosomes prefer to be oriented with their symmetry axes paral-
lel to the fiber axis for repeat lengths that are integer multiples of
the DNA pitch, and with perpendicular axes for half-integer multi-
ples of the pitch [66]. Extended structures are formed for repeat
lengths close to an integer multiple of pitch, with much shorter
fibers of near half-integer multiples [66]. In addition, some linker
DNA lengths result in a collapse of the superhelix into a planar
structure, but such structures would involve an overlap of the
nucleosomes themselves and are therefore unphysical. In this case,
the ground-state structure requires deformation of the linker DNA
to reposition the nucleosomes so as to avoid steric overlap [66].
Most recently, the effect of a wide range of intrafiber NRL varia-
tions in chromatin fiber structure was explored through the
Monte Carlo (MC) simulations of the mesoscale chromatin model
[67]. The authors found a remarkable effect of non-uniform NRLs
in the organization and compactions of chromatin fiber, with a
wide range of different architectures emerging (highly bent narrow
forms, canonical and irregular zig-zag fibers, as well as polymor-
phic conformations), depending on the NRLs mixed together [67].
In this study, three different simulations were performed, and they
found that non-uniform short linker DNA fibers exhibited a com-
pact conformation, with a large bend along the fiber axis. Using
medium- to long-range linker DNA and moderate NRL variation,
heteromorphic conformations with both straight (zig-zag type)
and bent linker DNAs were observed, which was consistent with
the previous finding from EM-assisted nucleosome interaction cap-
ture (EMANIC) analysis that suggested the two-start zig-zag con-
formation and one-start solenoid structure with bent linker DNAs
co-existed in a structurally heteromorphic chromatin fibers with
a NRL of 207 bp [25]. However, when the NRL variations were
large, the resulting fibers were extremely polymorphic, including
zig-zag structures, bent fibers, hairpin-like conformations and
loops.

The elasticity of the linker DNA allows for dozens of distinct
candidate structures of a compact chromatin fiber. Indeed, electron
microscopy measurements revealed that a short NRL (167 bp)
results in the formation of narrow fibers (21-nm diameter) that
display a clear zig-zag topology, whereas a medium NRL
(197 bp) forms highly compact 30-nm interdigitated solenoid
structures [23], which was further supported by single-molecule
stretching analysis of chromatin fibers with NRLs of 167- and
197-bp [68]. Our own cryo-EM structure revealed that the chro-
matin fibers with NRLs of 177 and 187 bp forms two-start left-
handed helical fibers, with diameters of 27-30 nm and a clear
zig-zag conformation [28]. However, recent experiments have
shown that small NRLs deviations (+2 and +4 bp from the mean
repeat) do not change significantly the folding and compaction of
chromatin [23,69]. This shows that the intrinsic structure of the
fiber must allow for several different repeat lengths (differing not
only by 10n bp, where n is an integer) and accommodate a non-
integer periodicity of the DNA helix (10.5 bp/turn). To rotate the

nucleosomes away from their preferred angle to the axis, a high
amount of energy would be required. The feasibility of any struc-
ture is expected to depend on the geometry of the DNA attachment
to the nucleosomes. Differences in fiber structure due to changes in
the entry/exit geometry may also arise in vivo through partial
unwrapping of the nucleosomes, either by acetylation of histone
tails [70], the introduction of histone variants such as CENP-A
[71] and H2A.Bbd [72], or through the action of nucleosome
remodeling complexes [73]. Drastic alternation of nucleosome
geometry might also occur if nucleosomes dissociate into hemi-
somes containing one copy of each histone protein, as reported
for Drosophila centromeric nucleosomes [74]. In addition, EM
experiments of reconstituted nucleosomes showed that a short
stem was observed on the linker DNA of nucleosome [8,37]. At pre-
sent, it is not clear whether the size of the stem is constant or
whether it depends on the NRL and the type of the bound linker
histone. It has been shown that the globular domain of H1 plays
important roles in maintaining the orientation of nucleosome discs
relative to the fiber axis [75]. Thus, geometrical considerations for
the fiber should allow for some differences between the actual lin-
ker lengths and the real distances between consecutive nucleo-
somes. In addition, variegation effect studies in Drosophila have
shown that gene silencing is accompanied by higher compaction,
with nucleosomes being spaced more regularly [76]. Together,
these results suggest that the nucleosome repeat lengths in vivo
could also be defined by existing structural constrains such as
nucleosome-nucleosome interactions and the binding of linker
histone H1.

