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Abstract The development of new antitumor agents is one of the most pressing research areas in

medicinal chemistry and medicine. The importance of triazole and thiadiazole rings as scaffolds pre-

sent in a wide range of therapeutic agents has been well reported and has driven the synthesis of a

large number of novel antitumor agents. The presence of these heterocycles furnishes extensive syn-

thetic possibilities due to the presence of several reaction sites. Prompted by these data we designed,

synthesized and evaluated a series of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole

derivatives as potential anticancer agents. We emphasized in the strategy of combining two chem-

ically different but pharmacologically compatible molecules (the 1,2,4-triazole and 1,3,4 thiadia-

zole) in one frame. Several of the newly synthesized 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole

derivatives showed substantial cytostatic and cytotoxic antineoplastic activity invitro, while they

have produced relatively low acute toxicities invivo, giving potentially high therapeutic ratios. Insil-

ico screening has revealed several protein targets including apoptotic protease-activating factor 1
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ivatives.
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(APAF1) and tyrosine-protein kinase HCK which may be involved in the biological activities of

active analogues.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is among the leading causes of morbidity and mortality world-

wide and remains a major public health issue at the beginning of the

21st century. Approximately 14 million new cases and 8.2 million can-

cer related deaths were reported in 2012. More than 60% of global new

annual cases occur in Africa, Asia and Central and South America.

These developing and under-developed regions account for 70% of

the world’s cancer deaths. The number of new cases is expected to rise

by about 70% over the next 2 decades (World Cancer Report, 2014).

The successful treatment of cancer remains a significant challenge

because of the general toxicity associated with the clinical use of tradi-

tional cancer chemotherapeutic agents. Significant side effects such as

nausea, vomiting, diarrhea, hair loss and serious infections (mostly due

to leukopenia) often accompany chemotherapy. Therefore, the need

for accelerated development of new, more effective as well as less toxic

chemotherapeutic agents is unquestioned. The development of new

antitumor agents is one of the most urgent research areas in medicinal

chemistry and oncology.

The importance of triazole or thiadiazole rings as scaffolds present

in a range of therapeutic agents, which furnish extensive synthetic pos-

sibilities due to the presence of several reaction sites, has driven the

synthesis of a large number of novel antitumor agents bearing these

heterocycles. Thiadiazoles have been of great interest as core structures

of antitumor agents for many years (Hill, 1980; Nelson et al., 1977;

Tsukamoto et al., 1975), possibly due to the presence of toxophoric

N-C-S moiety (Omar and Aboulwafa, 1986). Also, the triazole ring

is highly reactive, due to the presence of an acidic proton at C-2,

and emerges as an important synthon to generate new chemical enti-

ties. Diverse modifications of the triazole or thiadiazole rings at vari-

ous positions have led to a variety of novel compounds with wide

spectrum of pharmacological activities.

As a result of the above findings, several patents were registered

from 2008 to present concerning new triazole and thiadiazole ring con-

taining derivatives useful for the development of new anticancer drug

molecules (Morigi et al., 2015).

Therefore, the fused compounds and their derivatives obtained by

fusing the bio-labile 1,2,4-triazole and 1,3,4-thiadiazole rings together

represent an interesting class of heterocyclic compounds with a broad

spectrum of pharmacological activities which include antifungal

(Chaturvedi et al., 1988; Karabasanagouda et al., 2007), antibacterial

(Demirbas et al., 2005; Holla et al., 1996; Zhang et al., 1997), antiviral

(Invidiata et al., 1996; Kritsanida et al., 2002; Srivastava et al., 1994),

anti-inflammatory (Amir et al., 2008; Chawla et al., 2012; Prasad et al.,

1986), analgesic (Chawla et al., 2012; Srivastava et al., 1994), and

anthelmintic (El-Khawass et al., 1989; Hussain and Kumar, 1992)

while of particular interest is the impressive anticancer/antitumor

activity (Al-Masoudi and Al-Soud, 2008; Chowrasia et al., 2013;

Ibrahim, 2009; Kaliappan and Parthiban, 2010). More specifically,

the cytotoxic potency of 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles against

various cancer cell lines has been extensively reported (Husain et al.,

2013; Shivarama Holla et al., 2002; Subrahmanya Bhat et al., 2004;

Sunil et al., 2010).

Prompted by these observations and in continuation of our search

for alternate chemotherapeutic compounds, we synthesized and evalu-

ated a series of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thia

diazole derivatives as potential anticancer agents. In particular, we

emphasized the strategy of combining two chemically different but

pharmacologically compatible molecules (the 1,2,4-triazole and 1,3,4

thiadiazole) in one frame.
. et al., Synthesis and anticancer activ
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A simple sulfonamide may play the role of the initial lead com-

pound for the synthesis of the target triazolo thiadiazoles. In general,

a novel series of sulfonamide derivatives containing different, biologi-

cally active, moieties including pyridine, thiophene or benzothiophene

moieties have also shown promising anticancer activity. The chemical

motif of aromatic/heterocyclic sulfonamide has been correlated with a

variety of antitumor mechanisms, such as carbonic anhydrase inhibi-

tion, cell cycle arrest in the G1 phase, disruption of microtubule assem-

bly, functional suppression of the transcriptional activator NF-Y, and

angiogenesis (matrix metalloproteinase, MMP) inhibition among

others (Ghorab et al., 2015).

2. Materials and methods

2.1. Chemistry

The 2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-phenylacetyla

cetylhydrazide (I), prepared from ethyl-2-(N,N-dimethylsulfa
moyl)-4,5-dimethoxy-phenylacetate by treatment with hydra-
zine hydrate in xylol (Ezabadi et al., 2008), was allowed to react
with carbon disulfide in the presence of potassium hydroxide in

ethanol to afford the corresponding intermediate potassium
thiocarbamate (II). This salt underwent ring closure with excess
of hydrazine hydrate to give 5-[2-(N,N-dimethylsulfamoyl)-4,5-

dimethoxybenzyl]-3-mercapto-4-amino-1,2,4-triazole (III). The
resulted triazole was further converted to 3,6-disubstituted 1,
2,4-triazolo[3,4-b]-1,2,4-thiadiazoles (IV) by condensing with

various aromatic acids in the presence of phosphorus
oxychloride as outlined in Scheme 1 and Table 1.

