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a b s t r a c t

It has long been speculated that cellular microdomains are important for many cellular processes, espe-
cially those involving Ca2+ signalling. Measurements of cytosolic Ca2+ report maximum concentrations of
less than few micromolar, yet several cytosolic enzymes require concentrations of more than 20 �M Ca2+

to be activated. In this paper, we have resolved this apparent paradox by showing that the surface topol-
ogy of cells represents an important and hitherto unrecognized feature for generating microdomains of
high Ca2+ in cells. We show that whereas the standard modeling assumption of a smooth cell surface
predicts only moderate localized effects, the more realistic “wrinkled” surface topology predicts that

2+
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Ca concentrations up to 80 �M can persist within the folds of membranes for significant times. This
intra-wrinkle location may account for 5% of the total cell volume. Using different geometries of wrinkles,
our simulations show that high Ca2+ microdomains will be generated most effectively by long narrow
membrane wrinkles of similar dimensions to those found experimentally. This is a new concept which
has not previously been considered, but which has ramifications as the intra-wrinkle location is also a

h Ca2+
strategic location at whic
expansion.

. Introduction

The ability to restrict enzyme activation to sub-domains within
he cell is crucial for cell behaviour, such as migration, directed
seudopodia formation and cell polarization. Although calpains are
nown to be important in these activities [1–3] since they are rel-
tively non-specific proteases, their unrestricted activation would
reak havoc within the cell. As these enzymes are only activated

y very high Ca2+ concentrations, i.e. concentrations that are much
igher than reached within the bulk cytosol, the activation signals
ust be restricted to strategic locations within the cell. While the

xistence of high Ca2+ microdomains within cells has long been dis-
ussed [1–3], theoretical considerations have suggested that this
evel of Ca2+ can only exist transiently in limited cytosolic space

ithin 100 nm off the open mouth of Ca2+ influx channels [2,3].

owever, these models have been based on topological smooth cell

urfaces, rather than more realistic micro-topologies which often
nclude irregular surface wrinkles.
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acts as a regulator of the cortical cytoskeleton and plasma membrane
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The surface of cells is rarely smooth and often appears wrinkled
when viewed with sufficient resolution, such as scanning electron
microscopy or atomic force microscopy [4,5]. Typical non-tissue
cells, such as neutrophils, macrophages, lymphocytes and mast
cells [5,6], have multiple cells wrinkles, which when viewed by
transmission microscopy appear as microvilli. These wrinkles are
permanent or semi-permanent structures which have a specific
spectrum of surface molecules, such as integrins and selectins on
neutrophil [7] and lymphocytes [8] and are sub-light microscopic,
being about 100 nm wide and projecting 800 nm from the cell sur-
face [6]. In macrophages and neutrophils, these wrinkles act as a
membrane reservoir for the “expansion” of the cell surface area
during phagocytosis [9,10] and spreading [11]. The cytosolic free
Ca2+ signal which accompanies these events [12,13] permits the
unwrinkling of the membrane and involves activation of the Ca2+

dependent protease calpain-1 [10,11,13] which probably cleaves
proteins such as talin and ezrin [14] that hold the wrinkles in place.
As the concentration of Ca2+ required for calpain-1 activation is at
least 2 orders of magnitude higher than the resting level of cytosolic
free Ca2+, i.e. 10–50 �M [15–17], this activation signal must clearly
be restricted to strategic locations within the cell. Experimentally,
transient Ca2+ puffs can be observed within the bulk cytosol as Ca2+

Open access under CC BY license.
is released from storage sites within a number of non-excitable
cell types [18–20]. However, the cytosolic free Ca2+ concentration
reached is within the physiological range of 0.1–1 �M similar to
that in the bulk cytosol during Ca2+ influx. Nevertheless, the exis-
tence of high Ca2+ microdomains near the plasma membrane has
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Fig. 1. The wrinkled surface of neutrophils. The figure shows (a) the wrinkled struc-
ture of an unstimulated neutrophil imaged using scanning electron microscopy
(scale bar = 5 �m). (b) The wrinkled surface segment generated in our model, based
on a half circle with a radius of 5 �m. (c) Its rotation about the z-axis to give a 3D
wrinkled sphere. (d) A similar method was adopted to generate the mathematically

The first term in this expression represents the resting flux of
Ca2+ across the membrane. The second term represents the pump-
ing of Ca2+ out of the cell, while the third term represents the
Ca2+-influx following stimulation of the cell. Although it is pos-

Table 1
List of constants.

Constant Value References

Prest 8 × 10−5 �m/(s cell) [32–34]
[Ca2+]ext 1 mM
Jefflux 1.28 × 10−15 �mol/(�m2 s) Estimated
Km 1.5 �M [31]
Jstim 9.3 × 10−13 �mol/(s cell) Estimated
40 J.C. Brasen et al. / Cell

ong been suspected [1,2] and apparently physiological secretion of
ecretory granules seem to require high (50–100 �M) Ca2+ concen-
rations [21], suggesting that high cytosolic free Ca2+ is generated
hysiologically. Recently, it has been shown that TRPM2 channel
pening is also activated by high micromolar cytosolic Ca2+ con-
entrations [22,23].