Except for the variation in NRLs, the chromatin fiber could also
be regulated by chromatin remodeling factors, histone modifica-
tions and replacements, linker histone H1 removal, and changes
in the non-histone protein complement [3]. As discussed above,
the H1-H1 interaction and H4 tails-the acidic patch interaction
between tetranucleosomal units have been shown to play critical
roles in the formation of the twisted helix of 30-nm chromatin
fiber. Interestingly, it is to note that the apparent gaps formed
between tetranucleosomal units in our 3D cryo-EM structure
may provide a platform for epigenetic regulation of chromatin fiber
structures, either by histone modifications/replacement or through
recruitment of other architectural proteins through altering the
inter-nucleosomal surface interactions.

Acetylation of core histone tails is perhaps one of the best-char-
acterized posttranslational modifications known to modulate both
chromatin structure and gene activity, as modifications serve to
specifically recruit transcription factors and other activities to the
chromatin, or by modifying tail interactions and thus chromatin
structure in a more direct manner [3,77]. Early experiments indi-
cated that acetylation directly alters interactions of histones with
DNA and/or protein in arrays to destabilize the chromatin structure
and facilitate transcription [78]. More recent studies provided evi-
dence that the effects of acetylations of histones on transcription
appears to be primary at the level of chromatin folding, as acetyla-
tion does not significantly increase transcription through individ-
ual nucleosomes [79]. Similarly, acetylation of histone was found
to decrease the overall stability of mononucleosomes only margin-
ally [80], but was shown to impair strongly the folding of oligonu-
cleosome arrays into higher-order structures [10,81,82]. A
threshold effect of acetylation was found in the disruption of
higher-order chromatin structure, however, disruption of the fold-
ing of chromatin fiber was also observed with acetylation mimics
located only on the H4 tail domain, and acetylation of H4K16
was shown to reduce MgCl,-dependent array folding as much as
acetylation at lysines 5,8,12, and 16 within the H4 tail [83-85].
Using in vitro reconstituted nucleosome arrays, it has previously
been shown that in the absence of linker histone H1, acetylation
of H4K16 results in a major unfolding of the reconstituted
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nucleosome arrays [85]. Interestingly, this effect may be due to
specific cation binding to the pocket within the H2A acidic patch,
thought to be occupied by H4K16 in condensed chromatin struc-
tures [83]. However, the molecular mechanisms involved in this
process, as well as the precise details of the structure still remain
unknown, more importantly, the potential role played by linker
histones in this situation remains to be solved. Indeed, the effects
of core histone acetylation on chromatin fiber folding in the pres-
ence of linker histone H1, seem to be minor [86] when compared to
the unfolding that is observed in its absence [81]. In contrast,
Robinson et al. [84] demonstrated that the histone H4 tail is essen-
tial for the compaction of nucleosome arrays into the 30 nm chro-
matin fiber. However, partial acetylation of K16 in the N-terminal
tail of histone H4 strongly inhibits the formation of the 30 nm
chromatin fiber to a greater degree than deletion of the H4N-ter-
minal tail in the presence of a linker histone.

