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a b s t r a c t

In this paper, the simultaneous existence of positive, negative and sign-changing periodic
solutions for a class of integral equations of the form

φ(x) =
∫
[x,x+ω]∩Ω

K(x, y)f (y, φ(y− τ(y)))dy, x ∈ Ω,

is considered, whereΩ is a closed subset of RN with a periodic structure. Our main result
is different from most existing results since they provide three constant sign periodic
solutions only.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There are now numerous results on the existence of multiple solutions of functional (differential or difference) equations
under additional side conditions. In particular, bymeans of the Krasnoselski fixed point theorem, the Leggett–Williams fixed
point theorem and/or the Avery fixed point theorems, the existence of three constant sign solutions for many differential or
difference boundary value problems have been proved; see e.g. [1–19].
In [3], three positive periodic solutions for a class of integral equations are established by means of the Leggett–Williams

fixed point theorem. The question then arises as towhether there are three solutionswith different types of sign regularities.
This is a relatively difficult question. But in a recent paper by Li et al. [1], the existence of sign-changing solutions for
nonlinear operator equations is discussed using the topological degree and fixed point index theory. The corresponding
results are shown to be useful in deriving sign-changing solutions of integral equations. In this paper, we will also be
interested in deriving the simultaneous existence of three solutions for an integral equation which are positive, negative
and ‘sign-changing’. Our integral equation, however, involves spaces with periodic structure and hence is different from the
Hammerstein type equation in [1].
To be more precise, let RN be the N-dimensional Euclidean space endowed with componentwise ordering ≤. For any

u, v ∈ RN , the ‘interval’ [u, v] is the set {x ∈ RN | u ≤ x ≤ v}. Let ω = (ω1, . . . , ωN) ∈ RN with positive components and
let e(1) = (1, 0, . . . , 0), . . . , e(N) = (0, . . . , 0, 1) be the standard orthonormal vectors in RN . LetΩ be a closed subset of RN
with the positive Lebesgue measure µ(Ω) and which has the following ‘periodic’ structure: for each x ∈ Ω ,

x+ ωie(i) ∈ Ω,
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and for each pair y, z ∈ Ω ,

µ ([y, y+ ω] ∩Ω) = µ ([z, z + ω] ∩Ω) > 0.

For the sake of convenience, we will set

Ω(x) = [x, x+ ω] ∩Ω.

Wewill be concernedwith integral equations of the formwhere the functions K , f and τ satisfy the following conditions:

φ(x) =
∫
[x,x+ω]∩Ω

K(x, y)f (y, φ(y− τ(y)))dy, x ∈ Ω, (1)

• K ∈ C(Ω×Ω, (0,∞)) and K(x+ωie(i), y+ωie(i)) = K(x, y) for any (x, y) ∈ Ω×Ω and i ∈ {1, 2, . . . ,N}, K is uniformly
continuous1 onΩ ×Ω ,
• f ∈ C(Ω × R, R) and f (x+ ωie(i), u) = f (x, u) for i ∈ {1, 2, . . . ,N} and x ∈ Ω ,
• τ : Ω → Ω is a function such that τ(x + ωie(i)) = τ(x) for any x ∈ Ω and i ∈ {1, 2, . . . ,N}, and there is a partition
{Ω1,Ω2, . . . ,Ωm} ofΩ(x0) such that τ(x) = (n

(i)
1 ω1, n

(i)
2 ω2, . . . , n

(i)
N ωN) for x ∈ Ωi, where n

(i)
1 , n

(i)
2 , . . . , n

(i)
N are integers

and x0 ∈ Ω .

To see an example of the function τ . Let (ω1, ω2) = (4π, 4π) and

Ω =
{
(x, y) ∈ R2|4nπ ≤ x ≤ 4nπ + 2π, 4mπ ≤ y ≤ 4mπ + 2π m, n = 0,±1,±2, . . .

}
.