However, theoretical models [1–3] based on smooth spherical
or other shaped) surfaces have suggested that this level of Ca2+

an only exist transiently very near the open mouth of Ca2+ influx
hannels (within 100 nm). Therefore only molecules very close to
pen channels would sense such signals. Since it is speculated that
igh Ca2+ would be strategically important within wrinkles, we
herefore sought to construct a model which included a wrinkled
ell surface in order to establish whether the wrinkled topology
ad a significant influence on the near membrane Ca2+ concentra-
ion during Ca2+ influx. We show here that the wrinkled surface
f cells provides a mechanism for generating high Ca2+ domains
here the concentration of Ca2+ reaches tens of micromolar while

he bulk cytosol remains sub-micromolar and that any cell with
wrinkled surface topology can have high Ca2+ microdomains

ue to this effect. These anatomical structures provide a hitherto
nrecognised mechanism for restricting the activation of Ca2+ acti-
ated enzyme activity to near membrane microdomains within
he cell.

. The concept of the model

In order to generate a wrinkled cell surface to investigate the
ffect of Ca2+ influx, we created a 2D wrinkled surface segment
Fig. 1b) with intracellular node points from which Ca2+ concentra-
ion was calculated using finite element method. All simulations
ere made in 2D using axial symmetry and cylindrical coordinates.
y rotation of this segment about its z-axis, the corresponding
D surface was created which included parallel wrinkles (Fig. 1c).
lthough the wrinkles on the surfaces of actual cells are at random
rientations (Fig. 1a), the model wrinkles have the same appro-
riate cross-section in 2D and are extended membrane folds as

n the real-life situation (Fig. 1c). Furthermore, the surface area
f the wrinkles matches that in real cells. The same algorithms
ere used to calculate cytosolic free Ca2+ changes in both the
rinkled surface and the smooth surfaced model (Fig. 1d). The
a2+ concentration was calculated using standard equations for
iffusion of free and buffered Ca2+, influx of Ca2+ and ATP driven
a2+ extrusion. The model includes the three variables: cytosolic
ree Ca2+, Ca2+ bound to intracellular buffer and free Ca2+ buffer.
he partial differential equations used to calculate changes in
he concentration of free Ca2+, protein and protein bound Ca2+

re;

∂[Ca2+]
∂t

= DCa2+∇2[Ca2+] − R (1)

∂[Buffer]
∂t

= DBuffer∇2[Buffer] − R (2)

∂[Ca2+ : Buffer]
∂t

= DCa2+:Buffer∇2[Ca2+ : Buffer] + R (3)

here Di is diffusion constants and R is the reaction:

= kf [Ca2+] · [Buffer] − kr[Ca2+ : Buffer] (4)
here kf and kr are the rate constants (see Table 1). At the cen-
ral axis axial symmetry was used for all species. For Buffer and
a2+ bound buffer (Ca2+:Buffer) the boundary at the membrane
as modelled with symmetry/insulation. For cytosolic free Ca2+

he boundary condition at the membrane surface is given by the
ux:
smooth sphere. (e) The wrinkle geometry was based on an ellipse where the major
axis (L2, taken here as 1400 nm) and the minor axis (L1, taken here as 100 nm), is
connected to the surface with two circles with a radius of 100 nm. The base of the
wrinkle is more than twice as wide as the ellipse—in this case around 217 nm.

J = Prest([Ca2+]ext − [Ca2+]) − Jefflux[Ca2+]

Km + [Ca2+]
+ kopen × Jstim

Area
(5)
Area (wrinkled model) 8.706643 × 102 �m2

Area (smooth) 3.122003 × 102 �m2

kf 50 × 106 �M/s [2,25–29]
kr 25 l/s [2,25–29]
DCa2+ 233 �m2/s [38]
DBuffer 13 �m2/s [38]
DCa:Buffer 13 �m2/s [38]
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Table 2
Initial conditions for variables.

Variable Value References
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[Ca2+]cyt 100 nM [13]
[Buffer] 0.633 mM [37]
[Ca:Buffer] 0.126 mM [37]

ible that some Ca2+ influx channels may be localized to surface
rojections such as sensory microvilli [24], we have taken the con-
ervative assumption that Ca2+ channels were distributed equally
ver the cell membrane. In this way, the model had not an in-built
ias towards higher cytosolic free Ca2+ within the wrinkled areas
f membrane.

.1. The details of the model

The parameters used in the equations and the initial conditions
re listed in Tables 1 and 2, respectively. Using the same numeri-
al values for Ca2+ influx, efflux, buffering and diffusion, we have
odelled two cases; one of a smooth spherical cell surface, and

he other for a more realistic topology with a “wrinkled” surface.
he terms describing the flux of Ca2+ across the membrane is taken
rom neutrophils, because in these cells, surface wrinkles are of

particular interest and partly because many of the parameters
equired have been quantified in these cells. The model, however,

mploys the essential features of Ca2+ modelling from other mod-
ls [2,25–29] and diffusion terms which are assumed to be general
or all cells. The model can therefore be generalised to any cell type
nd the effect of surface wrinkling on the generation of high Ca2+

icrodomains established.