The acidic patch on the surface of H2A and H2B was also shown
to be involved in the formation of the 30-nm fiber through inter-
acting with H4 tails of adjacent nucleosome. Therefore, incorpora-
tion of non-allelic variants of the major core histone proteins,
which can change the acidic patch, may also alter the folding and
stability of higher-order chromatin structures [3]. For example,
the H2A variant H2A.Z possesses a patch that is more acidic than
that of canonical H2A histone, due to the replacement of aspara-
gine and lysine residues in the patch with aspartic acid and serine
residues, respectively [87]. This intrinsic property of H2A.Z possi-
bly contributes to the formation of more compact secondary struc-
tures than observed with arrays containing H2A [88,89], a property
lost when the relevant residues are mutated back to that of H2A.
Interestingly, the more acidic patch of H2A.Z also inhibits array
self-association into tertiary structures, suggesting competing
functions for the H4 tail domain. In contrast, the acidic patch of
the H2A variant H2A.Bbd, which is associated with more actively
transcribed regions of chromatin, is less acidic than canonical
H2A and results in a less stably folded secondary structure that
is more transcriptionally competent than that of H2A arrays [90].
In addition, the C-terminal tail of H2A has been shown to play an
important role in the binding of the linker histone H1/H5 with
nucleosome cores, with the C-terminal tail of histone variant
H2A.Z disfavoring H1 binding [50,65]. Therefore, H2A.Z also mod-
ulates the folding of chromatin fiber by weakening the binding of
linker histone H1 [91]. Interestingly, we have also demonstrated
that the incorporation of histone variant H3.3 can impair the com-
paction of chromatin fiber and counteract H2A.Z-mediated chro-
matin compaction through an unknown mechanism [89]. The C-
terminal tail of H2A can also contact nucleosomal DNA near the
center of the nucleosome core, but “shifts” to contact DNA near
the edge of the core region in nucleosomes and oligonucleosomal
structures containing the linker DNA [92]. Therefore, it would be
interesting to study whether the modification of C-terminal tail
of histone H2A, such as ubiquitination of H2AK119, can modulate
the folding of the chromatin fiber. In addition, H1-H1 interaction
(most likely through its global domains) was also found to be
important for stabilizing the 30-nm chromatin fiber, thus the mod-
ifications of global domains of H1/H5 could provide a new mecha-
nism for the epigenetic regulation of the compaction of the
chromatin fiber. Indeed, the citrullination of Arg54, which results
in the loss of a positive charge and a gain in hydrogen-bonding
ability, can impair the compaction of chromatin fiber by reducing
the binding of H1 to nucleosome, and probably also lowering the
strength of interaction between H1-H1 [93]. In addition, phospho-
rylation of the carboxy-terminal domain (CTD) of histone H1 has
been shown to be involved in metaphase chromatin condensation
and in interphase chromatin relaxation through charge neutraliza-
tion [94] and effects on secondary structure of CTD [95]. Similarly,
phosphorylation at Ser27 in the N-terminal tail of histone H1 was

shown to regulate the mobility and binding of H1 to condensed
mitotic chromatin [96]. Of note, higher eukaryotes contain a num-
ber of linker histone variants (about 11) that possess C-terminal
tails that diverge considerably in their primary AA sequence [31].
The functions of linker histone H1 and its isoforms in the formation
of higher-order chromatin structure and gene regulation have been
extensively discussed elsewhere [31,32]. However, how the
sequence variations of linker histones (e.g. the two species of H1
and H5 in chicken erythrocytes), or the posttranslational modifica-
tions of the H1 influence the stability of the higher-order structure
as well as the accessibility of the linker DNA still remains largely
unknown.

The acidic patch was shown recently to provide binding sites for
several non-histone proteins, many of which are thought to
regulate chromatin structure [55]. These include the chromatin
architectural factor HMGN2, which binds to nucleosome cores
and generates a more open and transcriptionally permissible chro-
matin secondary structure. HMGN2 has recently been shown to
interact directly with the acidic patch within nucleosome cores
[97]. Likewise, HP1, a heterochromatin-associated protein func-
tioning in the formation of highly compact heterochromatin, is
thought to interact with the acidic patch, and prefers to bind
H2A.Z-containing nucleosomal arrays [90]. These proteins compete
in part with the H4 tail domain for binding to the acidic patch and
alter chromatin folding and self-association. The herpes virus
latency-associated nuclear antigen (LANA) helps to tether the viral
genome to the host genome by binding to the acidic patch with
high affinity [98]. Notably, a peptide from the LANA protein con-
taining only the interacting region competes with the H4 tail for
binding to the patch and results in an increased propensity for
salt-dependent chromatin folding and oligomerization [99].
Additional evidence provided by these investigators indicates that
association of LANA (or the H4 tail) with the patch neutralizes
repulsive forces between nucleosomes, thereby stabilizing sec-
ondary structures. Interestingly, peptide-dependent displacement
of the H4 tail from the acidic pocket prevents the intra-array com-
paction, but stimulates tertiary structure formation, perhaps by
making more H4 tail domains available for inter-array contacts
[99]. Finally, several other chromatin-associated proteins contact
the nucleosome partially through the H2A/H2B acidic patch, sug-
gesting that this may be a general mode of interaction [100-102].

