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An important GL(n) invariant functional of centred (origin sym-
metric) convex bodies that has received particular attention is the
volume product. For a centred convex body A ⊂ R

n it is defined
by P(A) := |A| · |A∗|, where | · | denotes volume and A∗ is the
polar body of A. If A is a centred zonoid, then it is known that
P(A) � P(Cn), where Cn is a centred affine cube, i.e. a Minkowski
sum of n linearly independent centred segments. Equality holds in
the class of centred zonoids if and only if A is a centred affine
cube. Here we sharpen this uniqueness statement in terms of a
stability result by showing in a quantitative form that the Banach–
Mazur distance of a centred zonoid A from a centred affine cube
is small if P(A) is close to P(Cn). This result is then applied to
strengthen a uniqueness result in stochastic geometry.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the preceding two decades, affine or GL(n) invariant functionals of convex bodies have been
studied intensively. A major reason for interest in such functionals is due to the observation that they
often lead to strong geometric and analytic inequalities (cf. [2,11,12,32–34]). Another incentive comes
from tantalising open problems in this field. The Petty projection inequality and Mahler’s inequality
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are just two examples of conjectured sharp inequalities which remain to be established; see the sur-
vey articles [19,31,55] and the introduction of [33] for further information and relations to important
analytic inequalities [5–7].

A fundamental GL(n) invariant functional is the volume product. For a centred convex body
A ⊂ R

n , i.e. an n-dimensional compact convex set which is symmetric with respect to the origin,
it is defined by

P(A) := |A| · ∣∣A∗∣∣,
where | · | denotes volume and A∗ is the polar body of A. (We refer to the beginning of Section 2 for
some definitions and further background information.) Since P is continuous and GL(n) invariant, it
attains its maximum and minimum. The maximum of P is provided by the famous Blaschke–Santaló
inequality. For centred convex bodies A ⊂ R

n it states that

P(A) � P
(

Bn
2

)
, (1)

where Bn
2 denotes the Euclidean unit ball centred at the origin o ∈ R

n . Equality holds in (1) if and
only if A is a centred ellipsoid; see e.g. [26,31,35,41,44,48,49].

A major open problem, which became known as Mahler’s conjecture or as the (conjectured) re-
verse Blaschke–Santaló inequality, asks for a sharp lower bound for P. This problem originates from a
paper by K. Mahler [37]. The Mahler conjecture for centred convex bodies states that

P(A) � P
(
Cn), (2)

for all centred convex bodies A ⊂ R
n , where Cn is a centred affine cube. This inequality has been

established in full generality for n = 2 by Mahler [38]; see [55] for a recent exposition of Mahler’s
proof. Equality holds for n = 2 if and only if A is a parallelogram. The latter fact has been proved by
Reisner [45,46], who established the conjecture for the class of centred zonoids in general dimensions.
It turned out that the centred affine cubes are the only centred zonoids for which equality holds
in (2). Reisner’s approach is based on previous work of Schneider [50] on the average number of
vertices of random polyhedral sets, and also on a purely geometric estimate for the number of vertices
of centrally symmetric polytopes, due to Bárány and Lovasz [4]. Later Gordon, Meyer and Reisner [22]
found a very elegant new proof in the case of zonoids.

Mahler’s conjecture is settled for specific classes of convex bodies, such as unconditional convex
bodies (cf. [39,47,48]), or centred polytopes having at most 2n + 2 vertices or at most 2n + 2 facets if
3 � n � 8; see [36] (cf. also [3]). The discussion of the equality cases of (2) for these specific classes
of sets already indicates that it will be difficult to determine all cases in which equality holds in (2).
Strong functional versions of the Blaschke–Santaló inequality and its reverse form have been studied
recently [1,15–18]. In [10], Bourgain and Milman proved that P(A) � cn · P(Bn

2), where c is a universal
constant (cf. [30]). Very recently, Nazarov et al. (see [43]) showed that centred affine cubes are local
minimisers for the volume product, but the general conjecture is still open. This is also true for the
nonsymmetric version of Mahler’s conjecture (see [40,42] for particular cases).

The main purpose of the present work is to establish a strengthening of the estimate (2) in terms
of a stability result for centred zonoids, and to apply this to a problem in stochastic geometry. In
this context, a stability result provides an improved lower bound for P(A) if some information on
the distance between A and the extremal bodies of (2) (yielding equality in (2)) is available (cf.
[23] for an introduction to geometric stability results). Equivalently, it implies that if P(A) is close
to the lower bound P(Cn), then A must be close to some centred affine cube. In order to measure
the distance between centred convex bodies, a suitable GL(n) invariant notion of distance for centred
convex bodies K , M ⊂ R

n is

δBM(K , M) = min
{
λ � 1: K ⊂ T (M) ⊂ λK for some T ∈ GL(n)

}
,
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the (symmetric) Banach–Mazur distance of K and M . Note that δBM(K , M) � 1 with equality if and
only if K and M differ only by a linear transformation.

Theorem 1.1. There is a constant γn, depending only on the dimension n, such that the following is true. If
A ⊂ R

n is a centred zonoid satisfying

P(A) � (1 + ε) · P
(
Cn)

for some ε ∈ [0,1], then

δBM
(

A, Cn) � 1 + γn · ε 1
n .

The order of the stability estimate in Theorem 1.1, which is 1
n , can be improved to the optimal

order 1 by combining our global result with the local result in [43]. The main result of [43] states the
existence of a constant δ0(n) > 0, depending only on n, such that the following is true. If A ⊂ R

n is a
centred convex body with δBM(A, Cn) � 1 + δ0(n), then P(A) � P(Cn) with equality if and only if A is
a centred affine cube. An inspection of the arguments in [43] shows that the paper implicitly contains
a proof of the following stronger local statement.