Let

l1 = {(x, y)|x = 0, 0 ≤ y < π} ∪ {(x, y)|0 < x < π, y = 0} ∪ {(x, y)|x = π, 0 ≤ y < π},

l2 = {(x, y)|π < x ≤ 2π, y = 0} ∪ {(x, y)|x = 2π, 0 < y ≤ π} ∪ {(x, y)|π < x < 2π, y = π},
l3 = {(x, y)|0 ≤ x ≤ π, y = π} ∪ {(x, y)|x = 0, π < y ≤ 2π} ∪ {(x, y)|0 < x < π, y = 2π},
l4 = {(x, y)|x = 2π, π < y ≤ 2π} ∪ {(x, y)|π ≤ x < 2π, y = 2π} ∪ {(x, y)|x = π, π < y < 2π},

and

Θ1 = {(x, y)|0 < x < π, 0 < y < π},

Θ2 = {(x, y)|π < x < 2π, 0 < y < π},

Θ3 = {(x, y)|0 < x < π,π < y < 2π},
Θ4 = {(x, y)|π < x < 2π, π < y < 2π}.

Then {l1 ∪Θ1, l2 ∪Θ2, l3 ∪Θ3, l4 ∪Θ4} is a partition ofΩ(0) = [0, 2π ] × [0, 2π ], and τ defined by

τ(x) =


(ω1, ω2) x ∈ l1 ∪Θ1
(ω1, 2ω2) x ∈ l2 ∪Θ2
(2ω1, 3ω2) x ∈ l3 ∪Θ3
(4ω1, 2ω2) x ∈ l4 ∪Θ4

is an example.
A concrete example of (1) is the integral equation

φ(x) =
∫ x+2π

x
K(x, y)f (φ(y))dy, x ∈ R, (2)

where

K(x, y) =
exp

∫ y
x a(t)dt

exp
∫ 2π
0 a(t)dt − 1

, x, y ∈ R,

which arises when periodic solutions are sought for the differential equation

φ′(x) = −a(x)φ(x)+ f (φ(x)), x ∈ R, (3)

where a = a(x) is a positive continuous 2π-periodic function defined on R (see e.g. [5,6]).
We will look for solutions in the set of all real continuous functions of the form φ : Ω → R such that

φ(x+ ωie(i)) = φ(x), x ∈ Ω.

1 This assumption can be relaxed. Indeed, wemay assume in the sequel that for any ε > 0, there exists positive δ, which does not depend on y, such that
|K(x1, y)− K(x2, y)| < ε for all x1, x2 ∈ Ω that satisfy |x1 − x2| < δ.
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This set will be denoted by Cω(Ω) in the sequel, when endowed with the usual linear and ordering structure as well as the
norm ‖φ‖ = maxz∈Ω(x),x∈Ω |φ(z)| , Cω(Ω) is a real Banach space with a normal and total cone P = {φ ∈ Cω(Ω) : φ(x) ≥
0, x ∈ Ω}.
A functionφ in Cω(Ω) is said to be anω-periodic solution of (1) if substitution of it into (1) yields an identity for all x ∈ Ω .

A periodic solution φ is said to be positive if φ ∈ P , negative if φ ∈ −P and sign-changing if φ 6∈ P ∪ (−P).
The simultaneous existence of such solutions will be based on the recent existence theorem in [1]. For this reason, we

first quote several results to be used in the sequel. Let E be a real Banach spacewith cone P1 and null vector θ . The semi-order
induced by the cone P1 is denoted by ‘‘≤’’. Let D ⊂ E and D 6= ∅. An operator A : D → E is said to be increasing on D if
Ax ≤ Ay for any x, y ∈ D and x ≤ y. A fixed point u of operator A is said to be positive if u ∈ P1, negative if u ∈ −P1 and
sign-changing if u 6∈ P1 ∪ (−P1).

Definition 1 ([7]). Let A : D→ E be an operator, e ∈ P1 \ {θ} and x0 ∈ D. If for any ε > 0, there exists δ = δ(ε) > 0 such
that−εe ≤ Ax − Ax0 ≤ εe for all x ∈ D with ‖x − x0‖ < δ, then A is called e-continuous at x0. If A is e-continuous at each
point x ∈ D, then A is called e-continuous on D.
It is easy to see that if A : D→ E is a linear operator, then A is e-continuous on D iff A is e-continuous at θ .