Another class of nucleosome-associated interactions that affect
higher-order chromatin structure is mediated by non-histone
chromatin-associated proteins [3]. Therefore, there must exist
alternative secondary structures of condensed chromatin, with or
without H1 histone, resulting from the interaction with non-his-
tone “architectural” factors and other trans-acting factors, such
as HMGNs, PcG proteins, MENT, MeCP,, MBT proteins and HP1
[3]. Several chromatin-associated proteins have shown to play a
direct role in the formation and/or maintenance of repressive chro-
matin fiber, including the polycomb group protein PRC1 and PRC2
[103,104], MENT [105], MeCP2 [106]. On the other hand, both
malignant-brain-tumor (MBT) proteins [107] and heterochromatin
protein 1 (HP1) [108,109], which can specifically recognize and
bind to methylated histone tails, compact nucleosomal arrays in
a manner dependent on histone methylations. It would be interest-
ing to perform structural analysis of reconstituted chromatin
complexes consisting of H3K9 and H4K20 methylation
heterochromatin markers and interacting proteins, such as HP1
and MBT proteins [61]. Recently, it was shown that homodimeriza-
tion is required for the binding of both Rhina (a homolog of HP1 in
Drosophila) and Swi6 (Schizosaccharomyces pombe HP1 homolog)
proteins to chromatin whose histones contain H3K9me3 marks
[110]. Moreover, the recognition of H3K9-methylated chromatin
by Swib6 in vitro also relies on an interface between two chromod-
omains (CDs), which results in tetramerization of Swi6 on the
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surface of the nucleosome, generating two vacant CD sticky ends in
the process [109]. Note that HP1 has been shown to interact with
the acidic patches of nucleosomes, thus the binding of HP1 may
also modulate chromatin compaction by interferring with the H4
tails-the acidic patch interaction between tetranucleosomal units.
Therefore, it is speculated that HP1 proteins stabilize the 30-nm
chromatin fiber via bridging the adjacent methylated nucleosomes
between tetranucleosomal units. Recently, Huang and colleagues
showed that two histone H3K9me3 peptides bind to the Rhi-CD
dimer in an anti-parallel way in their crystal structure study.
Based on our recent 3D cryo-EM structure of 30-nm chromatin
fiber, they proposed that Rhi protein stabilizes the chromatin fiber
via bridging the stacked nucleosomes on both strands of the double
helix of chromatin fiber [110]. Similarly, MBT proteins and the con-
densin II complex have been shown to condense chromatin
through binding to the monomethylated lysine 20 of histone H4
tails [107,111]. Therefore, MBT proteins and condensin Il complex
may also play an important role in regulating the formation of
chromatin fiber via interfering with the interactions between H4
tails and the acidic patches present between tetranucleosomal
units during mitosis.

6. Organization of the chromatin fiber within the nucleus

The 30-nm fiber has long been thought to be the first level of
the hierarchical chromatin compaction pathway, but the existence
of the 30-nm fiber in vivo still remains very controversial, because
high-resolution imaging of chromatin in living cells had not been
possible until now [112,113]. The initial identity of the 30-nm fiber
in situ came from cryogenic electron microscopy (Cryo-EM) stud-
ies, undertaken in echinoderm sperm and nucleated chicken ery-
throcytes chromatin [114,115]. Further evidence for the existence
of a 30-nm fiber came from earlier attempts to biophysically char-
acterize the isolated native chromatin fiber from different biologi-
cal systems [11].