There exist constants δ0(n) > 0 and βn , depending only on n, such that the following is true. If
A ⊂ R

n is a centred convex body with δBM(A, Cn) � 1 + δ0(n), then

P(A) �
(
1 + βn

(
δBM

(
A, Cn) − 1

))
P
(
Cn).

Now we put ε0(n) := min{(δ0(n)/γn)n,1} and choose ε ∈ [0, ε0(n)]. If A ⊂ R
n is a centred zonoid

such that

P(A) � (1 + ε) · P
(
Cn), (3)

then by Theorem 1.1, we have

δBM
(

A, Cn)
� 1 + γn · ε 1

n � 1 + δ0(n).

Hence the result in [43] shows that indeed

δBM
(

A, Cn)
� 1 + βn · ε. (4)

We put αn := max{βn,
√

n/ε0(n)}. Then (4) holds if (3) is satisfied for some ε ∈ [0, ε0(n)]. On the
other hand, if ε � ε0(n), then

δBM
(

A, Cn) �
√

n � 1 + αn · ε0(n) � 1 + αn · ε.

Any explicit estimate for δ0(n) and βn thus will immediately imply an explicit estimate for the con-
stant αn . At the end of Section 3, we comment on the size of γn , for which a rough estimate follows
from the proof of Theorem 1.1.

Corollary 1.2. There is a constant αn, depending only on the dimension n, such that the following is true. If
A ⊂ R

n is a centred zonoid satisfying

P(A) � (1 + ε) · P
(
Cn)

for some ε � 0, then

δBM
(

A, Cn) � 1 + αn · ε.
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Introducing δ̃BM(A, Cn) := ln δBM(A, Cn), we can restate the assertion of Corollary 1.2 in the follow-
ing form: There exists a constant α̃n , depending only on the dimension n, such that, for any centred
zonoid A ⊂ R

n ,

P(A) �
(
1 + α̃n · δ̃BM

(
A, Cn)) · P

(
Cn).

A general stability result for the Blaschke–Santaló inequality has recently been found in [8], for
symmetric and for not necessarily symmetric convex bodies.

Stability results for various geometric inequalities have been applied to the solution of generalised
versions and variants of Kendall’s problem in stochastic geometry (see e.g. [27,29]). In the present pa-
per, we apply the stability results for the volume product of zonoids to generalise known uniqueness
results in stochastic geometry. More specifically, we consider the zero cell Z0 of a stationary Poisson
hyperplane mosaic X̂ in R

n . The expected number of vertices of Z0 is known to be minimal if X̂ is a
parallel mosaic, and maximal if X̂ is isotropic. In Section 5, we show in a quantitative form that X̂ is
close to a parallel mosaic if the expected number of vertices of Z0 is almost minimal. A similar result
is obtained for the upper bound.

Our proof of Theorem 1.1 is based on and refines the inductive argument in [22]. Section 2 con-
tains a geometric stability result for [22, Lemma 3], in Section 3 the induction step is carried out.
The geometric structure of centred zonoids which are close to a centred affine cube is described in
Section 4.

2. An auxiliary stability estimate

The approach of this and the next section is based on the arguments provided by Gordon, Meyer
and Reisner in [22]. Therefore, we partly use the notation of that paper. Although the statement of
our main result is GL(n) invariant, we introduce an auxiliary Euclidean structure. Thus the general
setting is the Euclidean space R

n with scalar product 〈·,·〉 and induced norm ‖ · ‖. The Euclidean unit
ball is denoted by Bn

2, its boundary S
n−1 is the unit sphere. Let e1, . . . , en be the Euclidean standard

basis of R
n . The convex hull of points x1, . . . , xk ∈ R

n is denoted by [x1, . . . , xk].
We write Bn∞ := [−e1, e1]+ · · ·+ [−en, en] for the centred Euclidean cube having edge length 2. As

usual, a set A ⊂ R
n is called centred if A = −A. A (centred) zonotope is a Minkowski sum of (centred)

segments. The class of (centred) zonoids is obtained as the closure of the class of (centred) zonotopes
in the space of convex bodies with the Hausdorff metric. Hence each (centred) zonoid is a limit of
(centred) zonotopes. For an introduction to zonoids, we refer to [51, Section 3.5]; see also the surveys
by Schneider and Weil [53] and by Goodey and Weil [21].

For a centred convex body A ⊂ R
n , the polar body A∗ is defined by

A∗ := {
x ∈ R

n: 〈a, x〉 � 1 for all a ∈ A
}
,

which is again a centred convex body. Clearly, the polar body of Bn∞ is the regular crosspolytope
Bn

1 := [±e1, . . . ,±en].
To simplify notation, we write |A| for the relative volume of a compact, convex set A ⊂ R

n relative
to its affine hull, which is zero for the empty set. The support function of a nonempty compact,
convex set A ⊂ R

n is h(A, u) := max{〈x, u〉: x ∈ A}, for u ∈ R
n .

First, we establish an improvement of [22, Lemma 3] in terms of a stability result. Given a centred
convex body B in R

n and x ∈ S
n−1, we write B(x) for the central section B ∩ x⊥ of B with the

orthogonal complement x⊥ of x.
For a hyperplane H in R

n orthogonal to x ∈ S
n−1 with B ∩ H �= ∅, let B2(H) denote the (n − 1)-

dimensional Euclidean ball which is contained in H , centred at H ∩ Rx, and has the same (n − 1)-
dimensional volume as B ∩ H . The union of all such balls B2(H) is again a convex body which is
called the Schwarz rounding of B with respect to the line Rx (cf. [25, p. 178]). Let Cx be the centred
double cone with Cx ∩ x⊥ = Bx ∩ x⊥ , |Cx| = |B| = |Bx| and rotational symmetry around the line Rx.
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In particular, if Bx is not a double cone, then there exists some t0 > 0 such that if y ∈ Bx \ Cx , then
|〈x, y〉| < t0, and if y ∈ Cx \ Bx , then |〈x, y〉| > t0. The importance of Cx is explained by the formula∫

Cx

∣∣〈x, y〉∣∣dy = n

2(n + 1)
· |B|2
|B(x)| .