2.1.1. 5-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-4-

amino-3-mercapto-1,2,4-triazole (III)

To a cold stirred solution of 2-(N,N-dimethylsulfamoyl)-4,5-
dimethoxy-phenylacetyl hydrazide (0.01 mol) in absolute

ethanol (150 mL) containing potassium hydroxide
(0.015 mol), carbon disulfide (0.015 mol) was added gradually.
The reaction mixture was stirred at room temperature for 20 h
where upon a precipitate of the corresponding potassium

dithiocarbamate was separated. Dry ether (150 mL) was then
added to complete the precipitation of the formed salt. The
obtaining product was filtered, washed with dry ether and

dried.
The above salt was suspended in 80% hydrazine hydrate

(0.02 mol), stirred and heated under reflux for 2 h. The

reaction mixture was cooled, diluted with ice cold water and
neutralized with 10% hydrochloric acid. The precipitate
obtained, was filtered, washed thoroughly with cold water,
dried and recrystallized from methanol.

Yield: 56%, M.p. 194–196 �C (CH3OH). I.R. v cm�1 3314,
3250 (NH), 2942 (CH), 1604 (C‚N), 1574, 1510, 1448 (C‚C),
1265 (NAN‚C), 1326 (SAO anti sym), 1135 (SAO sym).

1H NMR d (ppm): 13.39 (s, 1H, SH), 7.25 (s, 1H, ArH),
7.02 (s, 1H, ArH), 5.56 (s, 2H, NH2), 4.30 (s, 2H, CH2),
3.79 (s, 6H, 2CH3AOA), 2.59 (s, 6H, N(CH3)2).
ity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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Scheme 1 Synthetic route for the newly synthesized analogues.

Table 1 The 20 novel triazolo-thiadiazole analogues.

Analogue Substituent Analogue Substituent

IVa C6H5A IVk 4ACH3OAC6H4CH2A
IVb 4-ClAC6H4A IVl 3,4-CH3OAC6H3CH2A
IVc 2-NH2AC6H4A IVm C6H5AOCH2A
IVd 3-NH2AC6H4A IVn C6H5ACH‚CH

IVe 4-NH2AC6H4A IVo 2-CH3OAC6H4CH2CH2A
IVf 2-ClA4-NO2AC6H3A IVp 4-CH3OAC6H4CH2CH2A
IVg 3-CH3A4-NO2AC6H3A IVq C6H5CH2CH2 CH2A

IVh 3,4,5-CH3OAC6H2A IVr

N

R

IVi C6H5CH2A IVs NR

IVj 3-CH3OAC6H4CH2A IVt

N

R

Br

Synthesis and anticancer activity 3
Analysis: C13H19N5O4S2 (373). Calc.%: C:41.82, H:5.09,
N:18.76. Found: C:41.77, H:5.12, N:18.79.
2.1.2. General procedure for the synthesis of 3,6-disubstituted-
1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazoles (IVa–t)

An equimolar mixture of triazole (III) (0.01 mol) and appro-

priate aromatic acids (0.01 mol) in dry phosphorus oxychlo-
ride (5 mL) was refluxed for 2 h. The reaction mixture was
cooled to room temperature and then gradually poured onto

crushed ice with stirring. Finally, to remove the excess of phos-
phorus oxychloride, powdered potassium carbonate and the
required amount of solid potassium hydroxide were added till

the pH of the mixture was raised to 8. The solid was collected
Please cite this article in press as: Charitos, G. et al., Synthesis and anticancer activi
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by filtration, washed thoroughly with cold water, dried and
recrystallized from the appropriate solvent.

The following compounds were prepared by an analogous
procedure.

2.1.2.1. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-phenyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (IVa). Yield:
74%, M.p. 212–214 �C (CH3OH), 1H NMR (CDCl3) d 7.95

(d, J = 6.9 Hz, 2H), 7.68 (m, 1H), 7.63 (m, 2H), 7.30
(s, 1H), 7.21 (s, 1H), 4.78 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H),
2.63 (s, 6H), I.R. v cm�1 1601 (C‚N), 1573, 1513, 1470,
1446 (C‚C), 1265 (NAN‚C), 1328 (SAO antisym.), 1141

(SAO sym.), Analysis: C20H21N5O4S2 (459). Calc.%:
C:52.28, H:4.57, N:15.25. Found: C:52.25, H:4.53, N:15.27.
ty of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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2.1.2.2. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-

6-(4-chloro-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole
(IVb). M.p. 228–229 �C (CH3OHACH2Cl2),

1H NMR
(CDCl3) d 7.97 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.6 Hz,

2H), 7.30 (s, 1H), 7.20 (s, 1H), 4.78 (s, 2H), 3.84 (s, 3H),
3.79 (s, 3H), 2.62 (s, 6H), I.R. v cm�1 1600(C‚N), 1573,
1519, 1470 (C‚C), 1272 (NAN‚C), 1339(SAO antisym.),
1138 (SAO sym), Analysis: C20H20N5O4S2Cl (493.5). Calc.

%: C:48.63, H:4.05, N:14.18. Found: C:48.65, H:4.01, N:14.21.

2.1.2.3. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-

6-(2-amino-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole
(IVc). Yield: 36%. M.p. 219–220 �C (C2H5OH), 1H NMR
(CDCl3) d 7.30 (s, 1H), 7.23 (t, J= 7.8 Hz, 1H), 7.20 (s,

1H),7.13 (m, 1H), 7.03 (d, J = 8.35 Hz, 1H), 6.82 (d,
J= 8.2 Hz, 1H), 4.75 (s, 2H), 3.84 (s, 3H), 3.79 (s, 3H), 2.61
(s, 6H), I.R. v cm�1 2436, 3382, 3267 (NAH), 1608 (C‚N),
1555, 1514, 1474 (C‚C), 1265 (NAN‚C), 1328 (SAO anti-

sym.), 1141 (SAO sym.), Analysis: C20H22N6O4S2 (474).
Calc.%: C:50.63, H:4.64, N:17.72. Found: C:50.60, H:4.61,
N:17.75.

