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If a homogeneous bracket polynomial is antisymmetrie in certain subsets of its points, then it can be 
representedin an abbreviated form called a dotted bracket expression. These dottedbracket expressions 
lead to a more compact expression in terms of tableaux than the usual representation. Consequently, we 
can derive a much more efficient straightening algorithm than the ordinary one for bracket palynomiais 
already given in dotted form. This dotted straightening algorithm gives precisely the same result as the 
ordinary one, and preserves the dotted property at every step. 

Dotted bracket expressions are bracket expressions, or vector invariants, 
which have additional anti-symmetry indicated on certain sets of points. In 
White (this volume) we have seen dotted bracket expressions arise as the 
result of evaluating simple Cayley algebra expressions. They are also very 
useful in expressing invariants of anti-symmetric tensors or Cayley algebra 
extensors, as seen in McMillan (1989), an application which we will not ex- 
plore in the present work. We will achieve some notational convenience by 
equating dotted bracket expressions with tableaux. We will obtain identities 
for dotted brackets and then mimic some observations of classical invariant 
theory, in particular the classical straightening algorithm of Young (1928), 
that  created a standard basis for the space of vector invariants. We will show 
that  in the case of a dotted bracket expression, the classical straightening 
algorithm can be expressed in a much more compact form, which can also be 
implemented in a much more efficient fashion. This compact straightening 
algorithm maintains the dotted form of the expression at every step, and 
achieves the same outcome as the ordinary straightening algorithm. We 
will restrict our attention to homogeneous multilinear dotted bracket ex- 
pressions, that  is, those bracket expressions which have precisely the same 
set of points occurring among the brackets of each monomial, with each 
such point occuring precisely once in each monomial. 

For us, a tableau is an rn x n array, delimited by parentheses. The 
tableau entries will be lower case Roman letters. We reserve upper case 
letters to denote blocks of entries in rows of a tableau. 

Suppose we have a bracket product of degree rn in brackets of length 
n, involving distinct points, that is dotted in the sets of points a l a 2 . . . a k l  , 
blb2. . .bk2,  ..., d l d 2 . . . d k j .  We define the tableau described below to be equal 
to this dotted product. 
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1) Rows of the tableau correspond to brackets, the first row to the first 
bracket etc. 

2) The  entries of the rows will be the same letters as in the corresponding 
brackets without subscripts. 

3) There  is a =t= sign attached, that  being sign(a) where cr is the per- 
muta t ion  tha t  takes the bracket entries in the order they are given in the 
dotted bracket expression and orders them lexicographically, a l ,  a2, ..., akl ~ 
bl ,  b2, ...~ bk2~ .... 

EXAMPLE. 

/ k 
o A A e | A [ a  a a c \  

[ala2a3cl][bl  b2c2c3][b3d d2d3] = - b b c c )  . 
b d d d 

Note tha t  the above example is a signed sum of nine ordinary bracket 
monomials. 

We have the negative sign since the odd permutation cr = (blclc2c3b3b2) 
gives 

o{a la2a3c lb lb2c2c3b3dld2d3}  = {ala2a3blb2b3clc2c3dld2d3} .  

We will sometimes refer to this type of tableau representation as a com-  
p a c t  t a b l e a u  to distinguish it from ordinary tableau representation of 
bracket polynomials, which uses one tableau for each monomial. 