It follows that

n

2(n + 1)
· |B|2
|B(x)| −

∫
B

∣∣〈x, y〉∣∣dy =
∫
Cx

∣∣〈x, y〉∣∣dy −
∫
Bx

∣∣〈x, y〉∣∣dy

� t0 V (Cx \ Bx) − t0 V (Bx \ Cx) = 0,

where the inequality is strict, if B is not a double cone. This is just a restatement of [22, Lemma 3]
by Gordon, Meyer and Reisner.

In order to obtain a stability version of [22, Lemma 3], we introduce

�x(B) := |Cx \ Bx| + |Bx \ Cx|
|B|

as a very rough measure for quantifying the distance �x(B) of the associated symmetral Bx of B
from the double cone Cx with common base B(x). Clearly, the numerator is the symmetric difference
metric of Bx and Cx , and the ratio is scaling invariant. Moreover, in the present situation we have
|Bx \ Cx| = |Cx \ Bx|, and thus �x(B) = 2|Cx \ Bx|/|B|.

Observe that in the statement of the following lemma, the integral on the left-hand side and the
ratio |B|2/|B(x)| on the right-hand side remain unchanged if B is replaced by its Schwarz rounding Bx .

Lemma 2.1. If B is a centred convex body in R
n and x ∈ S

n−1 , then∫
B

∣∣〈x, y〉∣∣dy �
[

1 − 1

8
�x(B)

]
· n

2(n + 1)
· |B|2
|B(x)| .

Proof. If Bx is a double cone (equivalently, B is a double cone), then Cx = Bx , �x(B) = 0 and the
asserted inequality holds with equality. Hence, we may assume that Bx (i.e. B) is not a double cone.
Let

h := n|B|
2|B(x)|

denote the height of the “upper half” (with respect to x) of Cx . Thus we have h > h(B, x). We define

	(t) := ∣∣(tx + x⊥) ∩ B
∣∣ 1

n−1 ,

	̃(t) := ∣∣(tx + x⊥) ∩ Cx
∣∣ 1

n−1 =
(

1 − t

h

)∣∣B(x)
∣∣ 1

n−1 ,

for t ∈ [0,h]. Note that by definition 	(t) = 0 for t ∈ (h(B, x),h). The definitions immediately imply
that

�x(B) = 2

|B|
h∫ ∣∣	(t)n−1 − 	̃(t)n−1

∣∣dt.
0
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The Brunn–Minkowski inequality yields that 	(t) is concave on [0,h(B, x)], and hence the same is
true for 	(t) − 	̃(t) on [0,h(B, x)]. We observe that 	(0) = 	̃(0) and

h∫
0

	(t)n−1 dt = 1

2
|B| = 1

2
|Cx| =

h∫
0

	̃(t)n−1 dt.

Since Bx is not a double cone and the line (	̃(t), t), t ∈ R, meets the interior of Bx , there exists a
unique t0 ∈ (0,h) such that 	(t) > 	̃(t) if t ∈ (0, t0), and 	(t) < 	̃(t) if t ∈ (t0,h). It also follows that

t0∫
0

(
	(t)n−1 − 	̃(t)n−1)dt =

h∫
t0

(
	̃(t)n−1 − 	(t)n−1)dt = 1

4
�x(B)|B|.

We put ϕ(s) := 	(s) − 	̃(s), s ∈ [0, t0], and recall that ϕ is concave on [0, t0], ϕ(0) = ϕ(t0) = 0 and
ϕ(s) > 0 on (0, t0). For λ ∈ (0,1), s ∈ [0, t0] and t = λs, we get

	(t) − 	̃(t) = ϕ(λs) = ϕ
(
(1 − λ)0 + λs

)
� (1 − λ)ϕ(0) + λϕ(s) = λϕ(s)

= λ
(
	(s) − 	̃(s)

)
.

Moreover, since 	 and 	̃ are decreasing, we conclude that

	(t)n−1 − 	̃(t)n−1 = (
	(t) − 	̃(t)

)( n−2∑
i=0

	(t)i	̃(t)n−2−i

)

� λ
(
	(s) − 	̃(s)

)( n−2∑
i=0

	(s)i	̃(s)n−2−i

)
= λ

(
	(s)n−1 − 	̃(s)n−1).

Therefore

λt0∫
0

(
	(t)n−1 − 	̃(t)n−1)dt � λ2

t0∫
0

(
	(t)n−1 − 	̃(t)n−1)dt = λ2 1

4
�x(B)|B|. (5)

On the other hand, the component of Cx \ Bx containing the apex hx is starshaped with respect to hx,
and hence

h∫
(1−λ)h+λt0

(
	̃(t)n−1 − 	(t)n−1)dt � λn

h∫
t0

(
	̃(t)n−1 − 	(t)n−1)dt = λn 1

4
�x(B)|B|. (6)

We define t1 ∈ (0, t0) and t2 ∈ (t0,h) such that

t1∫ (
	(t)n−1 − 	̃(t)n−1)dt =

h∫
t

(
	̃(t)n−1 − 	(t)n−1)dt = 1

4
· �x(B)

4
|B|.
0 2
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From (5) and (6) it follows that

t1 � 1

2
t0 �

(
1 − 1

n

)
t0 and t2 �

(
1 − 1

n

)
t0 + 1

n
h,

and hence

t2 − t1 � h

n
.