ig. 2. Activation of Ca2+ influx. The additional influx is modeled using the variable kopen

hen the additional Ca2+ influx is active for 1 s in the model with wrinkles (A) kopen has th
also for 1 s). In the simulation where the influx of Ca2+ is active for 0.25 s kopen is 800 in
rea under the curves in (A) and (B) are the same and also in (C) and (D), so the total influ
m 47 (2010) 339–349 341

2.2. Model parameters

2.2.1. Ca2+ pumping
The passive Ca2+ leak across the plasma membrane

(Prest([Ca2+]ext − [Ca2+])) (Eq. (5)) is balanced by a pumped efflux
across the membrane (Jefflux[Ca2+]/(Km + [Ca2+])) mediated by a
Ca2+-ATPase (Eq. (5)) [30,31]. The maximal efflux of Ca2+ (Jefflux)
was therefore calculated to balance influx resultant from a resting
permeability coefficient for Ca2+ of 8 cm/s [32–34]. Other pumping
rates were calculated assuming Henri–Michaelis–Menten kinetics,
which were qualitatively similar to results obtained if we instead
used Hill kinetics [31]. The affinity of Ca2+ for the Ca2+-ATPase was
set as constant Km = 1.5 �M. Although the affinity may increase
following calmodulin activation [31], the model was not qualita-
tively sensitive to changes in this parameter over the time scale of
our simulations (0.1–5 s) (data not shown).

2.2.2. Stimulated Ca2+ influx
A number of different stimuli generate a large increase in cytoso-

lic Ca2+ in neutrophils. There is evidence to suggest that part of
the influx is mediated by the non-selective cationic TRP channels,
especially TRPM2 [35,36]. We estimate that the number of open
channels must be at least 100–150 cell−1 during the first second
of stimulation for a Ca2+ influx sufficiently large to generate the
observed change in bulk cytoplasmic Ca2+ concentration [36]. It is
assumed that the opening of Ca2+ channels is randomly distributed

on the cell surface in the same way as Ca2+-ATPase. The effect of
channel opening on cytosolic free Ca2+ (kopen) depends on the time
at which there is an increased open probability, which is shown in
Fig. 2 for 1 s (Fig. 2A) and for 0.25 s (Fig. 2B) when we simulate the
influx in the wrinkled model.

, that increases from 0 to a value over a short time and then again decreases to 0.
e value of 200 for 1 s and (C) in the model without wrinkles it has the value of 189
the wrinkled model (B) and 756 in the model without wrinkles (D). Note that the
x of Ca2+ due to additional activation is the same.
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When we simulate the Ca2+ influx in the model without wrinkles
e use the functions shown in Fig. 2C and D which essentially are

he same as Fig. 2A and B, but has a slightly lower value such that the
hange in the bulk concentration of Ca2+ is the same. The additional
nflux is modelled using a built-in continuous function to simulate
step function. The extra influx is modelled as if it is independent
n the extracellular Ca2+ concentration and we have normalized
he influx such that the total Ca2+ influx is the same in the smooth
urface and the wrinkled surface model. This implies that the influx
r membrane area is higher in the model without wrinkles.

.2.3. Cytosolic Ca2+ buffering and diffusion
Cytosolic Ca2+ buffering results from binding of Ca2+ to both

roteins and small molecules, which in neutrophils is equivalent
o a total buffer concentration of 0.76 mM with an average Kd of
.5 �M [37]. We model the buffering with an equilibrium reaction
nd model all three species (Eqs. (1)–(3)). Although the buffer is a
ixture of a diverse group of molecules, we have used previously

ublished diffusion constants for Ca2+ and the molecules that buffer
a2+ [38].

.2.4. Geometry
The radius of the spherical surface of the neutrophil was taken

s 5 �m (Fig. 1b), on which were superimposed wrinkles perpen-
icular to the membrane pointing away from the centre of the cell
Fig. 1e). The wrinkles are based on an ellipse which is 1400 nm
ong and 100 nm wide. The ellipse is connected to the “cell” 100 nm
way from the cell using two circles with a radius of 100 nm. Thus,
he wrinkles are 100 nm wide 100 nm from the cell surface and

ore than 200 nm wide at the surface (Fig. 1e). In a related myeloid
ell type, similar wrinkles have been shown to have a width at
he base of 100 nm and a height above the spherical surface of
00 nm [6]. In neutrophils scanning electron microscopy suggests
hat their surface wrinkles are essentially similar [39]. The model
f the cell therefore has wrinkles perpendicular to the cell surface
nd pointing directly at the centre of the cell (Fig. 1b). By revolv-
ng the segment about its z-axis, a 3D surface is generated which
as similarity to the wrinkled surface of a neutrophil. The same
pproach was used to generate the smooth cell model. The surface
rea of the wrinkled cell is 871 �m2, where 73% of the membrane is
n the wrinkles. The smooth cell has a surface area of 314 �m2. The
otal length of the wrinkles is 446 �m as measured from where the
rinkle begins to protrude out of the cell membrane (see Fig. 1e).
pproximately 4% of total cell volume is in wrinkles.

.2.5. Model implementation
The smooth and wrinkled models were implemented and solved

n COMSOL Multiphysics, Chemical Engineering Module (COMSOL
B.). They were simulated using Direct (Pardiso) solver, with rel-
tive and absolute tolerances of 1E−7 and 1E−8, respectively, and
ith the time step restricted to maximum 0.1 s. The models are

vailable as a COMSOL model report (supplementary material 1).