Note that  a particular compact tableau corresponds to different appear- 
ing yet equal versions of a dotted expression. For example: 

b c " - -[a la2a3cl][b lb2c2c3][b3dld3d3]  
d d 

o A A O o A 

= [ala2a3c2][bl b2clc3][b3dld2d3] 
�9 & A o o ~, 

= [ala2a3cl][b 1 b3c2c3][b2dld2d3] 

etc. 
It will usually be our convention when associating a tableau with dotted 

brackets to use the dotted bracket expression where the subscripts of each 
letter are in order across the bracket expression. So among all the choices 
we would use: 

( a  a b Cd) o ~, o A 
b c d =-[a la2b lCl ] [b2c2d ld2]"  

EXAMPLE. An example of a non-trivial dotted bracket expression is the 
superbracket of six pairs of points in rank four, which is the determinant 
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of the  Plficker coordinate vectors of the  six lines de te rmined  by the  pairs. 
This invariant is very impor tan t  in structural rigidity, for if two rigid bodies 
are joined by six rigid bars at tached at  flexible endpoints ,  then  t he  whole 
s t ructure  is infinitesimally rigid if and only if the  superbracket of the  six lines 
de te rmined  by the  bars is non-zero. The  superbracket  yields the following 
tableaux in McMillan(1989): 

b d - c e e . 

c e  c f f  

Each of these two tableaux represents a bracket monomial  d o t t e d  in 
three  pairs of points, and each is therefore equal to a signed sum of 8 
ordinary bracket monomials.  

The  dot ted  brackets impose an algebra on compact  tableaux. We wii1 
establish identi t ies in compact  tableaux which correspond to ordinary syzy- 
gies on the corresponding dot ted  bracket expressions. First we need a pre- 
l iminary observation. 

Suppose T is a compact  tableau in letters a, b, c, d, e, ... with k occur- 
rences of let ter  d, with h of them in the first row, i in  the second row, .... , 
and j in the last row. Assume that  d corresponds to k letters dl, d2 , . .  �9 , dk 
in the  equivalent dot ted  bracket expression. We show that  T is equal  to  
sum of tableaux in the  modified letters a, b, c, dl, d2, ..., dk, e, .... 

THEOREM 1. Le t  T be a c o m p a c t  tableau on le t ters  a, b, c, d, e, ... w i t h  k 
occurrences  o f  l e t t e r  d. I f  

T = 

X . . .  d . . .  d . . .  Y )  
Z . . .  d . . .  d . . .  W 

U . . .  d . . .  d . . .  V 

and cr is a p e r m u t a t i o n  of  1, 2 , . . .  , k, we define Tz, a compac t  tableau in 
t h e  le t ters  a, b, c, dl,  d2, ..., d/c, e, ... by 

= 

X U . . .  do,1 . . .  do-h 
�9 . .  doh+1 . . .  do-~ 

�9 .. d~rk_j+l . . .  d~k 

. 0 . 

~ ~ . 

T h e n  

T = ~ ,  
c r  
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where the  s u m  runs over all split-shuffles ~r of  the di, and is unsigned. 

PROOF: 

T =  Z . . .  d .... d . . .  W 

U . . .  d . . .  d . . .  V 

�9 A A A [ ]  A A A 

= sign(T)[al. . .dld2.. .dhel. . .][. . .clh+l.. .di. . .]. . .[. . .dk.. .  ] .... 

The dottings of the distinct letters are split-shu•es of disjoint sets. We 
can expand a particular dotting and leave the others intact as dottings. We 
expand the d i and get 

| [ ]  

T = s i g n ( T )  E sign(~176 el""]["'dcrh+ l"''d~176 .... 

o" 

Writing the  bracket sum as a sum of tableaux we have: 

T = s ign(T)  ~ sign(a)sign(Ta)T~r 
ry 

Now we show that for all a the product sign(T)sign(cr)sign(T~) - i. 

Suppose 5 is the  permutat ion that orders the vectors of the dotted bracket 
expression corresponding to T, so s ign(T)  = sign(g) = s ign(T1) ,  where 
I is the ident i ty  permutation. Let 8# be the permutation that  orders the 
vectors of the dotted bracket expression corresponding to T#. Then clearly 
8 = fi z -=- 6o.a for all a, thus s ign (T ) s ign (a ) s ign (T#)  = 1, completing the 
proof. 