We put

ϕ̃(t) := 	̃(t)n−1 − 	(t)n−1.

Then

t0∫
t1

∣∣ϕ̃(t)
∣∣dt = 3

4
· �x(B)

4
|B| =

t2∫
t0

ϕ̃(t)dt,

t1∫
0

∣∣ϕ̃(t)
∣∣dt =

h∫
t2

ϕ̃(t)dt,

and hence

n

2(n + 1)

|B|2
|B(x)| −

∫
B

∣∣〈x, y〉∣∣dy =
∫
Cx

∣∣〈x, y〉∣∣dy −
∫
Bx

∣∣〈x, y〉∣∣dy (7)

= 2

h∫
0

tϕ̃(t)dt (8)

� 2t2

h∫
t2

ϕ̃(t)dt + 2t0

t2∫
t0

ϕ̃(t)dt

−2t0

t0∫
t1

∣∣ϕ̃(t)
∣∣dt − 2t1

t1∫
0

∣∣ϕ̃(t)
∣∣dt

� 2h

n

h∫
t2

ϕ̃(t)dt � h · �x(B)|B|
8n

= �x(B)|B|2
16|B(x)| ,

from which we obtain the required estimate. �
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Remark. The order of the error term is optimal, as (8) in the argument above implies that

n

2(n + 1)

|B|2
|B(x)| −

∫
B

∣∣〈x, y〉∣∣dy � 2h

h∫
t0

ϕ̃(t)dt = h|Cx \ Bx| = n�x(B)|B|2
4|B(x)| ,

which in turn yields ∫
B

∣∣〈x, y〉∣∣dy �
[
1 − n�x(B)

] · n

2(n + 1)
· |B|2
|B(x)| .

3. The induction step

In order to prove the theorem, we use induction on n, thus following the approach in [22].
The statement to be proved is the following: There is a constant γn , depending only on the di-

mension n, such that

P(A) � (1 + ε) · P
(
Cn),

for a centred zonoid A ⊂ R
n and some ε ∈ [0,1], implies that

δBM
(

A, Cn) � 1 + γn · ε 1
n .

If n = 1 this trivially holds with γ1 = 0.
Assume that the assertion of the theorem is true in any (n − 1)-dimensional Euclidean space. Let

A be a centred zonoid for which

P(A) � (1 + ε) · P
(
Cn), (9)

where ε ∈ [0,1] and Cn is a centred affine cube.
In the following, we denote by pr(A, x⊥) the orthogonal projection of A to the subspace x⊥ .

Lemma 1 by Gordon, Meyer and Reisner [22] yields a vector x ∈ S
n−1 such that

2
∣∣A∗∣∣ · ∣∣pr

(
A, x⊥)∣∣ � (n + 1)|A|

∫
A∗

∣∣〈x, y〉∣∣dy.

We define A∗(x) := A∗ ∩ x⊥ . It follows from Lemma 2.1 that

2
∣∣A∗∣∣ · ∣∣pr

(
A, x⊥)∣∣ � (n + 1)|A| ·

(
1 − 1

8
�x

(
A∗)) · n

2(n + 1)
· |A∗|2
|A∗(x)| .

Using that (pr(A, x⊥))∗ = A∗(x), where the polar body on the left-hand side is taken with respect to
the Euclidean structure induced on x⊥ , we get(

1 + 1

8
�x

(
A∗)) · 4

n
· P

(
pr

(
A, x⊥))

� P(A). (10)

From this we deduce that
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(
1 + 1

8
�x

(
A∗)) · 4

n
· P

(
Bn−1∞

)
�

(
1 + 1

8
�x

(
A∗)) · 4

n
· P

(
pr

(
A, x⊥))

� P(A) � (1 + ε) · P
(

Bn∞
)

= (1 + ε) · 4

n
· P

(
Bn−1∞

)
,

and therefore

�x
(

A∗) � 8 · ε. (11)

On the other hand, since (10) implies that

4

n
· P

(
pr

(
A, x⊥))

� P(A),

we deduce from (9) that

4

n
· P

(
pr

(
A, x⊥))

� P(A) � (1 + ε) · P
(

Bn∞
) = (1 + ε) · 4

n
· P

(
Bn−1∞

)
.

Thus we have

P
(
pr

(
A, x⊥))

� (1 + ε) · P
(
Cn−1),

where Cn−1 denotes a centred affine cube in x⊥ . The projection pr(A, x⊥) of the zonoid A is again a
zonoid. Therefore, the induction hypothesis yields that

δBM
(
pr

(
A, x⊥)

, Cn−1) � 1 + γn−1 · ε 1
n−1 (12)

with γn−1 � 0 depending on n.
For centred convex bodies K , L ⊂ R

n the Banach–Mazur distance satisfies δBM(K , L) = δBM(K ∗, L∗).
Using again the relation (pr(A, x⊥))∗ = A∗(x), we conclude that (12) is equivalent to

δBM
(

A∗(x), Bn−1
1

)
� 1 + γn−1 · ε 1

n−1 . (13)

Here Bn−1
1 is a centred regular crosspolytope in x⊥ .

Next we introduce another way to measure the distance of a centred convex body B in R
n from

double cones. For x ∈ S
n−1, let M be the maximal volume of double cones contained in B with base

B(x), and let

�̃x(B) := |B| − M

|B| .