Previous cryo-EM observations of starfish spermatozoids and
isolated chicken erythrocyte nuclei revealed that under low-salt
conditions, an open irregular zig-zag conformation exists, with
an increase in salt concentration resulting in progressive com-
paction of the chromatin fiber [116]. One earlier study also pro-
vided strong evidence for the presence of a 30-nm fiber
structure, even after high-pressure freezing and thin section of
vitreous material [114]. Most recently, using cryoelectron tomog-
raphy of vitreous sections of chicken erythrocyte chromatin in
nuclei, Frangakis and colleagues showed that the most predomi-
nant form of chromatin in chicken erythrocyte nuclei is indeed a
30-nm fiber. Importantly, these fibers were observed to be
arranged in a two-start helix formation, with approximately 6.7
nucleosomes per turn, in which the nucleosomes are juxtaposed
face-to-face. The stacked nucleosomes were shown to be shifted
off their superhelical axes, with an axial translation of approxi-
mately 3.4 nm and an azimuthal rotation of approximately 54°
[58]. Intriguingly, this geometry strongly resembles the structure
of the tetranucleosome [24], and also resembles our 3D cryo-EM
structure, which revealed a 30-nm fiber composed of a left-handed
two-strand double helix consisting of tetranucleosomal units [28].
Furthermore, electron tomograms of plunge-frozen isolated chro-
matin from chicken erythrocyte in both open and compacted forms
were recorded. Frangakis and colleagues found that in compact
chromatin, the nucleosomes are arranged in a predominant face-
to-face stacking (mainly as doublet stacks) organization [58,117].
Although the path of the DNA cannot be observed directly under
such compact conditions, it is evident that the nucleosome stacks
form a “double track” conformation, which was confirmed by our
recent 3D cryo-EM structure of 30-nm fiber [28]. The in vivo exis-
tence of face-to-face nucleosome stacking is also supported by a

peak in the 5.5-6.2 nm range, as observed previously in the X-
ray scattering profile of interphase nuclei and metaphase chromo-
somes [118]. Together, this body of experimental evidence strongly
suggests that stacking interactions of nucleosomes are an impor-
tant mechanism for generating chromatin compaction both
in vitro and in vivo.

As discussed above, the NRLs play an important role in the orga-
nization of the chromatin fiber. To determine the nucleosome-
nucleosome interaction in chromatin with a longer NRL, the
chromatin isolated from starfish (Patiria miniata) spermatozoids,
which contains exceptionally long NRL of 222 bp, was analyzed.
It has been hypothesized that the chromatin fibers with longer
NRL adopt a different conformation from that of fibers containing
short NRLs [16]. This study showed that the predominant form of
chromatin compaction in starfish spermatozoids is also face-to-
face stacking, with the nucleosomes organized in a “double-track”
conformation, even though the overall fiber structure was different
to the compact chicken erythrocyte chromatin [117]. However, the
larger azimuthal rotation in the fiber results in a more homoge-
neous nucleosome distribution when compared to the idealized
cross-linker model, where stacked nucleosomes form two dense
gyres that are widely separated in both cases. Close face-to-face
nucleosome stackings have previously been demonstrated in
various crystal structures [2,24]. In the contrast, a center-to-center
distance of stacked nucleosomes in situ is approximately 10.3 nm,
leaving a large distance of at least 3 nm between the two octamer
cores, which is much larger than that reported in crystal structures
[58]. This binding distance excludes core-to-core interactions but
allows interactions mediated by histone N-terminal tails in a tail-
to-core interaction. It is of great interest to note that different
face-to-face juxtaposition of nucleosomes was observed in our
3D cryo-EM structure of 30-nm fiber [28]. The center-to-center dis-
tance between the nucleosome stacks within tetranucleosomal
unit is close enough to allow the core-to-core interactions medi-
ated by H2A/H2B four helix bundles, however, a much larger gap
was observed between the tetranucleosomal unit in our structure
of 30-nm chromatin fiber and it excludes the above mentioned
core-to-core interactions, but allows interactions mediated by H4
tails-acidic patch on the neighboring nucleosomes [28]. In addition
to the chicken erythrocyte and starfish spermatozoid, a recent
study showed that the facultative heterochromatin on the mouse
rod photoreceptor cell also contains a 30-nm fiber organization
[119].