Theorem A (Leray–Schauder [8]). Let A : E → E be completely continuous, Aθ = θ , and Fréchet differentiable at θ . Assume
that 1 is not an eigenvalue of the Fréchet derivative A

′

(θ). Let F = {x ∈ E \ {θ} : Ax = x}. Then there exists τ > 0 such that
F ∩Bτ = φ, where Bτ = {x ∈ E : ‖x‖ < τ }. That is, θ is an isolated zero point of the completely continuous vector field I−A and

i(I − A, θ) = i(I − A′(θ), θ) = (−1)k,

where k is the sum of the algebraic multiplicities of the real eigenvalues of A
′

(θ) in (1,+∞), and i is the index of isolated zero
point (see e.g. [4]).

Theorem B (Krein–Rutman [8]). Let E be a Banach space, P1 ⊂ E a total cone and K a linear compact positive operator with
r(K) > 0, where r(K) denotes the spectral radius of K . Then r(K) is an eigenvalue of K with a positive eigenvector. Furthermore,
r(K) is an eigenvalue of K ∗, the dual operator of K , with positive eigenvector in P∗1 , where P

∗

1 is the dual cone of P1.

Theorem C (Li et al. [1]). Let P1 be a normal cone in E, A = KF , where F : E → E is a continuous and bounded increasing
operator, K : E → E is a positive linear completely continuous operator which is also e-continuous on E. Suppose that

L1 Fθ = θ, F is Fréchet differentiable at θ , and KF ′(θ) has an eigenvalue λ0 ∈ (1,∞)with eigenvector u satisfying νe ≤ u ≤ λe
for some positive ν and λ;

L2 1 is not an eigenvalue of the operator KF ′(θ), and i(I − KF ′(θ), θ) = 1;
L3 there exist u0 ∈ (−P1) \ {θ} and v0 ∈ P1 \ {θ} such that u0 ≤ Au0 and Av0 ≤ v0, and there also exists β > 0 such that
u0 ≤ −βe and βe ≤ v0;

L4 there exists h ≥ γ e with γ > 0 such that ‖x‖h ≤ x for all x ∈ P1 with Ax = x, and x ≤ −‖x‖h for all x ∈ (−P1)with Ax = x.

Then A has at least one sign-changing fixed point, one positive fixed point and one negative fixed point.

2. Main results

We will assume that
(C0) there arem andM such that

0 < m ≤ K(x, y) ≤ M < +∞ for x, y ∈ Ω(t) and t ∈ Ω. (4)

Then ĉ = m/M > 0. Let

e(x) =
∫
Ω(x)
K(x, s)ds, x ∈ Ω,

we have e(x) > 0 for x ∈ Ω (since e(x) =
∫
Ω(x) K(x, s)ds ≥ mµ(Ω(x)) > 0). And we may also verify that if

0 < ν ≤ m/(M2µ (Ω(t)))⇒ νe ≤ ĉ and K(x, y) ≥ ĉK(z, y) (5)

for x, y, z ∈ Ω(t) and t ∈ Ω .
Now we define operators F ,G, A : Cω(Ω)→ Cω(Ω) respectively by

(Fu) (x) = f (x, u (x− τ(x))), x ∈ Ω, u ∈ Cω(Ω), (6)

(Gu) (x) =
∫
Ω(x)
K (x, s) u (s) ds, x ∈ Ω, u ∈ Cω(Ω), (7)
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and
A = GF .

Then F : Cω(Ω) → Cω(Ω) is a continuous and bounded operator, G : Cω(Ω) → Cω(Ω) is a linear positive continuous
operator and G(P) ⊂ P .
Furthermore, by standard arguments (see e.g. [3]), we may also show that G is completely continuous. So A : Cω(Ω)→

Cω(Ω) is also completely continuous on Cω(Ω). By the Riesz–Schauder theorem, we may suppose that the sequence {λn} of
all positive eigenvalues of G satisfies

λ1 > λ2 > · · · > λn > · · · > 0.

Lemma 1. Suppose (C0) holds. Then the operators G, A : Cω(Ω)→ Cω(Ω) are e-continuous on Cω(Ω).

Proof. For any given u0 ∈ Cω(Ω), and any u ∈ Cω(Ω),

|Gu(t)− Gu0(t)| ≤
∫
Ω(t)
K (t, s) |u (s)− u0(s)| ds

≤ ‖u− u0‖
∫
Ω(t)
K (t, s) ds = ‖u− u0‖e(t), t ∈ Ω.