As before, let Cx be the centred double cone with Cx ∩ x⊥ = Bx ∩ x⊥ , |Cx| = |B| and rotational sym-
metry around the line Rx. Note that with h̃ := h(B, x) and h := h(Cx, x), we have

�̃x(B) = 1 − M = 1 − h̃
.
|Cx| h
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Now if Π is the parallel strip bounded by the two supporting hyperplanes of B parallel to x⊥ , then

|Cx \ Bx| � |Cx \ Π | =
(

h − h̃

h

)n

|Cx| = �̃x(B)n|B|,

and hence

�x(B) � 2�̃x(B)n. (14)

Note that �x(B) = 2�̃x(B)n if B is the intersection of Π and a double cone with base B(x).
To proceed further, we use that (13) implies that there is a linear transformation B̃n−1

1 of the
regular crosspolytope Bn−1

1 such that

B̃n−1
1 ⊂ A∗(x) ⊂ (

1 + γn−1ε
1

n−1
)

B̃n−1
1 . (15)

We choose a point z from the support set of A∗ with exterior unit normal vector x. Then [A∗(x),±z]
is a double cone in A∗ having base A∗(x) and maximal volume. Hence, combining (11) and (14), we
get

|A∗| − |[A∗(x),±z]|
|A∗| = �̃x

(
A∗) � (4 · ε)

1
n .

Since, by (15),

∣∣[B̃n−1
1 ,±z

]∣∣ �
∣∣[A∗(x),±z

]∣∣
�

∣∣[(1 + γn−1ε
1

n−1
)

B̃n−1
1 ,±z

]∣∣
= (

1 + γn−1ε
1

n−1
)n−1∣∣[B̃n−1

1 ,±z
]∣∣,

we deduce

|A∗| − |[B̃n−1
1 ,±z]|

|A∗| � �̃x
(

A∗) + ((1 + γn−1ε
1

n−1 )n−1 − 1)|[B̃n−1
1 ,±z]|

|A∗|
� 4

1
n ε

1
n + ((

1 + γn−1ε
1

n−1
)n−1 − 1

)
,

and hence

|A∗| − |[B̃n−1
1 ,±z]|

|A∗| � γ̃n · ε 1
n , (16)

where

γ̃n := 4
1
n + n(1 + γn−1)

n−2γn−1.

From the last estimate, we finally deduce the required estimate for the Banach–Mazur distance.
For this, we first apply to A∗ a linear transformation T ∈ GL(n) which satisfies

T
(

B̃n−1
1

) = Bn−1
1 ⊂ x⊥ and T

([
B̃n−1

1 ,±z
]) = Bn

1 := Bn−1
1 + [−x, x],
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where T (±z) = ±x. We put D := T (A∗). From (15), we deduce that

Bn−1
1 ⊂ D(x) := D ∩ x⊥ ⊂ (

1 + γn−1ε
1

n−1
)

Bn−1
1 and Bn

1 ⊂ D,

and from (16), we get

|D| − |Bn
1|

|D| � γ̃n · ε 1
n .

Now if F is any facet of Bn
1 with exterior unit normal u ∈ S

n−1, then

2

n
· (h(D, u) − h

(
Bn

1, u
)) · |F | � |D| − ∣∣Bn

1

∣∣.
Moreover, since D is centrally symmetric, h(D,±x) = 1, and by the above inclusions for D(x), we have

|D| � 2
(
1 + γn−1ε

1
n−1

)n−1∣∣Bn−1
1

∣∣ �
(
1 + γn−1ε

1
n−1

)n−1 2n

(n − 1)! .

Since |F | = √
n/(n − 1)!, we obtain

h(D, u) − h
(

Bn
1, u

)
� |D| · |D| − |Bn

1|
|D| · n

|F | · 1

2

� γ̃n
(
1 + γn−1ε

1
n−1

)n−1√
n 2n−1 · ε 1

n .

Since h(Bn
1, u) � 1/

√
n, we finally get

h(D, u) �
(
1 + γnε

1
n
) · h

(
Bn

1, u
)
,

where

γn := n 2n−1(4
1
n + n(1 + γn−1)

n−2γn−1
)
(1 + γn−1)

n−1. (17)

This yields

Bn
1 ⊂ D ⊂ (

1 + γnε
1
n
)

Bn
1,

and therefore

δBM
(

A∗, Bn
1

)
� 1 + γn · ε 1

n ,

that is

δBM
(

A, Bn∞
)
� 1 + γn · ε 1

n (18)

which completes the induction.
The preceding argument also implies bounds for the constant γn; cf. the recursion (17). Since

γ1 = 0, it follows for instance that γ2 = 8 is a suitable choice. Moreover, we have γ3 � 1
4 · 106. A gen-

eral estimate is γn � 4n!2n
, which follows from (17) by induction.
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4. Zonoids close to affine cubes

The conclusion of Theorem 1.1 yields a centred zonoid Z which is close with respect to the
Banach–Mazur distance to a centred affine cube. The following proposition provides some further
information about the structure of a centred zonoid close to a centred affine cube. Essentially, such a
zonoid can be written as the Minkowski sum of n basic zonoids each of which is close to a centred
segment.

Proposition 4.1. If Z is a zonoid in R
n with δBM(Z , Cn) � ε for some ε ∈ (0, 1

4n2 ), then there exist zonoids
Z1, . . . , Zn and centred independent segments s1, . . . , sn such that

Z = Z1 + · · · + Zn,

si ⊂ Zi ⊂ si + 4nε(s1 + · · · + sn).