We will now establish an identity in compact tableaux, i.e. dotted 
brackets. First  we define a split sum over a multiset. Let our split be 
a par t i t ion of a multiset whose elements are from a linearly ordered set, 
(a, b, c, ...). A shuffle of a particular split of the multiset is a permutat ion 
of the  elements of the multiset such that  each block of the split is ordered 
by the linear order on the underlying set. If we pick certain entries of our 
tableau with repeated letters, the rows of the tableau effect a split. We 
will call the sum over all shuffles that  net distinct summands the m u l t i s e t  
s p l i t - s u m .  For the tableau 

(t a c 

b c d ' 

the multiset  split-sum over the boldface letters is 
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b d d + c d 

Note that  there is some ambiguity over which shuffle caused certain terms 
to appear in the split sum. For example, the first term of the sum could 
be a consequence of the identity permutation on the original tableau or 
a consequence of the transposition of the c in the first row and the c in 
the second row. Because of a tableau signature convention we will not 
need to be concerned with which shuffle netted a particular term, only tha t  
every possible term appear in the sum. We can however characterize the 
permutations of a multiset split-sum as the set of all shuffles that  do not 
exchange copies of the same letter between rows. 

Note also that  if the multiset happens to have no repeated letters, we 
have a split of m distinct letters into k blocks of size i k. Then the tableau 
split-sum will have (il..m.i,) terms. 

The identity we will prove will have the form of the van der Waerden 
syzygies on brackets. Split-sums with appropriate coefficients will add to 
zero, We will use boldface to denote the set of letters to be shuffled in the 
identity. 

THEOREM 2. I f  T is a rectangular compact tableau with two rows, n 
columns, and at least n q- 1 letters boldface and T has the proper ty  that  
i f  any letter is boldface, then all occurrences of  that le t ter  in the same row 
are boldface, then we have the following identity: 

~-~(C~C6b C6c'"C6d) 6 (  "'" Ac . . .  . . d ..."" bE " ' : ) = 0 ,  
6 

where the sum ranges over all multiset split shuffles of the  boldfaced letters 
and the coeft~cients, c 4 ,  are determined relative to the  effect of 6 on the 
boldface letters as follows: 

for the letter x,  6 moves p - j x's into a row with j x 's, p >_ j > O. 
1) i f  the j x's are boldface, then c6~ = 1. 
2) i f  the j x's are not boldface, then c6, = (~). 

This theorem, proved independently by McMillan (1989), also follows 
from the Exchange Lemma, p. 60, of Grosshans et. al. (1987). See also 
Huang et. al. (1990). 

EXAMPLE. The identity on the boldface letters of 

b b c 

gives 
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c c d + 1 . 1 . 1 - 2  a b c c b b d d 

Equivalently, 

b c d 

b c c b c d - 6  c c d 

_2  ( a  b c c )  
b b d d " 

This is the form of the identity we will use, where we substitute the sum on 
the right side of the  equation for the tableau on the left side. Note that  in 
our notation, a tableau with boldface letters is equal to the same tableau 
without boldface, since the boldface notation is used only to inform the 
reader how Theorem 2 is being applied. 

Theorem 2 was stated and proven for tableaux with two rows, for con- 
venience. It is evident that the identity is equally valid for tableaux with 
more than two rows, where the boldface letters are restricted to two of the 
rows. The  rows with no boldface letters are unchanged by the identity. 

The entries of our tableaux are from a linearly ordered set. As we have 
noted the  signature convention allows us to order the entries of the rows as 
we wish. Now we adopt the convention of ordering the row entries in as- 
cending order. We also order the rows lexicographically in ascending order, 
treating the rows as n-letter words. In the dotted bracket correspondence 
this is just a mat ter  of commuting brackets in products and we record any 
sign changes imposed on our compact tableaux by the signature conven- 
tion. With  these ordering conventions, we can now impose an order on the 
tableaux. If T1 and T2 are m x n tableaux on the same letters and w 1 and 
w2 are words obtained by concatenating the rows of the respective Ti, row 
1 joined by row 2, etc., then we say T1 < T2 if and only if Wl _< w2 (in 
the lexicographical order on the wi). We can make this comparison only 
after adopting the convention of ordering the row entries and the rows of 
the tableau. From now on when we refer to tableaux we will assume that 
this convention is adopted unless explicitly stated otherwise. 