2.1.2.4. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-(3-amino-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole

(IVd). Yield: 20%. M.p. 164–165 �C (C2H5OH), 1H NMR
(CDCl3) d 7.44 (dd, J = 8.0, 1.4 Hz, 1H), 7.29 (m, 1H), 7.28
(s, 1H), 7.16 (s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.71 (bs, 2H,

NH2), 6.68 (t, J = 7.5 Hz, 1H), 4.81 (s, 2H), 3.84 (s, 3H),
3.78 (s, 3H), 2.63 (s, 6H), I.R. v cm�1, 3450, 3347 (NAH),
1626 (C‚N), 1579, 1512, 1473 (C‚C), 1272 (NAN‚C),
1322 (SAO antisym.), 1129 (SAO sym.), Analysis: C20H26N6-

O4S2 (474). Calc.%: C:50.63, H:4.64, N:17.72. Found:
C:50.65, H:4.67, N:17.69.

2.1.2.5. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-(4-amino-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole
(IVe). Yield: 18%. M.p. 179–181 �C (C2H5OH), 1H NMR

(CDCl3) d 7.58 (dd, J= 8.6, 2.9 Hz, 2H), 7.29 (d,
J= 3.0 Hz, 1H), 7.19 (d, J= 2.8 Hz, 1H), 6.68 (dd, J = 8.6,
2.9 Hz, 2H), 6.17 (s, 2H), 4.72 (s, 2H), 3.84 (s, 3H), 3.78 (s,
3H), 2.61 (s, 6H), I.R. v cm�1 3457, 3348, 3237 (NAH), 1603

(C‚N), 1577, 1518, 1461 (C‚C), 1265 (NAN‚C), 1331
(SAO antisym.), 1138 (SAO sym.), Analysis: C20H26N6O4S2
(474). Calc.%: C:50.63, H:4.64, N:17.72. Found: C:50.60,

H:4.59, N:17.70.

2.1.2.6. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-

6-(2-chloro-4-nitro-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadia-
zole (IVf). Yield: 65%. M.p. 216–217 �C (CH3OH), 1H NMR
(CDCl3) d 8.57 (d, J= 2.3 Hz, 1H), 8.40 (dd, J= 8.7, 2.3 Hz,

1H), 8.27 (d, J = 8.7 Hz, 1H), 7.30 (s, 1H), 7.20 (s, 1H), 4.80
(s, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 2.61 (s, 6H), I.R. v cm�1

1603(C‚N), 1573, 1518, 1476 (C‚C), 1269 (NAN‚C),
1331 (SAO antisym.), 1138 (SAO sym.), Analysis: C20H19N6-

O6S2Cl (538.5). Calc.%: C:44.56, H:3.52, N:15.60. Found:
C:44.53, H:3.55, N:15.63.

2.1.2.7. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-(3-methyl-4-nitro-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadia-
zole (IVg). Yield: 46%. M.p. 142–144 �C (CH3OH), 1H NMR

(CDCl3) d 8.18 (d, J= 8.5 Hz, 1H), 8.08 (s, 1H), 8.02 (d,
Please cite this article in press as: Charitos, G. et al., Synthesis and anticancer activ
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J= 8.5 Hz, 1H), 7.30 (s, 1H), 7.22 (s, 1H), 4.80 (s, 2H), 3.84
(s, 3H), 3.80 (s, 3H), 2.62 (s, 6H), I.R. v cm�1 1600(C‚N),
1573, 1510, 1476 (C‚C), 1271 (NAN‚C), 1344 (SAO anti-

sym.), 1133 (SAO sym.), Analysis: C21H22N6O6S2 (518).
Calc.%: C:48.64, H:4.24, N:16.21. Found: C:48.68, H:4.21,
N:16.25.

2.1.2.8. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-(3,4,5-trimethoxy-phenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadi-

azole (IVh). Yield: 38%. M.p. 169–170 �C (CH3OH),1H
NMR (CDCl3) d 7.30 (s, 1H), 7.22 (s, 1H), 7.14 (s, 2H), 4.78
(s, 2H), 3.89 (s, 6H), 3.84 (s, 3H), 3.80 (s, 3H), 3.76 (s, 3H),
2.62 (s, 6H), I.R. v cm�1 1630(C‚N), 1586, 1459, 1414

(C‚C), 1267 (NAN‚C), 1333 (SAO antisym.), 1127 (SAO
sym.), Analysis: C23H27N5O7S2 (549). Calc.%: C:50.27,
H:4.92, N:12.75. Found: C:50.25, H:4.96, N:12.78.

2.1.2.9. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-benzyl]-
6-benzyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (IVi). Yield:

18%. M.p. 178–179 �C (CH3OH); 1H NMR (CDCl3) d 7.42–
7.36 (m, 4H), 7.36–7.30 (m, 1H), 7.28 (s, 1H), 7.13 (s, 1H),
4.69 (s, 2H), 4.44, (s, 2H), 3.84 (s, 3H), 3.76 (s, 3H), 2.57 (s,

6H), I.R. v cm�1 1601 (C‚N), 1565, 1517, 1475 (C‚C),
1267 (NAN‚C), 1339 (SAO antisym.), 1140 (SAO sym.),
Analysis: C21H23N5O4S2 (473). Calc.%: C:53.27, H:4.86,
N:14.80. Found: C:53.23, H:4.89, N:14.83.

2.1.2.10. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-(3-methoxy-benzyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadia-

zole (IVj). Yield: 58%. M.p. 165–166 �C (CH3OH), 1H NMR
(CDCl3) d 7.30 (d, J = 8.0 Hz, 1H), 7.29 (s, 1H), 7.13 (s, 1H),
6.97 (s, 1H), 6.94 (d, J= 7.7 Hz, 1H), 6.90 (dd, J= 8.3,

2.5 Hz, 1H), 4.70 (s, 2H), 4.41 (s, 2H), 3.84 (s, 3H), 3.77 (s,
3H), 3.75 (s, 3H), 2.57 (s, 6H), I.R. v cm�1 1607 (C‚N),
1581, 1515, 1491 (C‚C), 1266 (NAN‚C), 1334 (SAO anti-

sym.), 1139 (SAO sym.), Analysis: C22H25N5O5S2 (503).
Calc.%: C:52.48, H:4.97, N:13.91. Found: C:52.44, H:4.95,
N:12.88.