. Results

.1. Effect of Ca2+ influx on sub-plasma membrane Ca2+

oncentration

As a high sub-plasma membrane Ca2+ concentration is proposed
o be functionally important in both exocytsosis [21] and mem-

rane unwrinkling during phagocytosis [10] and cell “spreading”
11] of neutrophils, we have in the simulations used parameters
hich are applicable to micro-anatomy and Ca2+ in these cells.

he values and published sources of these parameters are given
n Tables 1 and 2. The exact nature, number or distribution of Ca2+
m 47 (2010) 339–349

influx channels on the surface of neutrophils is not known, but it
can be estimated that there are at least 100–150 channels/cell (see
above). Assuming a random distribution of the channels 70–100
of these are situated in the wrinkles. When simulated Ca2+ influx
was run for a Ca2+ influx phase of 1 s period, the bulk cytosolic free
Ca2+ rose after a delay of about 100 ms to a value of about 800 nM
(Fig. 3c) in both the smooth and the wrinkled cell. The timing and
extent of this rise agree with the timing and magnitude experimen-
tally determined in neutrophil populations, suggesting that simple
diffusion of influxing Ca2+ is the dominant mechanism for the bulk
Ca2+ signal as in chick sensory neurones [40]. Similar relationships
were found for Ca2+ influx occurring uniformly across either the
smooth or the wrinkled spherical surface. However, Ca2+ concen-
trations 5 nm from the end of the horizontal wrinkle (i.e. parallel
to the z-axis, as indicated in Fig. 3b), were significantly higher than
5 nm beneath the plasma membrane of the smooth sphere (Fig. 3a
and b). In all subsequent analyses, we have similarly taken these
two points as measures of “the near membrane Ca2+ concentra-
tion”. The initial rise in cytosolic Ca2+ occurred at the onset of Ca2+

channel opening, and was followed by a further rise during open
channel period. In the simulation, this was followed by an abrupt
decline to the bulk cytosolic level when the channels were closed
(Fig. 3a and b).

3.2. Effect of Ca2+ buffer diffusion parameters on simulation

The additional Ca2+ within the wrinkles arose in part because
Ca2+ influx occurred across a larger surface area than for the equiv-
alent sub-membrane region in the smooth model. However, as the
larger surface area also included additional Ca2+ extrusion pumps,
the extent of the Ca2+ rise will depend on the rate of diffusion
of free and bound Ca2+ out of the narrow mouth of the wrinkle.
As the values for Ca2+ diffusion have not been accurately deter-
mined in neutrophils, we used the published values for free and
bound Ca2+ diffusion for oocyte cytosol as DCa2+ = 233 �m2/s;
Dbuffer = 13 �m2/s;DCa2+:buffer = 13 �m2/s [38]. While the diffusion
of free Ca2+ is unlikely to differ significantly in different cells, the
diffusion of “bound Ca2+” would depend on the nature of the cellu-
lar Ca2+ buffer. As neutrophils have a high cytosolic Ca2+ buffering
capacity [37,41] we therefore investigated the effect of diffusion
of the buffer on the model. In the smooth surface model, reduced
diffusion of buffered Ca2+ would have little effect on the peak Ca2+

concentration (Fig. 4a). However, the peak Ca2+ concentration in
the wrinkles is sensitive to this parameter and rises steeply as the
diffusion constant of buffered Ca2+ is reduced (Fig. 4b). However, as
this parameter cannot be measured locally in neutrophils, in subse-
quent simulations the “standard” diffusion parameters have been
used.

3.3. Effect of Ca2+ influx parameters on simulation

The parameter which gives the largest effect in our model is
the Ca2+ channel opening time (Fig. 4c and d). If this period is
reduced, while the number of open channels is adjusted to give the
same Ca2+ influx (see Fig. 2), there is little effect on the peak sub-
membrane Ca2+ generated in the smooth surface model (Fig. 4c). In
contrast, reducing the Ca2+ channel opening time to 0.25 s or 0.1 s,
increases the peak Ca2+ in wrinkles to 20 �M and 80 �M, respec-
tively (Fig. 4d). In our initial simulations, we took the Ca2+ rise
time in neutrophil populations as an estimate of the timing of this
increased Ca2+ channel open probability to about 1 s. However, the

responses of neutrophils are asynchronous in the subsecond time
scale, with individual cells having variable delays [42]. The pop-
ulation response is thus a time-averaged signal. When the rise of
cytosolic free Ca2+ is monitored in individual neutrophils, the Ca2+

rise is actually faster, occurring over 100–250 ms (Fig. 4e). Similar
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Fig. 3. Simulations of stimulated Ca2+ influx (1 s duration). The near membrane Ca2+ concentration is shown for (a) the smooth cell model (5 nm beneath the plasma membrane
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s indicated with the arrow) and (b) the wrinkled cell model (5 nm from tip of wrin
f either model cell is similar as shown in (c). The concentration of Ca2+ at time 2.0 s
or these simulations, the effect of 1 s duration Ca2+ influx (1–2 s on time scale) is sh
o color in this figure legend, the reader is referred to the web version of the article

inetics to those observed experimentally are predicted by our sim-
lations for the period of Ca2+ channel opening of around 250 ms
Fig. 4e and f). With an influx time of 0.25 s, the model predicts
hat cytosolic Ca2+ concentration at the centre of the cell will start
o increase about 100 ms after the Ca2+ influx is initiated and that
he plateau is reached 0.8 s after initiation of Ca2+ influx (Fig. 4f).
he apparent time delay between the onset of Ca2+ influx and until
he maximum concentration is reached in the cell is also within the
ame order as observed experimentally [43] (see Figs. 3 and 4 [43]).