Proof. Once the result has been proved for zonotopes, the general case follows by approximation.
Hence, let Z be a zonotope. Then there exist vectors x1, . . . , xk ∈ R

n \ {o}, any n of them linearly
independent, such that

Z = [−x1, x1] + · · · + [−xk, xk].
Since the statement of the proposition is GL(n) invariant, we can assume that there exists an or-
thonormal base v1, . . . , vn of R

n such that, for Z∞ = ∑n
i=1[−vi, vi], we have

Z∞ ⊂ Z ⊂ (1 + ε)Z∞,

the absolute values of the coordinates of any x j are different with respect to this base, and x j
or x j − xm , m �= j, are not parallel to any of the coordinate hyperplanes. We partition the vectors
x1, . . . , xk into n groups X1, . . . , Xn , where x j ∈ Xi if the ith coordinate of x j has maximal absolute
value. Now let us define

Zi :=
∑

x j∈Xi

[−x j, x j],

and hence Z = Z1 + · · · + Zn . In addition, for i ∈ {1, . . . ,n}, we choose a boundary point yi of Zi
having vi is an exterior unit normal vector, then we put si := [−yi, yi].

First, we show that

Zi ⊂ [−vi, vi] + 2εZ∞. (19)

We have |〈x, vi〉| � 1 + ε for x ∈ Zi because Zi ⊂ Z . If m �= i, 1 � m � n, then we write πm,i to
denote the orthogonal projection into the coordinate plane spanned by vi and vm . Now we further
partition Xi . For x j ∈ Xi , let x j ∈ X+

i if 〈x j, vi〉〈x j, vm〉 > 0, and let x j ∈ X−
i if 〈x j, vi〉〈x j, vm〉 < 0.

If x j ∈ X+
i then there exists a side e j of πm,i Z with exterior unit vector w j such that e j is a

translate of [−πm,i x j,πm,i x j], and for y ∈ e j , we have 〈w j, y〉 � 〈w j, vm − vi〉. Since 〈vi, x j〉 > 〈vm, x j〉
and e j ⊂ (1 + ε)πm,i Z∞ , for any y ∈ e j we have

1 − ε � 〈vm, y〉 � 1 + ε.

It follows that ∑
x j∈X+

∣∣〈vm, x j〉
∣∣ � ε.
i
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Together with the analogous result for X−
i , we conclude that |〈x, vm〉| � 2ε for x ∈ Zi , which in turn

yields (19).
Now combining (19) and Z∞ ⊂ Z1 + · · · + Zn , we obtain

1 � 〈vi, yi〉 + (n − 1)2ε,

and hence Zi ⊂ si + 2nεZ∞ follows by another application of (19). Since

Z∞ ⊂ Z ⊂
n∑

i=1

(si + 2nεZ∞) = (s1 + · · · + sn) + 2n2εZ∞ ⊂ (s1 + · · · + sn) + 1

2
Z∞,

we conclude Zi ⊂ si + 4nε(s1 + · · · + sn). �
5. Applications to stochastic geometry

In this section, we show how two known uniqueness results in stochastic geometry can be
strengthened by applying the present stability result for the volume product of zonoids and the stabil-
ity improvement of the Blaschke–Santaló inequality (see [8]). For notation and details from stochastic
geometry, we refer to [54]. Throughout we assume that d � 3. All results remain true for d = 2, but
then improved stability estimates are available.

Let X̂ be a nondegenerate stationary Poisson hyperplane process in R
n of intensity γ̂ and with

direction distribution ϕ̂ . For each realisation of X̂ , the hyperplanes dissect R
n into nonoverlapping

cells, which are almost surely convex polytopes. With probability one, the origin o is contained in the
interior of a unique cell Z0, which is called the zero cell. Thus Z0 is a random polytope generated
by X̂ . The number of vertices f0(Z0) of Z0 is a random variable and E f0(Z0) denotes its mathematical
expectation. It is known that

E f0(Z0) � 2n (20)

with equality if and only if the hyperplanes of X̂ are almost surely parallel to n fixed hyperplanes with
linearly independent normal vectors, i.e. if and only if the associated mosaic is a parallel mosaic with
fixed directions of the bounding hyperplanes (cf. [54, Theorem 10.4.9]). It is clear that such a mosaic
yields the value 2n , but it is not clear at all that this is the minimal value and that this minimal
value is only attained for parallel mosaics. For a proof of (20), it is first shown by integral geometric
methods that (cf. [54, p. 505])

E f0(Z0) = 2−nn! · |Π X̂ | · ∣∣Π ∗̂
X

∣∣ = 2−nn! · P(Π X̂ ), (21)

where Π X̂ is the associated (centred) zonoid of X̂ (cf. [54, p. 156, (4.59)]) and Π ∗̂
X

:= (Π X̂ )∗ is its
polar body. The zonoid Π X̂ is defined by

h(Π X̂ , u) = γ̂

2

∫
Sn−1

∣∣〈u, v〉∣∣ ϕ̂(dv).

From (21) and the lower bound 4n/n! for the volume product of zonoids (cf. (2)), the estimate (20)
follows.

We now aim to show that

E f0(Z0) � (1 + ε) · 2n, (22)
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for some ε ∈ [0,1], implies that the associated mosaic is almost (in a suitable sense) a parallel mo-
saic. This statement will be made precise, by providing a stability result for the underlying direction
distribution ϕ̂ of X̂ .

Assume that (22) is satisfied for some ε ∈ [0,1]. Then (21) implies that

P(Π X̂ ) = |Π X̂ | · ∣∣Π ∗̂
X

∣∣ � (1 + ε) · 4n

n! .

An application of Corollary 1.2 yields that

δBM
(
Π X̂ , Cn) � 1 + αn · ε.