2.1.2.11. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-(4-methoxy-benzyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadia-
zole (IVk). Yield: 52%. M.p. 184–185 �C (CH3OH), 1H NMR

(CDCl3) d 7.30 (d, J = 8.6 Hz, 2H), 7.29 (s, 1H), 7.13 (s, 1H),
6.94 (d, J= 8.6 Hz, 2H), 4.69 (s, 2H), 4.36 (s, 2H), 3.84 (s,
3H), 3.77 (s, 3H), 3.75 (s, 3H), 2.57 (s, 6H), I.R. v cm�1 1610

(C‚N), 1571, 1514, 1476 (C‚C), 1267 (NAN‚C), 1340
(SAO antisym.), 1140 (SAO sym.), Analysis: C22H25N5O5S2
(503). Calc.%: C:52.48, H:4.97, N:13.91. Found: C:52.45,
H:4.99, N:13.94.

2.1.2.12. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-(3,4-dimethoxy-benzyl)-1,2,4-triazolo[3,4-b]-1,3,4-thia-

diazole (IVl). Yield: 50%. M.p. 139–140 �C (CH3OH), 1H
NMR (CDCl3) d 7.29 (s, 1H), 7.13 (s, 1H), 6.99 (s, 1H), 6.95
(d, J= 8.2 Hz, 1H), 6.90 (dd, J= 8.3, 2.0 Hz, 1H), 4.70 (s,

2H), 4.35 (s, 2H), 3.84 (s, 3H), 3.77 (s, 3H), 3.75 (s, 3H),
3.73 (s, 3H), 2.58 (s, 6H), I.R. v cm�1 1602 (C‚N), 1555,
1516, 1462 (C‚C), 1266 (NAN‚C), 1336 (SAO antisym.),

1139 (SAO sym.), Analysis: C23H27N5O6S2 (533). Calc.%:
C:51.78, H:5.06, N:13.13. Found%: C:51.81, H:5.10, N:13.15.
ity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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2.1.2.13. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-

zyl]-6-phenoxymethyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole
(IVm). Yield: 41%. M.p. 178–179 �C (CH3OHACH2Cl2),

1H
NMR (CDCl3) d 7.37–7.31 (m, 2H), 7.29 (s, 1H), 7.13 (s, 1H),

7.09 (d, J = 7.7, 1.0 Hz, 2H), 7.06–7.01 (m, 1H), 5.55 (s, 2H),
4.72 (s, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.58 (s, 6H), I.R. v cm�1

1598 (C‚N), 1572, 1516, 1479 (C‚C), 1267 (NAN‚C), 1337
(SAO antisym.), 1139 (SAO sym.), Analysis: C21H23N5O5S2
(489). Calc.%: C:51.53, H:4.70, N:14.31. Found%: C:51.51,
H:4.67, N:14.33.

2.1.2.14. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-cinnamyl-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (IVn).
Yield: 44%. M.p. 191–193 �C (CH3OHACH2Cl2);

1H NMR

(CDCl3) d 7.81 (d, J = 7.1 Hz, 2H), 7.64 (d, J = 16.4 Hz,
1H), 7.60 (d, J = 16.3 Hz, 1H), 7.52–7.40 (m, 3H), 7.30 (s,
1H), 7.16 (s, 1H), 4.73 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H),
2.62 (s, 6H), I.R. v cm�1 1630 (CH‚CH), 1600 (C‚N),

1575, 1576, 1475 (C‚C), 1267 (NAN‚C), 1332 (SAO anti-
sym.), 1138 (SAO sym.), Analysis: C22H23N5O4S2 (485).
Calc.%: C:54.43, H:4.74, N:14.43. Found%: C:54.45, H:4.71,

N:14.39.

2.1.2.15. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-

zyl]-6-[2-(2-methoxy-phenyl)ethyl]-1,2,4-triazolo[3,4-b]-
1,3,4-thiadiazole (IVo). Yield: 37%. M.p. 154–155 �C (CH3-
OHACH2Cl2),

1H NMR (CDCl3) d 7.29 (s, 1H), 7.21 (m,

1H), 7.17 (d, J = 7.5 Hz, 1H), 7.10 (s, 1H), 6.95 (d,
J = 8.2 Hz, 1H), 6.84 (t, J= 7.26 Hz, 1H), 4.67 (s, 2H), 3.84
(s, 3H), 3.77 (s, 3H), 3.75 (s, 3H), 3.29 (m, 2H), 3.01 (t,
J = 7.5 Hz, 4H), 2,56 (s, 6H), I.R. v cm�1 1601 (C‚N),

1569, 1519, 1477 (C‚C), 1267 (NAN‚C), 1336 (SAO anti-
sym.), 1139 (SAO sym.), Analysis: C23H27N5O5S2 (517).
Calc.%: C:53.38, H:5.22, N:13.53. Found%: C:53.41, H:5.19,

N:13.56.

2.1.2.16. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-

zyl]-6-[2-(4-methoxy-phenyl)ethyl]-1,2,4-triazolo[3,4-b]-
1,3,4-thiadiazole (IVp). Yield: 41%. M.p. 151–152 �C (CH3-
OHACH2Cl2),

1H NMR (CDCl3) d 7.29 (s, 1H), 7.18 (d,
J = 8.3 Hz, 2H), 7.11 (s, 1H), 6.83 (d, J= 8.1 Hz, 2H), 4.67

(s, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.71 (s, 3H), 2.99 (t,
J = 7.6 Hz, 2H), 2.55 (s, 6H), I.R. v cm�1 1601 (C‚N),
1569, 1519, 1477 (C‚C), 1267 (NAN‚C), 1336 (SAO anti-

sym.), 1139 (SAO sym.), Analysis: C23H27N5O5S2 (517).
Calc.%: C:53.38, H:5.22, N:13.53. Found%: C: 53.35,
H:5.24, N:13.50.