We define a s t a n d a r d  c o m p a c t  t a b l e a u  to be a tableau whose row 
entries are ascending and whose column entries are strictly ascending. 

E X A M P L E .  

c d d is a standard compact tableau, while 

a b 

c c 
~ )  is a compact tableau which is non-standard. 
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LEMMA l.  Suppose T is a nonstandard compact tableau with entry  y in 
row i and entry x in row j ,  with both entries in the  same column and 
x < y, i < j .  I f  we boldface y and all the entries of row i to the right of 
y together with all other occurrences of  y in row i, and boldface x and all 
the entries of  row j to the left of  x together with all other occurrences of 
x in row j ,  and apply  Theorem 2, then we realize T as a sum of compact  
tableaux T = - ~'~5 c5T5 where T 5 < T for every 5. 

PROOF: 

T = 
A 

C 
/ y B 
�9 �9 

x D 

By our row ordering convention if b E B and c E C, then  c _< x < y < b. A 
shuffle, 6, exchanges certain boldface letters of T. Since the shuffles do not  
t ranspose the  same letters between rows, the  smallest letter shuffled f rom 
row j is strictly less than the  smallest letter shuffled from row i. Then  the  
result ing row i of T 5 is necessarily smaller than  row i of T. In fact, row i of 
T 6 may  be smaller than some previous row of T6, so by our convention we 
reorder the rows of TS, but in any case, T 5 < T. 

EXAMPLE. 

e d f = -  d d  - c e f  
d d e d e d d e 

- 2  c e - 2  c f f 
d d d d e 

(aac i) ( ac ;) - 2  c d d - 2  d d . 
d e f  e f  

THEOREM 3 (THE DOTTED STRAIGHTENING ALGORITHM). The  s tan-  
dard compact tableaux form a basis for the algebra o f  compact tableaux 
imposed by the dotted bracket correspondence. 

PROOF: The proof follows from Grasshans et. al. (1987)~ p. 27, and again 
was obtained independent ly  by McMillan. Since the proof at this poin t  is 
bo th  short and enlightening, we include it for the benefi t  of the  reader. 
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K T is a nonstandard tableau, we apply Lemma 1, obtaining an equal 
sum of tableaux,  We set aside those tableaux in the sum which are standard 
and apply the  lemma again to those which are nonstandard. We continue 
this process iteratively. Since there are a finite number of tableaux on the 
letters of T having the same shape as T, and since the smallest tableau 
among these, 

: a . . .  a b b . . .  b c . . . )  
. . .  c d d . . .  d e e . . .  

is s tandard,  this process must end with T realized as a sum of standard 
tableaux. 

It remains  to show that  the standard compact tableaux are indepen- 
dent. To this end, we first observe tha t  the expansion of a compact stan- 
dard tableau is a linear combination of ordinary standard tableaux, and 
tha t  each ordinary standard tableau arises in this fashion from a unique 
compact s tandard tableau. Now suppose that  T i  are standard compact 
tableaux on letters a, b, c , . . .  and ~ a i T i  = O. The tableau-dotted bracket 
correspondence gives: 

�9 A 

0 = ~ ~T~ = ~ ~n~(T~)~{[~.. "][b "]  . . . .  

i i 

Expanding the  dottings, 

o = ~ ~ig,~(T~)~ ~ , i g n ( ~ , , . . .  ) [ ~ . . . ] [ b , j . . . 1 . . . ,  
i or, 7"~.,. 