.4. Large intra-wrinkle Ca2+ concentration changes

Using experimentally determined timing and magnitudes for
he bulk Ca2+ signal, the model predicts significantly raised intra-
rinkle Ca2+ concentrations of near 20 �M (Fig. 5a and b, and movie
(supplementary material)) over a significant volume of cytosol

about 4% of the total cell volume as mentioned earlier). Under these
onditions, the distribution of Ca2+ concentrations with respect to
he distance to the cell surface within the cell at the time when
a2+ peaked (0.25 s after the additional influx is activated), shows
clear boundary approximately 1 �m within the cell (Fig. 5c and
), where the cytosolic Ca2+ is essentially the same as predicted
or the smooth surface. However, in the outer most micron, Ca2+

ises with a different gradient as the wrinkle is entered (Fig. 5c
nd d). The sudden rise in free Ca2+ (Fig. 5b) exists because the

mount of free buffer is exhausted locally. The ratio between free
a2+ and bound Ca2+ is plotted in Fig. 6. Before the influx is started
he ratio is 7.9 × 10−4 close to membrane, as a result of the steady
tate between influx and efflux of Ca2+. The ratio changes less than
factor of 10 following Ca2+ influx. However, in the wrinkled sur-
indicated with the arrow at the red mark). The concentration of Ca2+ in the centre
alised in the two models with colours using the same colour range as shown in (c).

sing the characteristics shown in Fig. 2A and B. (For interpretation of the references

face model, the ratio changes by a factor of 30 during 0.25 s Ca2+

influx and the buffer is almost depleted locally (Fig. 6d). It should
be noted that the total cellular buffer capacity is not exhausted
(Fig. 6d), but that the effect is localised to the wrinkles. This is
because free buffer from the bulk cytosol cannot diffuse into the
wrinkles sufficiently fast to replace the Ca2+ bound buffer. This is in
contrast to the smooth surface model, where diffusion of the free
buffer is unrestricted (Fig. 6c). The general conditions required for
establishing a local high Ca2+ domain can therefore be defined as a
region of cytosol having rapid access to Ca2+ whose buffering capac-
ity is limited or not easily refilled. In such cases, a microdomain
of high Ca2+ may be generated. This outermost micron is thus a
microdomain whose Ca2+ concentration rises to significantly higher
levels than the bulk cytosolic concentration. This concentration of
Ca2+ may well represent a lower limit since the diffusion constants
of buffered Ca2+ in small cells may be lower than in the larger
oocytes which we used here. The presence of organelles close to
the membrane could add further restrictions to the diffusion and
increase the magnitude of the microdomains.

Since Ca2+ storage organelles, endoplasmic reticulum and sar-
coplasmic reticulum, can be located within 25 nm of the plasma
membrane [44,45], and create Ca2+ microdomains [46,47], it
was important to investigate whether such located organelles
influence the topology generated Ca2+ microdomains. Assuming
that these organelles take-up Ca2+ with standard kinetics (Jefflux

[Ca2+]/(Km + [Ca2+]) and with unlimited capacity and with no leak-
age, Ca2+ microdomains within the wrinkles would be elevated
further. To compensate for near extracellular concentrations of
Ca2+ in this model we have scaled the influx parameter Jstim with
(1 − [Ca2+]/[Ca2+]ext) in all the simulations. If only a part of the mem-



344 J.C. Brasen et al. / Cell Calcium 47 (2010) 339–349

Fig. 4. Effect of Ca2+ buffer diffusion and influx timing parameters of simulations of stimulated Ca2+ influx. Peak Ca2+ concentration, calculated as in Fig. 3, are shown (a and
b) with different values of the protein diffusion constants (Dbuffer and DCa:buffer) and (c and d) with different channel open times. In (a and b) the channel open time is constant
1 s and in (c and d) the diffusion constants are the same as in Table 1. The ratio D∗

buffer
/Dbuffer indicates the relative change of the diffusion constant for the buffer with respect
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o the diffusion constant in Table 1 (Dbuffer). Ca influx periods in (a and c) the sm
he constant kopen was adjusted to give the same net change in global cytosolic Ca2+

y Ca2+ influx, stimulated with f-met-leu-phe (1 �M), is shown as a confocal xt scan
odel prediction for Ca2+ influx for 0.25 s.