2.1.2.17. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-(3-phenylpropyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole

(IVq). Yield: 14%. M.p. 128–129 �C (CH3OH), 1H NMR
(CDCl3) d 7.30–7.26 (m, 3H), 7.23–7.17 (m, 3H), 7.12 (s,
1H), 4.69 (s, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 3.04 (t,
J = 7.4 Hz, 2H), 2.68 (t, J = 7.7 Hz, 2H), 2.59 (s, 6H), 2.03

(p, J= 7.6 Hz, 2H), I.R. v cm�1 1600 (C‚N), 1574, 1516,
1478 (C‚C), 1267 (NAN‚C), 1334 (SAO antisym.), 1139
(SAO sym.), Analysis: C23H27N5O4S2 (501). Calc.%:

C:55.09, H:5.38, N:13.97. Found%: C:55.11, H:5.41, N:14.01.

2.1.2.18. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-

zyl]-6-(2-pyridinyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole
(IVr). Yield: 32%. M.p. 198–199 �C (CH3OH), 1H NMR
Please cite this article in press as: Charitos, G. et al., Synthesis and anticancer activi
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(CDCl3) d 8.76, (s, 1H), 8.23–8.00 (m, 2H), 7.69 (s, 1H),
7.37–7.15 (m, 2H), 4.79 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H),
2.62 (s, 6H), I.R. v cm�1 1599 (C‚N), 1576, 1517, 1456

(C‚C), 1270 (NAN‚C), 1335 (SAO antisym.), 1137 (SAO
sym.), Analysis: C19H20N6O4S2 (460). Calc.%: C:49.56,
H:4.34, N:18.26. Found%: C:49.60, H:4.31, N:18.30.

2.1.2.19. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-
zyl]-6-(4-pyridinyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole

(IVs). Yield: 37%. M.p. 231–232 �C (C2H5OH), 1H NMR
(CDCl3) d 8.85 (d, J = 5.0 Hz, 2H), 7.91 (d, J = 5.0 Hz,
2H), 7.30 (s, 1H), 7.21 (s, 1H), 4.80 (s, 2H), 3.84 (s, 3H),
3.80 (s, 3H), 2.63 (s, 6H), I.R. v cm�1 1600 (C‚N), 1561,

1507, 1473, 1411 (C‚C), 1274 (NAN‚C), 1337 (SAO anti-
sym.), 1138 (SAO sym.), Analysis: C19H20N6O4S2 (460).
Calc.%: C:49.56, H:4.34, N:18.26. Found%: C:49.58, H:4.37,

N:18.23.

2.1.2.20. 3-[2-(N,N-dimethylsulfamoyl)-4,5-dimethoxy-ben-

zyl]-6-(3-bromo-5-pyridinyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadi-
azole (IVt). M.p. 227–228 �C (C2H5OH), 1H NMR (CDCl3) d
9.10 (d, J= 2.0 Hz, 1H), 8.98 (d, J = 2.2 Hz, 1H), 8.58 (s,

1H), 7.30 (s, 1H), 7.22 (s, 1H), 4.79 (s, 2H), 3.84 (s, 3H),
3.80 (s, 3H), 2.63 (s, 6H), I.R. v cm�1 1600 (C‚N), 1573,
1516, 1481, 1440, 1412 (C‚C), 1270 (NAN‚C), 1338 (SAO
antisym.), 1140 (SAO sym.), Analysis: C19H19BrN6O4S2
(539). Calc.%: C:42.30, H:3.52, N:15.58. Found%: C:42.32,
H:3.49, N:15.56.

2.2. Biological evaluation

2.2.1. In vitro anticancer activity

Twenty disubstituted triazolo-thiadiazole derivatives (Scheme 1
and Table 1) were tested for anticancer activity against nine
well established human cancer cell lines (4 ovarian, 2 breast,

1 prostate cancer, 1 epidermoid carcinoma and 1 leukemia)
(Table 2). SKOV-3, OVCAR-3, UWB1.289, UWB1.289
+BRCA1 ovarian cancer cells, MCF7, T-47D breast adeno-
carcinoma cells, PC-3 prostate adenocarcinoma cells, A-431

epidermoid carcinoma cells and MOLT-4 T-lymphoblastic leu-
kemia cells were treated for testing cytostatic (growth inhibi-
tion: IG50, TGI) and cytotoxic/cytocidal (IC50) activity

generated by the newly synthesized compounds at concentra-
tions of 1–100 lM. The cell lines were obtained from the
American Type Culture Collection (ATCC) and were grown

in different culture media according to the instructions. The
MTT ((3-(4,5-imethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay is a well-established and standard method for
evaluating the cytostatic and cytotoxic activity of drugs and

chemicals (Camoutsis et al., 2005; Trafalis et al., 2005, 2004,
2006). Briefly, the cells were plated in 96-well plate at a density
of 3 � 104 cells/ml per well and maintained for 72 h at 37 �C in

a 5% CO2 incubator and grown as monolayers or suspensions.
After 24 h, cells were treated with 1–100 lmol/l of the com-
pounds for 48 h. The viability of cultured cells was estimated

MTT (Sigma, St Louis, Missouri, USA) metabolic assay as
described previously. Absorbance of the converted dye was
measured at a wavelength of 540 nm on an ELISA reader (Ver-

samax, Orleans, USA). The mean concentrations of each drug
that generated 50% or total (100%) growth inhibition (GI50
and TGI, respectively) as well as the drug concentrations that
ty of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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Table 2 Description of histotypes and characteristics of the 8 human cell lines treated with the tested for antineoplastic activity newly

synthesized triazolo-thiadiazole derivatives.

Cancer type Human cell line

designation

Oncogenes Special characteristics

Ovarian

adenocarcinoma

SKOV-3 Tumor Necrosis Factor; Diphtheria Toxin; Cis-platinum and Adriamycin

resistant

Epithelial ovarian

adenocarcinoma

OVCAR-3 Androgen/Estrogen/Progesterone receptor positive;

Adriamycin, Melphalan and Cisplatin resistant

Ovarian carcinoma UWB1.289 p53+

BRCA1 –

(mutated)