So G is e-continuous at u0 and it follows from the continuity of F : Cω(Ω) → Cω(Ω) that A = GF is also e-continuous at
u0. �

Lemma 2. Suppose (C0) holds. Suppose further that
(C1) f (·, 0) = 0 onΩ , and for each t ∈ Ω , f (t, u) is nondecreasing in u.

Then

‖Gu‖ĉ ≤ Gu for u ∈ P and Gu ≤ −‖Gu‖ĉ for u ∈ (−P),

and

‖Au‖ĉ ≤ Au for u ∈ P and Au ≤ −‖Au‖ĉ for u ∈ (−P).

Proof. For any u ∈ P , from the definition of G.

(Gu) (t) =
∫
Ω(t)
K (t, s) u (s) ds ≥ m

∫
Ω(t)
u (s) ds = ĉM

∫
Ω(z)
u (s) ds

≥ ĉ
∫
Ω(z)
K (z, s) u (s) ds = ĉ(Gu)(z),

for t, z ∈ Ω . Then Gu ≥ ‖Gu‖ĉ . Similarly, we can obtain that Gu ≤ −‖Gu‖ĉ for u ∈ (−P). It follows from condition (C1)
that F(P) ⊂ P and F(−P) ⊂ −P . So Au = GFu ≥ ‖GFu‖ĉ = ‖Au‖ĉ for u ∈ P , and Au = GFu ≤ −‖GFu‖ĉ = −‖Au‖ĉ for
u ∈ (−P). �

Lemma 3. Suppose (C0) holds. Assume that f (·, 0) = 0 onΩ , and

lim
u→0
f (t, u)/u = a (8)

uniformly with respect to t ∈ Ω . Then the operator A is Fréchet differentiable at θ and A′(θ) = aG.

Proof. From (8), for any ε > 0, there exists δ > 0 such that |f (t, u)/u − a| < ε for all t ∈ Ω and |u| ∈ (0, δ). So we have
‖Fu− au‖ ≤ ε‖u‖ for all u ∈ Cω(Ω)with ‖u‖ < δ. Consequently,

lim
‖u‖→0

‖Fu− Fθ − au‖
‖u‖

= 0.

This implies that the operator F is Fréchet differentiable at θ and F
′

(θ) = aI . It follows from the definition of A and the chain
rule for derivatives of composite operators [8] that A

′

(θ) = GF
′

(θ) = aG. �

Theorem 1. Suppose that conditions (C0) and (C1) hold. Assume further that
(C2) limu→0 f (t, u)/u = a uniformly with respect to t ∈ Ω , there exists a positive integer n0 such that

1/λ2n0 < a < 1/λ2n0+1

and the sum of the algebraic multiplicities of the eigenvalues λi for all 1 ≤ i ≤ 2n0 is even;
(C3) limu→∞ f (t, u)/u = f∞ uniformly with respect to t ∈ Ω , and f∞ < 1/‖e‖.

Then the Eq. (1) has at least three nontrivial periodic solutions, one of which is positive, another is negative, and the third solution
is sign-changing.
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Proof. We only need to verify all the conditions of Theorem C.
(1) It follows from (C2) and Lemma 3 that the eigenvalues of the operator aG in (1,+∞) are aλ1, aλ2, . . . , aλ2n0 , and 1 is

not an eigenvalue of aG. According to condition (C2) and the Leray–Schauder theorem, we may deduce i(I − A
′

(θ), θ) = 1.
That is the condition (2) of Theorem C holds.
(2) Since P is a total cone in Cω(Ω), G : Cω(Ω) → Cω(Ω) is a completely continuous positive linear operator and the

spectral radius r(G) = λ1 > 0. It follows from the Krein–Rutman theorem that there exists v ∈ P \ {θ} such that Gv = λ1v.
Choose ν such that 0 < ν ≤ m/(M2µ(Ω(t))), then by (5), νe ≤ ĉ , and according to Lemma 2, we have

νλ1‖v‖e ≤ ‖λ1v‖ĉ = ‖Gv‖ĉ ≤ Gv = λ1v = Gv ≤ ‖v‖e.