rane was covered the near membrane Ca2+ concentration in the
rinkles increased to around 0.45 mM (Fig. 7a and c), or 1 mM when

he entire membrane was sheltered (Fig. 7b and d). These effects are
ue to the organelle near the wrinkle obstructing diffusion of the
uffer, bound Ca2+ and free Ca2+ out of the wrinkle. If the dimen-
ion of the uptake organelle covering a few wrinkles was wider
han 0.8 �m near millimolar Ca2+ domains remained. Increasing
he influx of Ca2+ into the organelle by a factor of 10 or 100 also

ad only little impact on the Ca2+ microdomains. To reduce the
a2+ domains to 25 �M, the maximum uptake into the organelles
ust be increased by more than a factor of 1000 or the Ca2+ influx

educed to 13.5% of that used previously. When the influx of Ca2+

s just 20% of that in Fig. 5b, the model predicts the existence of
ell model and (b and d) the wrinkled cell model. For different times of Ca influx,
ig. 2). (e) An example of the global Ca2+ change in a single human neutrophil driven
uo3-loaded neutrophil and conventional time course. (f) This is compared with the

Ca2+ microdomains with a concentration of 0.1 mM. In both cases
the global Ca2+ concentration was only changed by less than 45 nM.
These simulations show that organelles if very close to the wrinkles
will increase the magnitude of the Ca2+ microdomains. It should
be noted that in a number of cell types, including neutrophils, the
endoplasmic reticulum does not extend to the plasma membrane,
and can thus have only little influence on the intra-wrinkle Ca2+

concentration.
3.5. Effect of wrinkle topology on Ca2+ microdomains

In this study, we have modelled the cell surface topology using
the winkle dimensions reported by scanning electron microscopy
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Fig. 5. Intra-wrinkle Ca2+ concentration changes (0.25 s influx). The near membrane Ca2+ concentration is shown for (a) the smooth cell model (5 nm beneath the plasma
membrane, same spot as in Fig. 3) and (b) the wrinkled cell model (5 nm from tip of wrinkle, same spot as in Fig. 3) when the additional Ca2+ flux is active between time 1
and 1.25 s. The concentration of Ca2+ at time 1.25 s is visualised in the two models with colours using the same colour range as shown in (a). The concentration of Ca2+ at
time 1.25 s (peak concentration) presented as a cross-section through the cell is presented in (c and d), where the y-axis is the distance from the cell membrane (c) and the
distance from the tip of the wrinkle (d), and in both situations the cross-section is made through the point where Ca2+ is measured in (a) and (b). For these simulations, the
effect of 0.25 s duration Ca2+ influx (1–1.25 s on time scale) is shown using the characteristics shown in Fig. 4.

Fig. 6. The ratio between free Ca2+ and bound Ca2+. The ratio between free and bound Ca2+ when the influx is active for 1 s (see Fig. 3) with the smooth (a) and the wrinkled
geometry (b). When the influx is reduced to 0.25 s (see Fig. 5) the ratio in slightly increased in the model without wrinkles (c) and in the model with wrinkles more than
10-fold (d).
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Fig. 7. Organelles increase the magnitude of intra-wrinkle Ca2+ domains. Two scenarios are shown (a) endoplasmic reticulum is located 20 nm under the entire plasma
membrane and covers the mouths of just 3 wrinkles and (b) endoplasmic reticulum is 20 nm under a part of the plasma membrane. In both cases, where red is the organelle
and blue is the cytosol. The endoplasmic reticulum thickness was 10 nm thick in (a) but, for clarity, is shown thicker. The change in intra-wrinkle Ca2+ concentration measured
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nm from the end of the tip of the wrinkle (c and d) for a Ca2+ influx pulse of 0.25 s (b
anel above. The constant Jstim is multiplied with (1 − [Ca2+]/[Ca2+]ext) in these simul
f Ca2+ across the plasma membrane (Jefflux [Ca2+]/(Km + [Ca2+]).

6]. However, although these dimensions provide a good estimate
f mean wrinkle structure, wrinkles may exist in a range of sizes.
or example, under transmission electron microscopy, the wrinkles
ppear as “microvilli” with lengths of 50–1900 nm and base widths
f 150–200 nm [48,49] and biophysical measurement suggest the
unctional lengths of the wrinkles to be only 300 nm [49]. It is there-
ore important to establish what influence the wrinkle dimensions
ave on the intra-wrinkle Ca2+ concentration.

We have therefore repeated the modelling study using the
xtremes dimensions for the wrinkles but maintaining the overall
eometry whereby approximately 70% of the membrane is localised
n the wrinkles in accordance with reported estimates [6,48,49].

Within surface wrinkles which were 1500 nm long (Fig. 1e,
1 + L2 = 1500 nm) and 100 nm wide (base width), Ca2+ concentra-
ions were even higher than in our previous model, reaching around
5 �M (Fig. 8a). When the width of these wrinkles was increased
o 200 nm, the intra-wrinkle Ca2+ concentration was reduced but
emained high at 40 �M (Fig. 8b). A similar lowering of intra-
rinkle Ca2+ was observed when the standard length (800 nm)
rinkles were widened to 200 nm, intra-wrinkle Ca2+ peaking at

round 11 �M (Fig. 8c). Conversely, narrowing the wrinkle width
o 50 nm elevated intra-wrinkle Ca2+ concentrations to 45 �M.