Estrogen/Progesterone receptor negative/BRCA1 mutated

Ovarian carcinoma UWB1.289

+BRCA1

p53+

BRCA1+

Estrogen/Progesterone receptor negative

Epithelial breast

adenocarcinoma

MCF7 WNT7B+ Estrogen receptor positive

Insulin-like growth factor binding proteins (IGFBP) BP-2; BP-4; BP-5

Epithelial breast

adenocarcinoma

T-47D WNT7B+ Calcitonin; androgen receptor, positive; progesterone receptor, positive;

glucocorticoid; prolactin; estrogen receptor, positive

Prostate

Adenocarcinoma

PC-3 Hormone resistant

Acute T-

lymphoblastic

leukemia

MOLT-4 Terminal deoxynucleotidyl transferase (TdT) expressed

Epidermoid

carcinoma

A-431 P53� High expression of the Epidermal growth factor receptor (EGFR)
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produced cytotoxicity against 50% of the cultured cells [(half
maximal cytotoxic concentration (IC50)] were calculated using

the linear regression method. Using seven absorbance mea-
surements [time 24 h (Ct24), control growth 72 h (Ct72), and
test growth in the presence of drug at five concentration levels

(Tt72x)], the percentage of growth was calculated at each level
of the drug concentrations. The percentage growth inhibition
was calculated according to National Cancer Institute (NCI)

as follows: [(Tt72x)-(Ct24)/(Ct72)-(Ct24)] � 100 for concentra-
tions for which Tt72x > Ct24 and [(Tt72x)-(Ct24)/Ct24] � 100
for concentrations for which Tt72x < Ct24; GI50 was calcu-
lated from [(Tt72x)-(Ct24)/(Ct72)-(Ct24)] � 100 = 50,TGI

from [(Tt72x)-(Ct24)/(Ct72)-(Ct24)] � 100 = 0, and IC50
from [(Tt72x)-(Ct24)/Ct24] � 100 = 50. All the experiments
were carried out in triplicate.

2.2.2. In vivo acute toxicity

For intraperitoneal (i.p.) treatment, stock solutions of the 20
tested compounds (Scheme 1 and Table 1) were prepared

immediately before use. They were suspended in corn oil in
the desired concentration following initial dissolution in 10%
dimethylsulfoxide (DMSO). This concentration by itself pro-

duced no observable toxic effect.
C57Bl/6 female mice were used for toxicity studies. Mice

were obtained from experimental section of the Hellenic Pas-

teur Institute.
Briefly, the acute toxicity induced by the tested compounds

was determined, as previously had very well described (Trafalis
et al., 2005, 2004, 2006) following a single i.p. injection into

groups of ten (10) C57Bl/6 mice at four different dosages; the
mice were observed for 30 days and the therapeutic dose of
the compounds, which is usually defined as LD10 (lethal dose

for 10% of animals) as well as LD50 (lethal dose for 50% of
animals) was determined after graphical estimation (30-day
Please cite this article in press as: Charitos, G. et al., Synthesis and anticancer activ
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curves). The toxicity of the tested compounds was assessed
from lethality in C57Bl/6 mice. The LD50 and LD10 values

were estimated graphically, where the percentage of deaths
due to the toxicity of each dose was shown in the ordinate,
while the administered doses were indicated on the abscissa.

2.3. In silico studies

PharmMapper Server was used to obtain information regard-

ing possible mechanisms behind the activity of studied com-
pounds (Chen et al., 2011; Liu et al., 2010). PharmMapper
Server is a freely accessed web-server designed to identify
potential target candidates for the given probe small molecules

(drugs, natural products, or other newly discovered com-
pounds with binding targets unidentified). PharmMapper uti-
lizes an integrated pharmacophore matching platform with

statistical method for potential target identification (http://
59.78.96.61/pharmmapper/index.php). Compounds are scored
according to their fitness on the pharmacophore models.

Moreover, the program encompasses z0 score which is a score
generated from the molecule’s fit score and a library score
matrix calculated beforehand. It combines the fit score and

its corresponding vector in the score matrix together and nor-
malizes it to a vector with a mean of zero and a standard devi-
ation of one. Compared to the fit score z0-score not only
applies the pharmacophore matching method but also consid-

ers statistic factors lying behind. Generally, large positive z0-
score indicates high significance of the target to a query com-
pound, as well large negative z0-score indicates that the target

may not be significant enough.
LigandScout 4.0 Advanced (Wolber and Langer, 2005) was

utilized to create the shared pharmacophore features of the

active compounds IVn and IVb as well as those of the inactive
ones, IVe and IVa. LigandScout 4.0 Advanced is available
ity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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from InteLigand, GmbH, Vienna, Austria http://www.in-
teligand.com/ligandscout.

3. Results and discussion

3.1. In vitro cytostatic and cytotoxic activity

The 20 novel triazolo-thiadiazole derivatives (Scheme 1 and
Table 1) were tested in vitro against a panel of 9 well-

established human cancer cell lines (Table 2). Results regard-
ing the most active derivatives are presented in Table 3a. As
it is shown, compounds IVn and IVb exhibited a very potent

cytostatic and cytotoxic effect against all tested cell lines.
The derivatives IVi and IVk were active but exhibited lower
anticancer potency, while the compounds IVr and IVa were

less active. The derivatives IVe and IVc were relatively inactive
at the concentrations tested in vitro. Although the triazolo-
thiadiazole derivatives IVn and IVb produced important cyto-
toxic activity, in general it was demonstrated that the tested

derivatives rather hold a potential cytostatic than cytotoxic
anticancer activity, probably acting like antimetabolites or tar-
geted molecular pathway agents (Tonkinson et al., 1997;

Svendsrud et al., 1997). The rest 12 triazolo-thiadiazole deriva-
tives (IVa, IVd, IVf, IVg, IVh, IVj, IVl, IVm, IVo, IVp, IVq,
and IVs) were inactive at the concentrations tested with

IG50, TGI and IC50 > 100 lM in all 9 human cancer lines.
For comparison reasons, three well-established anticancer

agents currently used in cancer chemotherapy were tested for

cytostatic and cytotoxic effects in vitro, against 6 human cancer
cell lines (2 ovarian, 1 prostate, 2 breast cancer and 1 leukemia)
Table 3a Growth inhibition/cytostatic (GI50 and TGI) and cytoc

synthesized triazolo-thiadiazole derivatives on nine human cancer ce

Compound GI50

(lM)

TGI

(lM)

IC50

(lM)

UWB1.289 + BRCA1 IVn 12 28 42 OVCA

IVb 8 64 >100

IVi 8 64 >100

IVk 16 >100 >100

IVr >100 >100 >100

IVa 76 >100 >100

IVe 90 >100 >100

IVc 85 >100 >100

UWB1.289 IVn 12 56 >100 MCF-7

IVb 30 50 >100

IVi 13 >100 >100

IVk 30 >100 >100

IVr >100 >100 >100

IVa 56 >100 >100

IVe >100 >100 >100

IVc >100 >100 >100

PC-3 IVn 12 31 85 MOLT

IVb 20 45 >100

IVi 27 >100 >100

IVk 44 >100 >100

IVr >100 >100 >100

IVa 62 >100 >100

IVe >100 >100 >100

IVc >100 >100 >100
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(Table 3b). Carboplatin is a commonly used less toxic than cis-
platin newer agent that exerts its antineoplastic effects acting
like a non-classical alkylator interacting with DNA.