So ν‖v‖e ≤ v ≤ λ−11 ‖v‖e. The condition (1) of Theorem C holds.
(3) According to Lemma 2, we have

u = Au ≥ ‖Au‖ĉ = ‖u‖ĉ for all u ∈ P and Au = u;
u = Au ≤ −‖Au‖ĉ = −‖u‖ĉ for all u ∈ (−P) and Au = u.

It is easy to see that the condition (4) of Theorem C is satisfied.
(4) By condition (C3), for some large R > 0, we have

f (t, R)/R < 1/‖e‖, f (t,−R)/(−R) < 1/‖e‖, t ∈ Ω.

Let u0 = −R, v0 = R. Then u0 = −R ≤ −R‖e‖−1e, R‖e‖−1e ≤ R = v0. It follows that

(Au0) (t) =
∫
Ω(t)
K (t, s) f (s,−R) ds ≥ −R‖e‖−1

∫
Ω(t)
K (t, s) ds

= −R‖e‖−1e (t) ≥ −R = u0(t), t ∈ Ω;

(Av0) (t) =
∫
Ω(t)
K (t, s) f (s, R) ds ≤ R‖e‖−1

∫
Ω(t)
K (t, s) ds

= R‖e‖−1e (t) ≤ R = v0(t), t ∈ Ω.

So u0 ≤ Au0, Av0 ≤ v0. This implies that the condition (3) of Theorem C holds. The proof is completed. �

3. An example

It is important to see an example that illustrates the above result. For this purpose, let us first consider the eigenvalue
problem

λu(x) =
∫ 1

0
(1+ xy+ x2y2)u(y)dy. (9)

Since ∫ 1

0
(1+ xy+ x2y2)u(y)dy =

∫ 1

0
u(y)dy+ x

∫ 1

0
yu(y)dy+ x2

∫ 1

0
y2u(y)dy,

we see that

λu(x) =
∫ 1

0
u(y)dy+ x

∫ 1

0
yu(y)dy+ x2

∫ 1

0
y2u(y)dy. (10)

We now look for λ ∈ R such that there is a nontrivial function u defined on [0, 1] which satisfies the above equation.
For the special case where λ = 0, we can pick any u such that∫ 1

0
u(y)dy =

∫ 1

0
yu(y)dy =

∫ 1

0
y2u(y)dy = 0.

But if we require u ∈ C([0, 1], [0,∞)), then u ≡ 0, and hence λ = 0 cannot be an eigenvalue. In view of (10), an
eigenfunction umust satisfy

u(x) = a+ bx+ cx2

for some a, b, c. Since∫ 1

0
(a+ by+ cy2)dy = a+

1
3
c +

1
2
b,∫ 1

0
y
(
a+ by+ cy2

)
dy =

1
4
c +

1
3
b+

1
2
a,∫ 1

0
y2
(
a+ by+ cy2

)
dy =

1
5
c +

1
4
b+

1
3
a,
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we see that

λa+ λbx+ λcx2 =
(
a+

1
3
c +

1
2
b
)
+ x

(
1
4
c +

1
3
b+

1
2
a
)
+ x2

(
1
5
c +

1
4
b+

1
3
a
)
,

so that (since 1, x, x2 are linearly independent in C[0, 1))

λa =
(
a+

1
3
c +

1
2
b
)

λb =
(
1
4
c +

1
3
b+

1
2
a
)

λc =
(
1
5
c +

1
4
b+

1
3
a
)

or

λ

(a
b
c

)
=


1

1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


(a
b
c

)
=
1
60

(60 30 20
30 20 15
20 15 12

)(a
b
c

)
.

The eigenvalues of
(
60 30 20
30 20 15
20 15 12

)
are roots 84.499, 0.16124, 7.3396 of the characteristic polynomial

X3 − 92X2 + 635X − 100,

with corresponding eigenvectors(0.8270
0.4599
0.3233

)
,

(
−0.1277
0.7137
−0.6887

)
,

(0.5474
−0.5283
−0.6490

)
.

Therefore we have found a positive kernel

K1(x, y) = 1+ xy+ x2y2

over [0, 1]2 and three positive and simple eigenvalues λ1, λ2, λ3.
Next we consider an eigenvalue problem of the form (1). Let T = 2,

Ω1 = {x ∈ R : 2n ≤ x ≤ 2n+ 1, n ∈ Z},
Ω1(x) = [x, x+ 2] ∩Ω1,

and for anym, n ∈ Z ,

K(x, y) = 1+ (x− 2n)(y− 2m)+ (x− 2n)2(y− 2m)2, 2n ≤ x ≤ 2n+ 1, 2m ≤ y ≤ 2m+ 1.