DNase I has long been used to probe the higher-order chromatin
structure in whole nuclei. Early DNase I analysis suggested that the
linker DNA and linker histone is buried deep inside the 30-nm
fiber, which is in agreement with previously published reports
using other techniques [120-122]. In addition, digestion of whole
nuclei with DNase I or DNase II produces a series of DNA frag-
ments, the length of which is a multiple of the duplicate length
of the nucleosome DNA repeat in nuclei of various origins (Avian
erythrocytes and sperm of sea urchin) [123-125]. This unusual
dinucleosomal periodicity of DNase I digestion pattern implies
the existence of a particular structural unit that consists of at least
2 nucleosomes, which is to some extent in agreement with our 3D
cryo-EM 30-nm fiber structure, where tetranucleosomes are found
to be the repeating structural unit [28]. Interestingly, dinucleoso-
mal symmetry of the higher-order chromatin structure has been
shown previously to be independent of nucleosome repeat length
[56,123,124]. With the recent development of deep sequencing
techniques, it is now possible to map the location of the structural
units (comprised of dinucleosomes or tetranucleosomes) across
the whole genome. In addition, DNase I digestion also results in
an asymmetrical protection of nucleosomes in nuclei, which sug-
gests that the vast majority of nucleosomes has an alternating ori-
entation and asymmetrical organization in vivo [56,123-125]. The
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alternating orientations of nucleosomes in the fiber may result
from criss-crossing linkers. Intriguingly, our 3D cryo-EM analysis
indicates the presence of a twisted helical fiber structure contain-
ing alternately tilted nucleosomes [28], which would provide an
explanation for the observed DNase results. In contrast to artificial
arrays, which are of defined nucleosome repeat length and uniform
histone composition, native chromatin has inherent local varia-
tions in nucleosome repeat length, modifications and variants of
the core and linker histones. Despite this variability, native chro-
matin shows remarkable structural regularity, as observed in the
reconstituted compact 30-nm fibers in vitro.

Despite this overwhelming body of evidence, few reports exist
for the presence of the 30-nm fiber within intact cells of any other
organisms as discussed previously [126]. Even in the highly com-
pacted heterochromatin regions of the nuclei of human and mouse
cells, 30-nm chromatin fibers were never observed, even when
investigated with the highly sophisticated EM techniques currently
available [112,113,127,128]. Although they used a powerful com-
bination of cryo-electron microscopy and image processing,
Dubochet and colleagues could not find any regular 30-nm chro-
matin fibers within mitotic chromosomes in situ [112]. Also, recent
studies using SAXS (Small angle X-ray scattering) analysis com-
bined with computational modeling were unable to detect regular
structural features that were larger than 11 nm in the interphase
chromatin and mitotic chromosomes [128,129]. As discussed
above, phosphorylations of histone H1 and monomethylation of
histone H4 lysine 20 have been shown to regulate the formation
of 30-nm chromatin fiber through different mechanisms
[94-96,107,111]. Interestingly, both phosphorylations of H1 and
monomethylation of H4 lysine 20 were found to be peak in M
phase [96,111], therefore, it is reasonable to speculate that the
30-nm chromatin fiber may be disrupted in mitotic chromosomes
by these modifications on histone H1 and histone H4 tails. In addi-
tion, using cryo-EM tomography to study the picoplankton
Ostreococcus tauri, Gan et al. found that O. tauri chromatin resem-
bles a disordered assembly of nucleosomes, without any indication
of the presence of structures resembling the 30-nm chromatin
fiber [130]. Using another EM-based imaging method called elec-
tron-spectroscopic imaging (ESI), Bazett-Jones et al. found that
pluripotent mouse cells contain highly dispersed meshes of 10-
nm fibers. Again, no 30-nm fibers were found in the various types
of mouse cells, even in the condensed domains of heterochromatin
regions [127,131,132]. Thus, strong evidence for the presence of
ordered hierarchical folding (as a general mechanism for chro-
matin compaction) across the different model systems remains
conspicuously absent.