Vinorelbine is a very active antitumor agent, the first 50NOR
semi-synthetic vinca alkaloid, pharmacologically acting due
to inhibition of mitosis through interaction with tubulin.

Pemetrexed is an evolved newer agent chemically similar to
folic acid, in the class of chemotherapy drugs called folate
antimetabolites, producing its effects by inhibiting three

enzymes used in purine and pyrimidine synthesis: thymidylate
synthase, dihydrofolate reductase, and glycinamide ribonu-
cleotide formyltransferase. Thus, by inhibiting the formation
of precursor purine and pyrimidine nucleotides, pemetrexed

prevents the formation of DNA and RNA which are required
for the growth and survival of cancer cells.

It is notable that all the compounds produced relatively

very low acute toxicity on C57Bl/6 mice (Table 4). All
LD10s from the i.p. administration of the tested triazolo-
thiadiazole derivatives were over 350 mg/kg whereas LD50 s

were not reached in any case. For the derivatives IVa, IVc-h,
IVj-m, and IVo-s, acute toxicity was not demonstrated at the
higher of the i.p. administrated dosage and LD10 s and

LD50 s were not reached (>500 mg/kg).
Thus, the new triazolo-thiadiazole derivatives that were

tested and specifically IVn, IVb, IVi, IVk, IVr and IVa gener-
ated potent cytostatic and cytotoxic effects against all tested

human cancer cell lines in vitro and better or equal activity
in comparison with three well-established antitumor drugs in
current cancer chemotherapy. This is important activity comes

together with the generation of relatively very low acute
idal/cytotoxic (IC50) anticancer effects induced by the 8 newly

ll lines.

GI50

(lM)

TGI

(lM)

IC50

(lM)

GI50

(lM)

TGI

(lM)

IC50

(lM)

R-3 5 12 25 SKOV-3 8 16 32

3 32 >100 8 38 >100

8 68 >100 12 56 >100

5 86 >100 6 >100 >100

24 >100 >100 20 >100 >100

65 >100 >100 80 >100 >100

97 >100 >100 >100 >100 >100

95 >100 >100 >100 >100 >100

15 45 >100 T-47D 8 37 >100

22 50 >100 27 55 >100

18 >100 >100 24 >100 >100

40 >100 >100 28 >100 >100

>100 >100 >100 >100 >100 >100

65 >100 >100 52 >100 >100

>100 >100 >100 >100 >100 >100

>100 >100 >100 >100 >100 >100

-4 4 21 36 A-431 11 28 78

6 45 78 16 36 >100

7 55 >100 19 75 >100

10 >100 >100 35 >100 >100

85 >100 >100 >100 >100 >100

42 >100 >100 74 >100 >100

55 >100 >100 >100 >100 >100

94 >100 >100 >100 >100 >100

ty of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.
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Table 3b Growth inhibition/cytostatic (GI50 and TGI) and cytocidal/cytotoxic (IC50) anticancer effects induced by 3 well-established

cancer therapeutics anticancer agents.

Human cancer cell lines Anticancer agents

Carboplatin Pemetrexed Vinorelbine

IG50 (lM) TGI (lM) IC50 (lM) IG50 (lM) TGI (lM) IC50 (lM) IG50 (lM) TGI (lM) IC50 (lM)

OVCAR-3 66 >100 >100 >100 >100 >100 <1 <1 70

SCOV-3 >100 >100 >100 >100 >100 >100 <1 3 79

PC-3 >100 >100 >100 >100 >100 >100 <1 28 87

MCF-7 >100 >100 >100 <1 >100 >100 <1 21 65

T-47D >100 >100 >100 >100 >100 >100 <1 52 >100

MOLT-4 74 >100 >100 <1 >100 >100 <1 5 >100

Table 4 Acute toxicity of the compounds in C57Bl/6. The

acute toxicity induced by the tested compounds following a

single intraperitoneal (i.p.) injection into groups of ten (10)

C57Bl/6 mice at four different dosages was determined; LD50

and LD10 = lethal doses for 50% and 10% of the population

of the treated mice. Where LD50 s and LD10 s were not

reached it is indicated as over 500 mg/kg (>500), the higher

dosage that was administered.

Compounds LD50 (mg/kg) LD10 (mg/kg)

IVn 375 >500

IVb 430 >500

IVi 480 >500

IVk >500 >500

IVr >500 >500

IVa >500 >500

IVe >500 >500

IVc >500 >500
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toxicity on C57Bl/6 mice in vivo, lending a significant clinical
practice accrued therapeutic ratio.

These results provide evidence that the newly synthesized
compounds, especially IVn and IVb are of high interest for
cancer therapeutics, since they provide very low acute toxicity

and conclusively low systemic toxicity in correlation with high
anticancer activity in vitro thus relatively high therapeutic
ratios.

3.2. Proposed mechanisms behind activity

Triazolo-thiadiazole derivatives exhibit antitumor activity by
targeting and inhibiting various molecular pathways and cru-

cial macromolecules in cancer cells. Molecular targets and
pathways involved in the biological activities of these com-
pounds are protein kinases (tyrosine, serine and threonine

kinases), phosphatidylinositol-3 lipid kinases, metallopro-
teinases, cells defective in the von Hippel-Lindau gene, Bcl-2
family proteins, histone acetyltransferases and deacetylases

and cancer cells with high expression in Cancer 1 (Hec1)
(Leoni et al., 2014a, 2014b; Morigi et al., 2015).