Then it is easily checked that

K(x+ 2, y) = K(x, y), K(x, y+ 2) = K(x, y), (x, y) ∈ Ω1 ×Ω1,
+∞ ≥ M1 = max

0≤s,t≤1
K(t, s) ≥ K(t, s) ≥ min

0≤s,t≤1
K(t, s) = m1 > 0,

and

1 ≥
K(t, s)

max
t∈Ω1,s∈[t,t+T ]

K(t, s)
≥

min
t∈Ω1,s∈[t,t+T ]

K(t, s)

max
t∈Ω1,s∈[t,t+T ]

K(t, s)
=
m1
M1
.

Let CT (Ω1) be the set of all real T -periodic continuous functions, endowed with the usual linear structure as well as the
norm ‖y‖ = supt∈[0,1] |y(t)|. Then CT (Ω1) is a Banach space. Define a cone of CT (Ω1) by

P = {y(t) ∈ CT (Ω1) : y(t) ≥ 0, t ∈ Ω1} .

Then P is a normal and total cone. Define operators F ,G, A : CT (Ω1)→ CT (Ω1) respectively by

(Fu) (t) = f (u(t)), t ∈ Ω1, u ∈ CT (Ω1), (11)

(Gu) (t) =
∫ t+T

t
K (t, s) u (s) ds, t ∈ Ω1, u ∈ CT (Ω1), (12)
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and A = GF . Then F : CT (Ω1)→ CT (Ω1) is a continuous and bounded operator, G : CT (Ω1)→ CT (Ω1) is a linear completely
continuous operator and G(P) ⊂ P . So A : CT (Ω1)→ CT (Ω1) is also completely continuous on CT (Ω1). Consider

u(x) =
∫
Ω1(x)

K(x, y)f (u(y))dy, x ∈ Ω1. (13)

By the definition of K , for any 2n ≤ x ≤ 2n+ 1,

u(x) =
∫
Ω1(x)

K(x, y)f (u(y))dy

=

∫ 2n+1

x
K(x, y)f (u(y))dy+

∫ x+2

2n+2
K(x, y)f (u(y))dy

=

∫ 1

x−2n
K(x, y)f (u(y))dy+

∫ x−2n

0
K(x, y)f (u(y))dy

=

∫ 1

0
K(x, y)f (u(y))dy

=

∫ 1

0
K(x− 2n, y)f (u(y))dy.

Then by setting e1(t) =
∫
Ω1(t)

K(t, s)ds (‖e1‖ can be calculated (at least numerically) and is a positive number), we have

Theorem 2. Assume that limu→0 f (u)/u = f0 and 60/7.3394 < f0 < 60/0.16124, limu→∞ f (u)/u = f∞ < 1/‖e1‖. Then
the Eq. (13) has at least three nontrivial periodic solutions, one of which is positive, another is negative, and the third solution is
sign-changing.

For instance, if we choose f to be the nondecreasing function f (u) = η arctan u+ ξu where ξ < 1
‖e1‖
and 60/7.3396 <

η + ξ < 60/0.16124, then f (0) = 0, limu→0 f (u)/u = η + ξ = f0, and 60/7.3396 < f0 < 60/0.16124, and
limu→∞ f (u)/u = ξ = f∞ < 1/‖e1‖. Hence the conditions in Theorem 2 are satisfied, so that the equation

u(x) =
∫ 1

0
(1+ xy+ x2y2)f (u(y))dy, x ∈ [0, 1],

or,

u(x) =
∫
Ω1(x)

K(x, y)f (u(y))dy, x ∈ Ω1,

has at least three nontrivial periodic solutions, one of which is positive, another is negative, and the third solution is sign-
changing.
In conclusion,we have investigated the simultaneous existence of positive, negative and sign-changing periodic solutions

of a class of integral equationswith periodic structure. An existence criterion based on the spectral structure of an associated
linear eigenvalue problem and the asymptotic behavior of an associated nonlinear function is derivedwhich is different from
those in the literature. An example is also constructed to illustrate our result.
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