Not surprisingly, as the wrinkle length is reduced, the surface of
he cell approximates more closely to the smooth sphere. However,
ven within wrinkles just 300 nm long (Fig. 1e, L1 + L2 = 300 nm) and

00 nm base width, the Ca2+ concentration is elevated at 5.2 �M
Fig. 8d). As before, increasing the base width of these wrinkles
educes the peak intra-wrinkle Ca2+. However, even with a short
tubby wrinkle 300 nm long and 200 nm wide, the Ca2+ concentra-
ion within is higher than the bulk cytosol by an additional 1 �M.
en 1 s and 1.25 s) across the membrane of the geometry shown in the corresponding
and the uptake of Ca2+ into the endoplasmic reticulum is modelled as the transport

It was concluded that high Ca2+ microdomains will be gener-
ated most effectively by the longer and more narrow membrane
wrinkles, but that wrinkles of similar dimensions to those found
experimentally can generate localised Ca2+ regions of nearly
0.1 mM.

4. Discussion

The experimental evidence that Ca2+ is extremely high in the
cytosol within wrinkles is difficult to obtain, as the wrinkles them-
selves are sub-light microscopical objects. In dendritic spines of
neurones, which are small anatomical structures, high Ca2+ can be
observed during Ca2+ signalling [50]. These structures are more
complex than simple cell wrinkles, having a “firewall” of ER at
the base, which can release and take-up Ca2+. The underlying
mechanisms for generating localised elevated intra-spine Ca2+ may
therefore be different [51]. However, in the simple wrinkled mem-
brane of neutrophils, there is evidence for the functional existence
of a high Ca2+ sub-plasma membrane domains [10,11,21] and near
membrane Ca2+ reported by a membrane associated Ca2+ indicator,
FFP-18, is over 30 �M [52]. It should be noted that at non-wrinkled
regions of tight neutrophil adherence to a solid substrate, at which
total internal reflection fluorescence microscope measurement of
Ca2+ can be made within 100 nm of the plasma membrane, Ca2+

peaks at only 1 �M [43]. This experimentally determined differ-

ence between near membrane Ca2+ concentrations at wrinkled and
non-wrinkled neutrophil surface is predicted by our model.

The high sub-membrane Ca2+ concentration within the surface
wrinkles are sufficient to activate proteins with Kd’s of tens of
micromolar Ca2+, such as calpain-1 [15–17], TRPM2 [22,23] and
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ig. 8. The Ca2+ domain depends on the structure of the wrinkle. The intra-wrinkle
here the geometries have been changed. In these examples, the wrinkles were (a) 1

1 = 100 nm, L2 = 1400 nm) and 200 nm wide (c) 800 nm (Fig. 1, L1 = 100 nm, L2 = 700
n each graph, the insert shows the geometry of a wrinkle and the size is illustrated

ome isoforms of protein kinase C [53–55]. As all these examples
re proteins located at the plasma membrane or associated with
he cortical cytoskeleton which holds the wrinkles in place, they
re strategically placed for activation within the wrinkled mem-
rane. Although we have used the topology of the neutrophil as an
xample of the wrinkled surface, Bergmann glial cells which are far
ore convoluted, having a surface-to-volume ratio 13 times higher

han neutrophils [56] also have microdomains of high Ca2+ which
re found in their membrane projections [57]. Like neutrophils the
ndothelial cells also have microvilli [58], and Ca2+ microdomains
ave recently been detected in endothelial cells following influx of
a2+ [59], and we conjecture that they could be generated due to the
rinkles. The microvilli of Drosophila photoreceptors also generate
icrodomains of high (20–200 �M) Ca2+ following light stimula-

ion [60], which is crucial for the function of the receptor [61]. It
hus seems likely that surface topology is important in a number of
ell types for directing Ca2+ signalling to specific proteins with the
a2+ microdomain it generates. As the model we present is simple
oth in geometry and biological assumptions, this raises the possi-
ility that any cell with a non-smooth surface topology may exploit

ocalised Ca2+ signalling within the wrinkled surface.
Although the Gouy–Chapman–Stern theory also provides expla-

ation for elevated Ca2+ near the plasma membrane, it is applicable
nly within 2 nm of the membrane. This effect has been suggested
n part to explain why PKC is activated at a bulk concentration of

2+
00 nM Ca [53]. We have not included the effect of the electrical
ouble layer in the current model, but Gouy–Chapman theory [62]
redicts the electrical surface potential ( 0) as

C ′′
bcosh
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F 0
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+ C ′
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(
F 0

RT

)
−

(
2C ′′
b + C ′′

b + 1
2

(
�

A

)2
)

= 0
concentration (5 nm from the end of the wrinkle tip) is shown in wrinkled models
m long (Fig. 1, L1 = 100 nm, L2 = 1400 nm) and 100 nm wide (b) 1500 nm long (Fig. 1,
nd 200 nm wide and (d) 300 nm (Fig. 1, L1 = 100 nm, L2 = 200 nm) and 100 nm wide.
the bars that are 100 nm × 1000 nm.

A =
√

2RTεrε0

where C ′′
b

is the concentration of the divalent electrolyte, C ′
b

is
the concentration of the monovalent electrolyte, � is the electrical
surface charge density, R is the gas constant, T is the absolute tem-
perature and ε0 and εr are the absolute and relative permittivities,
respectively.