Implementation of PharmMapper on two active (IVb and

IVn) versus two inactive (Iva and IVe) compounds has resulted
in several significant and insignificant protein targets which are
presented in Table 5. These target proteins may partially
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explain the mechanism behind the activity of IVn and secondly
IVb on ovarian and epithelial ovarian carcinoma and adeno-

carcinoma cell lines (Table 3). As can be observed, apoptotic
protease-activating factor 1 (APAF1) has been matched as
the most significant target for IVn (z0 score equal to 3.81),

and it is estimated to be significant for IVb (z0 score equal to
2.40) but rather insignificant for the activity of IVa (z0 score
equal to 0.80) and IVe (z0 score equal to 1.26). Indeed, the reg-

ulation of APAF-1 activity is suggested to be important for
apoptosis in some ovarian cancers (Wolf et al., 2001). Further-
more, in ovarian carcinoma, the APAF1 gene has been found
to be active (Wolf et al., 2001). APAF-1 is the structural core

of the apoptosome. Oligomeric APAF-1 mediates the cyto-
chrome c-dependent autocatalytic activation of pro-caspase-9
(Apaf-3), leading to the activation of caspase-3 and apoptosis.

A second common significant protein target for IVn (z0

score equal to 3.13) and IVb (z0 score equal to 2.73) and
insignificant for IVa (z0 score equal to 0.47) and IVe (z0 score
equal to -0.05) is the Tyrosine-protein kinase HCK. Tyrosine
kinase plays an essential role for the selection and maturation
of developing T-cell and in mature T-cell function. It is consti-
tutively associated with the cytoplasmic portions of the CD4

and CD8 surface receptors. Tyrosine-protein kinase has been
correlated with leukemia.

The cell division protein kinase 2 (CDK2), another possible

target for IVb (z0 score equal to 2.89), is hyperactivated and
most often associated with amplification and/or overexpres-
sion of its partner cyclins A and E, particularly in breast can-

cer, ovarian and endometrial carcinomas, lung and thyroid
carcinoma, melanoma and osteosarcoma (Peyressatre et al.,
2015).

Compound IVb displays also significant z0 score (2.46) for
the matrix metalloproteinase 3 (MMP3) which along with
MMP2 and MMP9 is representative protease known to be
involved in ovarian metastasis (Wu et al., 2014).

Heat shock protein HSP 90 is a possible target especially
for IVn (z0 score equal to 2.75). The suppression of HSP90 sig-
nals the inhibition of multi-receptor tyrosine kinases (RTKs)

and results in profound pro-apoptotic and anti-proliferative
effects in individual ovarian cancer cell lines and primary
tumors (Jiao et al., 2011).

Finally, lymphocyte-specific protein tyrosine kinase Lck,
which belongs to the Proto-oncogene tyrosine-protein kinase
(Src) family, has been found significant target for IVn (z0 score
equal to 2.37 versus 0.46, 0.53 and 0.51 for IVb, IVa and IVe

respectively), and may explain its activity on Acute
ity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.

http://dx.doi.org/10.1016/j.arabjc.2016.09.015


Table 5 Results from PharmMapper matching platform indicating potential protein target candidates.

Target protein Compound

z0 scores

IVn IVb IVa IVe

Cell division protein kinase 2

P24941

PDB:1DI8

0.02 2.89 2.58 2.56

Stromelysin-1

MMP3 HUMAN

PDB: 1CIZ

0.49 2.46 0.11 0.53

Apoptotic protease-activating factor 1 APAF HUMAN

PDB: 1Z6T

3.81 2.40 0.80 1.26

Tyrosine-protein kinase HCK

HCK HUMAN

PDB: 1QCF

3.13 2.73 0.47 -0.05

Heat shock protein HSP 90-alpha

HS90A HUMAN

PDB: 1UYG

2.75 1.12 2.02 2.30

Proto-oncogene tyrosine-protein kinase LCK

LCK HUMAN

PDB: 1QPC

2.37 0.46 0.53 0.51

High significance values appear in bold.

Figure 1 (left) Shared pharmacophore features of the overlaid active molecules IVn (light blue) and IVb (purple) include six hydrogen

bond acceptors (red spheres), three aromatic rings (blue rings) and three hydrophopic regions (yellow spheres); (right) shared

pharmacophore features of the overlaid inactive molecules IVe (light green) and IVa (pink) including six hydrogen bond acceptors (red

spheres), four aromatic rings (blue rings) and two hydrophopic regions (yellow spheres). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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T-lymphoblastic leukemia cell lines (Table 3). Lck phosphory-
lates specific tyrosine residues in other proteins involved in the

intracellular signaling pathways of lymphocytes. Upregulation
of Lck is observed in lymphoma, breast and colon cancer (Patil
and Kundu, 2005).

In an effort to further explore structure-activity relation-
ship features, two active (IVb and IVn) and two inactive
(IVa and IVe) analogues have been selected and subjected to

ligand based pharmacophore model generation (Fig. 1).
Results indicate that the shared pharmacophore model of the
active compounds is characterized by one more hydrophobic
feature which might contribute positively to their binding at

a hydrophobic core of the biological target.
Please cite this article in press as: Charitos, G. et al., Synthesis and anticancer activi
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4. Conclusions

The role of the thiadiazole and triazole heterocycles as a versatile scaf-

fold for the synthesis of new derivatives has been presented. Some of

the newly synthesized 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole deriva-

tives and more specifically IVn and IVb showed substantial cytostatic

and cytotoxic antineoplastic activity in vitro and they produced rela-

tively low acute toxicities in vivo. Apoptotic protease-activating factor

1 (APAF1), tyrosine-protein kinase HCK, cell division protein kinase 2

(CDK2) and matrix metalloproteinase 3 (MMP3) may be involved in

the biological activities of active analogues on ovarian and epithelial

ovarian carcinoma and adenocarcinoma cell lines. Moreover, the

lymphocyte-specific protein tyrosine kinase Lck may explain the activ-

ity of IVn on Acute T-lymphoblastic leukemia cell lines.
ty of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3, 4-thiadiazole derivatives.

http://dx.doi.org/10.1016/j.arabjc.2016.09.015
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Conclusively, many of these derivatives might be useful to increase

the effects of standard drugs and improve the therapeutic response in

cancer patients.
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