Hence there exist positive numbers λ̃1, . . . , λ̃n > 0 and unit vectors v1, . . . , vn such that the parallelo-
tope (centred affine cube)

Pn :=
n∑

i=1

1

2
λ̃i[−vi, vi]

satisfies

Pn ⊂ Π X̂ ⊂ (1 + αnε)Pn. (23)

Putting

ρ̃ :=
n∑

i=1

λ̃iδ{−vi ,vi},

we have

h
(

Pn, u
) = 1

2

∫
Sn−1

∣∣〈u, v〉∣∣ ρ̃(dv), u ∈ S
n−1.

Thus (23) yields that, for u ∈ S
n−1,∫

Sn−1

∣∣〈u, v〉∣∣ρ0(dv) �
∫

Sn−1

∣∣〈u, v〉∣∣ ϕ̂(dv) � (1 + αnε) ·
∫

Sn−1

∣∣〈u, v〉∣∣ρ0(dv), (24)

where ρ0 := (1/γ̂ ) · ρ̃ . Note that since ϕ̂ is a probability measure,

0 <

∫
Sn−1

∣∣〈u, v〉∣∣ρ0(dv) �
∫

Sn−1

∣∣〈u, v〉∣∣ ϕ̂(dv) � 1.

Let e1, . . . , en denote an orthonormal basis of R
n . Then

n∑∣∣〈ei, v〉∣∣ � 1 (25)

i=1
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for all v ∈ S
n−1, and thus

ρ0
(
S

n−1) �
n∑

i=1

∫
Sn−1

∣∣〈ei, v〉∣∣ ϕ̂(dv) � n.

This yields the rough estimate

‖ϕ̂ − ρ0‖TV � n + 1

for the total variation norm ‖ϕ̂−ρ0‖TV of ϕ̂−ρ0 =: μ. After these preparations, we apply Theorem 5.1
and the subsequent discussion on page 44 in [28] with Φ(t) := |t| (cf. [9,24]). This yields∣∣∣∣ ∫

Sn−1

F dμ

∣∣∣∣ � c1(n, τ )‖F‖BL‖μ‖1−τ
TV ‖TΦμ‖τ ,

where c1(n, τ ) is a constant depending only on n and τ (for c1(n, τ ) an explicit estimate can be
provided), F : S

n−1 → R is an arbitrary bounded Lipschitz function with bounded Lipschitz norm

‖F‖BL := ‖F‖∞ + ‖F‖L, ‖F‖∞ := sup
x

∣∣F (x)
∣∣, ‖F‖L := sup

x�=y

F (x) − F (y)

‖x − y‖ ,

τ ∈ (0,2/(n + 4)), ‖ · ‖ denotes the L2-norm on S
n−1, and

(TΦμ)(u) :=
∫

Sn−1

∣∣〈u, v〉∣∣μ(dv), u ∈ S
n−1.

From (24), we get

‖TΦμ‖ � nκn‖TΦμ‖∞ � c2(n) · ε.

Thus, choosing τ = 1/(n + 4), we conclude∣∣∣∣ ∫
Sn−1

F dμ

∣∣∣∣ � c3(n)‖F‖BL · ε 1
n+4 .

Let dD denote the Dudley metric (also called Fortet–Mourier metric) on the space of finite Borel
measures. This metric is defined by

dD(ν1, ν2) := sup

{∣∣∣∣ ∫
Sn−1

F d(ν1 − ν2)

∣∣∣∣: ‖F‖BL � 1

}
,

for finite Borel measures ν1, ν2 on S
n−1; see [14,20,28], [56, Chapter 6] for some additional informa-

tion on this metric. Then we obtain

dD(ϕ̂,ρ0) � c3(n) · ε 1
n+4 .
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Choosing F ≡ 1 and putting ρ := (1/ρ0(S
n−1)) · ρ0, we get

dD(ρ,ρ0) �
∣∣1 − ρ0

(
S

n−1)∣∣ � c3(n) · ε 1
n+4 ,

and therefore

dD(ϕ̂,ρ) � 2c3(n) · ε 1
n+4 .

Hence, by the proof of [14, Theorem 11.3.3; p. 311, l. 10] (cf. also [13] and [20, Lemma 9.5]), we
obtain a similar estimate for the Prokhorov metric dP, that is

dP(ϕ̂,ρ) � 2dD(ϕ̂,ρ)
1
2 � 4c3(n) · ε 1

2(n+4) .

Better known than the Dudley metric is the Wasserstein distance W1 (which is also called the
Kantorovich–Rubinstein distance) for probability measures. If ν1, ν2 are two probability measures,
then it can be defined by

dW(ν1, ν2) := sup

{∣∣∣∣ ∫
Sn−1

F d(ν1 − ν2)

∣∣∣∣: ‖F‖L � 1

}
,

according to a well-known duality formula for the Kantorovich–Rubinstein distance. Obviously, we
have dD � dW. Let e ∈ S

n−1 be arbitrary, but fixed. If F : S
n−1 → R satisfies ‖F‖L � 1 and F (e) = 0,

then ‖F (x)‖ � 2 for all x ∈ S
n−1, and therefore ‖ 1

3 F‖BL � 1. Using that ν1, ν2 are probability measures,
we get

dW(ν1, ν2) = sup

{∣∣∣∣ ∫
Sn−1

F d(ν1 − ν2)

∣∣∣∣: ‖F‖L � 1, F (e) = 0

}

� sup

{
3 ·

∣∣∣∣ ∫
Sn−1

1

3
F d(ν1 − ν2)

∣∣∣∣: ∥∥∥∥1

3
F

∥∥∥∥
BL

� 1

}
= 3 · dD(ν1, ν2),

and hence dW � 3 · dD.
This shows in a quantitative way that the direction distribution of X̂ is close to the direction

distribution of a parallel mosaic.