which we can write as a sum of ordinary tableaux on letters a l ,  a 2 , . . . ,  ak 1, bl, 
b 2 ,  . . . , b k 2  , . � 9  

o = ~ sign(T~)~ ~ sig~(~,'~...)~ign(Ti~...)T~- .... 
i 0"3 TI"'" 

The tableaux of this sum are distinct and standard. The independence 
of these ordinary s tandard  tableaux is well-known, see for example Hodge 
and Pedoe (1947), hence ai = 0, for all i. Therefore the s tandard compact 
tableaux are independent .  Note that  the standard compact tableaux tha t  we 
have obtained, when rewrit ten as expanded dotted bracket expressions, are 
precisely those that  would have been obtained by the ordinary straightening 
algorithm. This  fact is obvious just from the observation tha t  they are 
indeed s tandard  in the usual sense, and by the fact that  ordinary standard 
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products of brackets form a basis of all bracket expressions, we must have 
obtained precisely these. 

EXAMPLE. In the examples, a tableau with boldface letters indicates 
that  this tableau will be substituted for in the next step, using Lemma 1 on 
the boldface letters. We now completely straighten a non-standard tableau. 

a a c d )  

b b c d = -  b c c d - 2  b c d 

b b d - 2  c d 

c d d  + c d  - 2  b c d d 

_ 2 ( a  a c ~ )  ( ~  a b : )  
b b d - 2  c d 

( b  a b c ) ( a b  a c c )  
- "  - -  - -  2 c d d b d d " 

EXAMPLE. 
follows: 

The superbracket, as previously ( ad (abd 
b d  f - a c e  
c e f  b c f  

presented, straightens as 

e 

I 

(nab i)(!ab i)(~ = c c d - c d - d d + b c . 

d e f  e f  e f  d e  

The equivalence of dotted bracket expressions can be well concealed 
by bracket or tableau syzygies. To determine whether two dotted bracket 
expressions in the same set of points are in fact equal we straighten their  
difference and see if we get 0. 

EXAMPLE. Let f (ala2,  blb2, clc2, dld2) = [ala2dld2][blb2clc2] 
e A e A 

-[ala2ClC2][blb2dld2] and g(ala2, blb2, CLC2, did2) = [ala2bl dl][b'2clc2d2] 
-[ala2blb2][Clc2dzd2]. To test whether f = g, we straighten the equivalent 
compact tableau expression of f - g. 

(~od d)_(~oc ;)(~ab ~)(o oh b) 
b o e b d + c c d + c c d d 

c c b c  c d d  c d 
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- b d - b d + c c c c d d 

( b  a c d )  (ab a b c d ) _ 2 ( b  a c cd) 
= -  b c d - c d  b d  

= c d + 2  b d - c d 

_2 (a a c c)  
b b d d =0. 

The van der Waerden syzygies and the straightening algorithm devel- 
oped above may be regarded as a model for the relations and straightening 
algorithm presented in terms of the superalgebra of Grosshans, et al. (1987), 
specifically for the case of positive letters and negative places. Their  divided 
power of a positive let ter  corresponds to our use of repeated occurrences of 
that  let ter  in our compact tableaux. 

In implementing the dotted straightening algorithm we order the com- 
pact tableaux of the dotted bracket expression to be straightened and do 
the i terative straightening on the largest nonstandard tableau in the queue. 
This way we never repeat the processing of a nonstandard tableau. Both the 
ordinary and dotted straightening algorithms have time complexity which is 
quadratic in the  total number of tableaux (modulo our ordering conventions) 
which are of the same shape as the input tableaux. It is clear that  if we 
have a reasonable amount  of dotting, there are considerably fewer compact 
tableaux than  ordinary tableaux, and thus that  the dotted straightening 
algorithm is much faster given a dotted bracket polynomial as input. For 
example, working with 2 • 4 tableaux, there are 35 ordinary tableaux on 8 
distinct letters,  but if our compact tableaux are on 4 letters occurring twice 
each, then there are only 10 compact tableaux of the same shape. 