7. Conclusions and perspectives

Our 3D cryo-EM structure of 30-nm chromatin fiber provides an
excellent starting point for the elucidation of the fundamental
structural aspects of the elusive 30-nm chromatin fiber.
However, due to the relative low resolution of approximate 11 A,
the precise details about the various interactions, either between
nucleosome stacks within tetranucleosomal units or between
H1-H1 of different units, remain to be elucidated. With recent
advances in direct electron detection and image processing, the
resolution of cryo-EM analysis is now beginning to rival X-ray crys-
tallography [133]. Thus, the resolving of the structure of 30-nm
chromatin fiber at a higher resolution by using the new electron
detector and imaging processing is now imminent. Such high-res-
olution structure will provide much-needed structural details for a
better understanding of the interactions between nucleosome-nu-
cleosome as well as H1-H1. This will undoubtedly advance our
insights into the functions of the tails of both core histone and lin-
ker histone H1 in the formation of 30-nm chromatin fiber. In

addition, our 3D cryo-EM structure of the 30-nm fiber implies that
the large gap present at the interface between tetranucleosomal
units, which is mediated by the interactions of H4 tails and acidic
patches on neighboring nucleosome, provide an excellent platform
for epigenetic factors/mechanisms to modulate the folding of the
chromatin fiber. It would be of great interest to determine the
high-resolution cryo-EM structure of reconstituted chromatin fiber
containing histone variants or histones carrying different histone
modifications. As discussed above, the C-terminus of H2A has
important functions in the formation of higher-order chromatin
structure, thus it will also be of interest to investigate whether
the histone modifications on histone H2A C-tail (such as
monoubiquitination of histone H2A at lysine119) and histone
H2A variants with different C-tail (such as macroH2A and H2A.X)
can affect the compaction of chromatin fiber. Regarding the
variation of NRL in vivo, the reconstitutes with a combination of
different NRLs will be also a good candidate for cryo-EM study in
the future. These further studies will not only enhance our under-
standing of the functions of histone modifications and variants in
epigenetic regulation of chromatin compaction, but also provide
an opportunity to find novel structural features within the
30-nm chromatin fiber. Crucially, some chromatin modifications
may have no direct effect on the structure of chromatin fiber, but
they might instead modulate the chromatin structure indirectly,
presumably by recruiting chromatin interacting factors apart from
linker histones such as HP1, MeCP2 and MBT proteins. Deciphering
the structural role of these additional chromatin binding proteins
in different chromatin contexts (i.e. different modifications) would
also be of tremendous importance. Recently, single-molecule
approaches have been applied to investigate the dynamics of chro-
matin fiber folding [68,134], thus it would be interesting to study
the force and the potential epigenetic regulations involved in dif-
ferent nucleosome-nucleosome interactions (intra- or inter-te-
tranucleosomal units) during the step-wise folding and unfolding
of the 30-nm chromatin fiber.

Another important question is how much the structural results
from the in vitro studies mirror the structure of the actual “native”
30-nm chromatin fiber? To solve this puzzle, the study of the orga-
nization of chromatin will require the development of advanced
techniques. Previously, cryo-EM studies in mammalian cells
revealed no existence of regular 30-nm chromatin fibers in mitotic
and interphase chromosomes in human and mouse cells [112].
Cryo-EM can examine biological sample in close to their native
states, however, it is limited by the fact that only a small portion
of the sample can be detected [112]. However, the recent develop-
ment of coherent X-ray diffraction imaging (CXDI) has made it pos-
sible to visualize a single chromosome using X-rays [129]. In
addition, X-ray free electron lasers (XFELs) have been developed
that produce high peak-brilliance coherent hard X-rays.
Potentially, a combination of CXDI and XFELs will allow the visual-
ization of chromosomes at a resolution within the nanometer
range. To visualize and quantify the ultrastructure of cryopre-
served cells, two other combinatorial methods, the combination
of Soft X-ray tomography (SXT) with cryogenic confocal fluores-
cence tomography (CFT) [135] and the combination of cryo-EM
with super resolution fluorescence imaging techniques, have been
developed recently. It is to be expected that by the application of
these combinational imaging techniques in the future, more struc-
tural details for the organization of chromatin fiber can be obtained
in situ.
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