Setting the concentration of monovalent cations (C ′
b
) to 100 mM

and divalent cations (C ′′
b
) to 5 mM and assuming that the surface

charge density � is between −0.02 C/m2 and −0.05 C/m2 the  0
was calculated. If the surface charge density is small, the potential
will decay exponentially with distance from the membrane surface
with the coefficient �:

� =
√

2Z2F2Cb
RTε0εr

At the zeta potential where 0 equals � (around 1 nm from the sur-
face of the membrane) the Ca2+ concentration will be increased by
a factor of 2–4 with respect to the bulk concentration. Thus, the
effect of the electrical surface potential is far weaker than that due
to surface topology and not sufficient to explain the presence of the
high Ca2+ concentrations. However, the electrical surface potential
will increase the concentration of cations near the membrane and
hence may work as a local cation buffer. If we assume that the sur-
face charge density is −0.02 C/m2, then the membrane can at most
bind 1.8 × 10−16 mole of positive charges or 9 × 10−17 mole of Ca2+
if we neglect the presence of Mg2+ and assume that no other cations
interfere with the membrane. The intracellular buffer can, on the
other hand, bind 4 × 10−16 mole Ca2+. Therefore, the mobile buffer
still remains the dominant buffer, which binds at least 4 times more
Ca2+ than the membrane.
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The wrinkles in this model are symmetrical structures and per
e artificial, however, the real wrinkles also span the entire mem-
rane and are connected in an almost similar geometric fashion
Fig. 1). Different approaches have been used to estimate the struc-
ure and dimension of the wrinkles [6,48,49]. All the estimates
ndicate that the width is between 100 nm and 200 nm, but caution

ust be taken with the estimates based on transmission electron
icroscopy as the wrinkles are 3D structures that are spanning the
embrane and in case the section is not perpendicular to the direc-

ion of the wrinkle the width will be overestimated. In the model we
resent in Fig. 1 the wrinkles are 100 nm wide, 100 nm from the sur-
ace, and that is based on results obtained using scanning electron

icroscopy [6]. Using transmission electron microscopy it has been
eported that the wrinkles might be wider [48,49], and we found
hat doubling the width decreased the near membrane Ca2+ con-
entration slightly (Fig. 8b). If the length of the wrinkles is decreased
he topology will approach that of a smooth cell and hence the

icro-environment provided by the wrinkles will disappear. On
he other hand physics also sets an upper limit because if the wrin-
les are too long they will break due to shear stress. To become
ctivated the �-calpains must bind Ca2+ and their Kd is between
0 �M and 50 �M [63,64]. The concentrations of Ca2+ obtained
ith wrinkles that are 800 nm long (Fig. 5) can easily explain the

ctivation of �-calpains near the membrane and even in wrinkles
nly 300 nm long there would also be a transient �-calpain activ-
ty. When we extended the length of the wrinkles we found that
he concentration of Ca2+ became close to 0.1 mM (Fig. 8), which is
ar more than needed to activate, e.g. the �-calpains. Though the
umbers for the length of the wrinkles vary between 300 nm and
900 nm, the width is reported to be in a narrower interval from
00 nm to 200 nm. The wrinkles that are 800 nm long and 100 nm
ide as described in Fig. 1 sets the ideal conditions for creating Ca2+

omains in the micromolar range that can activate proteins which
therwise would show little if any activity in the cytosol. If the
tructures were much wider or a lot shorter the apparent wrinkle
tructure would be lost and Ca2+ domains would disappear.

We simulated the Ca2+ influx with a deterministic approach,
hich is based on the assumption that the individual behaviour

f different molecules can be neglected due to the number of the
pecies according to the law of large numbers. One result of the
imulations is that it is very likely that there are at least 800 active
hannels in the plasma membrane, which corresponds to 0.9 chan-
el per �m2. With the assumption of a homogeneous distribution
f the channels this implies that there are at least 584 channels in
he wrinkles or 1.3 channels per �m wrinkle. The wrinkles have a
otal volume of 0.219 fl, which corresponds to about 4% of the total
ell volume. A concentration of Ca2+ ions of 100 nM corresponds to
bout 1300 free Ca2+ ions in the wrinkles and when the concen-
ration is 25 �M there are 3.3 × 105 free Ca2+ ions in the wrinkles.

hether a system should be described as stochastic or determin-
stic depends on both the number of particles and the properties of
he system as such. The number of free Ca2+ ions in the wrinkles fol-
owing activation is around the deterministic limit as reported by
ummer et al. [65]. The Ca2+ dynamics inside the wrinkles in single
eutrophils have not yet been measured, but global cytosolic Ca2+

easurements of neutrophils suggests that there is a stochastic
lement [55].

It is important to stress that the microdomains of high Ca2+

redicted by our simulations are not generated by assuming non-
niform distributions of Ca2+ channels, pumps, or Ca2+ release sites
r by proposing new molecular properties for Ca2+ channels. The

ones of high Ca2+ arise simply by including the known micro-
natomy of cell surfaces in the simulation. The work we report here
as therefore highlighted the importance of including membrane
urface topology when considering a model of chemical behaviour
n cells.
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