Theorem 5.1. Let X̂ be a nondegenerate stationary Poisson hyperplane process in R
n with intensity γ̂ and

direction distribution ϕ̂ . Then there is a constant c(n) such that the following is true. If

E f0(Z0) � (1 + ε) · 2n,

for some ε ∈ [0,1], then there exist positive numbers λ1, . . . , λn > 0 and linearly independent unit vectors
v1, . . . , vn such that

ρ :=
n∑

λiδ{−vi ,vi}

i=1



K.J. Böröczky, D. Hug / Advances in Applied Mathematics 44 (2010) 309–328 325
is a probability measure and

dW(ϕ̂,ρ) � c(n) · ε 1
n+4 , dP(ϕ̂,ρ) � c(n) · ε 1

2(n+4) .

The derivation of Theorem 5.1 is based on Corollary 1.2. Therefore the constant c(n) is not explicitly
given. Using instead Theorem 1.1, we obtain an explicit bound for c(n), but then we have to replace
ε by ε1/n in the conclusion of Theorem 5.1.

We turn to the upper bound

E f0(Z0) � 2−nn!κ2
n , (26)

where κn is the volume of the Euclidean unit ball Bn
2. Equality holds in (26) if and only if there is

some α ∈ GL(n) such that α X̂ is isotropic, i.e. the direction distribution ϕ̂α of α X̂ is normalised spher-
ical Lebesgue measure. These assertions follow from (21) and from the Blaschke–Santaló inequality (1)
for centred convex bodies, that is

P(Π X̂ ) = |Π X̂ | · ∣∣Π ∗̂
X

∣∣ � κ2
n

with equality if and only if Π X̂ is a centred ellipsoid. The latter is equivalent to saying that there is
some α ∈ GL(n) such that α−tΠ X̂ = Πα X̂ is a ball, i.e. α X̂ is isotropic (cf. [54, pp. 505–506]). Here αt

is the adjoint linear map of α and α−t denotes the inverse of the adjoint linear map.
Now assume that

E f0(Z0) � (1 − ε) · 2−nn!κ2
n , (27)

for some ε ∈ [0,1/2). Then (21) and (27) imply that

P(Π X̂ ) = |Π X̂ | · ∣∣Π ∗̂
X

∣∣ � (1 − ε) · κ2
n .

By Theorem 1.1 and the subsequent remark in [8], we deduce that there is some α ∈ GL(n) such that

Bn
2 ⊂ α−tΠ X̂ ⊂ (

1 + c5(n)ε
1

3n | logε| 1
3
) · Bn

2.

This implies that ∫
Sn−1

∣∣〈u, v〉∣∣σ0(dv) � γ̂α

2

∫
Sn−1

∣∣〈u, v〉∣∣ ϕ̂α(dv)

�
(
1 + c5(n)ε

1
3n | logε| 1

3
) ∫
Sn−1

∣∣〈u, v〉∣∣σ0(dv), (28)

where

σ0 := n

2

κn

κn−1
σ ,

σ is the normalised spherical Lebesgue measure, and γ̂α , ϕ̂α are the intensity and the direction
distribution of α X̂ . Specifically, we have

h
(
α−tΠ X̂ , u

) = γ̂α

2

∫
n−1

∣∣〈u, v〉∣∣ ϕ̂α(dv),
S
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where

γ̂α := γ̂ ·
∫

Sn−1

∥∥α−t v
∥∥ ϕ̂(dv)

and

ϕ̂α := γ̂

γ̂α
·

∫
Sn−1

1
{

α−t v

‖α−t v‖ ∈ ·
}∥∥α−t v

∥∥ ϕ̂(dv).

Thus (28) leads to

∫
Sn−1

∣∣〈u, v〉∣∣σ1(dv) �
∫

Sn−1

∣∣〈u, v〉∣∣ ϕ̂α(dv)

�
(
1 + c5(n)ε

1
3n | logε| 1

3
) ∫
Sn−1

∣∣〈u, v〉∣∣σ1(dv), (29)

where σ1 := (γ̂α)−1 nκn
κn−1

· σ .
Using (28) and choosing τ = 3/(2(n + 4)), we can argue as before and finally get, for any bounded

Lipschitz function F on S
n−1, ∣∣∣∣ ∫

Sn−1

F d(ϕ̂α − σ1)

∣∣∣∣ � c6(n)‖F‖BL · ε 1
6n2 .

The preceding estimate implies that |1 − σ1(S
n−1)| � c6(n) · ε 1

6n2 , and hence

dD(ϕ̂α,σ ) � 2c6(n) · ε 1
6n2 .

As before, this yields estimates for the Wasserstein and the Prokhorov distance.

Theorem 5.2. Let X̂ be a nondegenerate stationary Poisson hyperplane process in R
n with intensity γ̂ and

direction distribution ϕ̂ . Then there is a constant c′(n) such that the following is true. If

E f0(Z0) � (1 − ε) · 2−nn!κ2
n ,

for some ε ∈ [0,1/2), then there is some α ∈ GL(n) such that the direction distribution ϕ̂α of α X̂ satisfies

dW(ϕ̂α,σ ) � c′(n) · ε 1
6n2 , dP(ϕ̂α,σ ) � c′(n) · ε 1

12n2 .

This shows that the direction distribution of α X̂ is almost isotropic.
Similar results follow for E f1(Z0), since the zero cell is almost surely a simple polytope, and hence

E f1(Z0) = n
E f0(Z0).
2
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In three dimensions, one can use Euler’s relation to obtain a result for

E f2(Z0) = 2 + 1

2
E f0(Z0),

cf. a remark in [52, Section 2].
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