The dot ted straightening algorithm may be used in the the Cayley Fac- 
torization algorithm of White  (1991), in this volume. In particular, the first 
step of tha t  algori thm is to find the extensors, or sets of points in which 
the bracket polynomial  is antisymmetric, and then to actually rewrite the 
polynomial  so that  it is explicitly dotted in those sets of points. Since 
this dott ing has to be determined in any case, we do realize the efficiency 
improvement of the previous paragraph. 

EXAMPLE. For a particular set of dotted points in a particular rank 
space we can list the  basis for the space of all dotted bracket expres- 
sions. In rank four the linear invariant functions of the two-extensors 
ala2, bib2, CLC2, dld2 are linear combinations of the functions: 

e , b ,  e A  

[ala2blb2][ClC2dld2], [ala2blCl][b2c2dld2], [ala2ClC2][blb2dld2], 
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as it is easy to verify that  the three tableaux, 

( a  a b bd) ( a  a b c ) ( a b  a c c ) 
c c d ' b c d d ' b d d ' 

are the only 2 x 4 standard tableaux from the multiset {a, a, b, b, c, c, d, d}. 
An interesting problem is determining the number of standard (com- 

pact) tableaux of a specified shape, with entries from a particular multiset .  
There is no known generalization of the hook length formula of Frame, et 
al. (1954), to the problem of counting the number of standard tableaux 
with specified repeated letters. This number is known as a Kostka number; 
see McDonald (1979). 

Suppose we have a bracket polynomial that is antisymmetric in the  
sets of points (or extensors) XlZ2 �9 .. xk  1, YlY2 �9 �9 �9 Yk2," �9 �9 z l z2  " ""  Z k j "  It  is 
straightforward by summing over the signed permutations of the polynomial 
to construct a dotted bracket expression for this invariant. From this we can 
realize our invariant as a compact tableau expression. It is, however, arbi- 
trary which letters of the tableaux we associate with the tensor arguments of 
the function. Assuming we use the Roman alphabet in alphabetical order, 
we can associate the a's with any tensor we wish. We establish the tableau 
expression and then straighten it. In standard tableaux the a's must ap- 
pear in the first row. In the dotted bracket expression corresponding to the  
standard tableaux the vector factors of the tensor associated with the letter 
a are in the first bracket of each term. We say that the bracket expression 
is r ec t i f i ed  in the extensor a if all occurrences of a are in the same bracket 
for every monomial. We have established the following. 

COROLLARY 1. A dot ted  bracket  expression can be rectif ied in any  one of 
its ex tensor  arguments .  

In the last example, the three dotted bracket expressions are each rec- 
tified in the extensors a and d. 

There is another interesting observation made evident by the fact tha t  
the linear dimension of the space of all tableaux is constant despite the  
choice of how tableau letters are associated with extensor arguments of 
linear invariant functions. The number of standard tableaux of a particu- 
lar shape with entries from a multiset with kl occurrences of one letter, 
and k 2 occurrences of a second letter, k3 occurrences of a third letter, 
etc., is independent of which letter occurs kl times and which occurs k 2 
times, etc. For instance, the number of 3 x 4 standard tableaux on letters 
{a, a ,a ,  b , b , c , c , d ,  e, e, e, f},  

(a a a b ) ( a n a l )  ( aai) b c c d , b c d , b b c 
e e e f  c e e  d e e  

~ . ~  
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is t he  same  as t he  number  of s tandard  tableaux on letters {a, a, b, b, b, c, d, d, d, 
e, f , f ) ,  

b c d , b d e , b c . . . .  
d e f  d f f  d f  

In genera l  the count  depends only on the  shape and the unordered  set of 
mul t ip l ic i t ies ,  {kl ,  k2, k3 , . . . } ,  of the let ters in the  tableaux.  
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