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We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative
quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation
of test massless scalar field ϕ on a 5D Riemann-flat metric, such that the extra space-like coordinate is
noncompact. The important result here obtained is that the evolution of the system, which is described
thorough the equation of state has the unique origin in the quantum contributions of the effective 4D
scalar field ϕ̄.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The five-dimensional model is the simplest extension of General
Relativity (GR), and is widely regarded as the low-energy limit of
models with higher dimensions (such as 10D supersymmetry and
11D supergravity). Modern versions of 5D GR abandon the cylinder
and compactification conditions used in original Kaluza–Klein (KK)
theories, which caused problems with the cosmological constant
and the masses of particles, and consider a large extra dimension.
In particular, the Induced Matter Theory (IMT) is based on the
assumption that ordinary matter and physical fields that we can
observe in our 4D universe can be geometrically induced from a 5D
Ricci-flat metric with a space-like noncompact extra dimension on
which we define a physical vacuum [1,2]. The Campbell–Magaard
theorem [3–7] serves as a ladder to go between manifolds whose
dimensionality differs by one. This theorem, which is valid in any
number of dimensions, implies that every solution of the 4D Ein-
stein equations with arbitrary energy momentum tensor can be
embedded, at least locally, in a solution of the 5D Einstein field
equations in vacuum. Because of this, the stress-energy may be
a 4D manifestation of the embedding geometry. Physically, the
background metric there employed describes a 5D extension of
an usual de Sitter spacetime. By making a static foliation on the
space-like extra coordinate, it is possible to obtain an effective 4D
universe that suffered an exponential accelerated expansion driven
by a scalar (inflaton) field with an equation of state close to a
vacuum dominated one [9–12]. The most conservative assumption
is that the energy density ρ = P/ω is due to a cosmological pa-
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rameter which is constant and the equation of state is given by a
constant ω = −1, describing a vacuum dominated universe with
pressure P and energy density ρ . On the other hand, exists a kind
of exotic fluids that may be framed in theories with matter fields
that violate the weak energy condition [13], such that ω < −1.
These models were called phantom cosmologies, and their study
represents a currently active area of research in theoretical cos-
mology [14,15].

On the other hand, the spherically symmetric collapse of a
massless scalar field has been of much interest towards under-
standing the dynamical evolutions in general relativity. A remark-
able finding of some numerical investigations is the demonstration
of criticality in gravitational collapse. Specifically, it was found that
for a range of values of the parameter characterizing the solution,
black hole forms and there was a critical value of the parameter
beyond which the solutions are such that the scalar field disperses
without forming any black hole. However, this result has been ob-
tained mainly through numerical studies and a proper theoretical
understanding of this phenomenon is still lacking (see e.g. [16]
and the references therein). In order to study the dynamics of a
massless scalar field ϕ on a 5D vacuum, we consider the canonical
metric

dS2 = gμν

(
yσ ,ψ

)
dyμ dyν − dψ2. (1)

Here the 5D coordinates are orthogonal: y ≡ {ya}.1 The geodesic
equations for a relativistic observer are

dU a

dS
+ Γ a

bcU bU c = 0, (2)

1 Greek letters run from 0 to 3, and Latin letters run from 0 to 4.
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where U a = dya

dS are the velocities and Γ a
bc are the connections of

(1). Now we consider a parametrization ψ(xα), where x ≡ {xα} are
an orthogonal system of coordinates, such that the effective line
element (1), now can be written as

dS2 = hαβ dxα dxβ . (3)

It is very important to notice that S will be an invariant, so that
derivatives with respect to S will be the same on 5D or 4D. In
other words, in this Letter we shall consider spacetime lengths that
remain unaltered when we move on an effective 4D spacetime.

1.1. Einstein equations for dynamical foliations from a 5D vacuum state

Now we consider the Einstein equations on the 5D canonical
metric like (1)

Gab = −8πGTab, (4)

where the Einstein tensor is given by Gab =Rab − 1
2 gabR and Rab

is the Ricci tensor, such that the scalar of curvature is R= gabRab .
Because we are considering a 5D Ricci-flat metric, the Einstein ten-
sor and the Ricci scalar will be null. Using the transformations
previously introduced, we obtain that

Ḡαβ = R̄αβ − 1

2
hαβR̄ = −8πGT̄αβ, (5)

where we have used respectively the transformations

R̄αβ = ea
αeb

βRab, (6)

R̄ = hαβR̄αβ, (7)

T̄αβ = ea
αeb

β Tab, (8)

for the effective 4D Ricci tensor, the scalar of curvature and the
energy–momentum tensor.

1.2. Energy–momentum tensor

We consider a quantum massless scalar field ϕ(ya) on the met-
ric (1). In order to make a complete description for the dynamics
of the scalar field, we shall consider its energy momentum tensor.
In order to describe a true 5D physical vacuum we shall consider
that the field is massless and there is absence of interaction on the
5D Ricci-flat manifold, so that

T a
b = ΠaΠb − ga

bL[ϕ,ϕ,c], (9)

where L[ϕ,ϕ,c] = 1
2 ϕaϕa is the Lagrangian density for a free and

massless scalar field on (1) and the canonical momentum is Πa =
∂L
∂ϕ,a

. Notice that we are not considering interactions on the 5D
vacuum, because it is related to a physical vacuum in the sense
that the Einstein tensor is zero: Ga

b = 0.

1.3. Dynamics of the scalar field for a dynamical foliation

We are interested to study how is the effective 4D dynamics ob-
tained from a dynamic foliation of a 5D Ricci-flat canonical metric.
We consider a classical massless scalar field ϕ(ya) on the met-
ric (1). The effective 4D energy momentum tensor will be

T̄αβ = ea
αeb

β Tab
∣∣
ψ(xα)

. (10)

In other words, using the fact that L is an invariant it is easy to
demonstrate that

T̄ α
β = Π̄αΠ̄β − hα

βL, (11)
where L is an invariant of the theory: L = 1
2 ϕ,aϕ,a = 1

2 (ea
αϕ̄,α)×

(ēβ
a ϕ̄,β). The equation of motion for the scalar field ϕ̄ becomes

from ∇̄α T̄ α
β = 0,2 so that one obtains

hμν∇̄νϕ̄,μ = 0, (12)

that describes the dynamics of ϕ̄(xα) on the effective 4D hyper-
surface (3). Notice that in the dynamics of ϕ̄ , which is described
by Eq. (12), it is absent any kind of interaction. This is because
the dynamical foliations as we are studied in this Letter describe a
dispersal system [8].

In a previous Letter [17] we have studied the gravitational col-
lapse of the universe which is driven by a massless dispersal scalar
field. The system was studied from a 5D Riemann-flat canoni-
cal metric, on which we make a dynamical foliation on the ex-
tra space-like dimension. The asymptotic universe there obtained,
which is absent of singularities, results to be finite in size and en-
ergy density, which tends to zero for asymptotic large times, so
that the asymptotic equation of state becomes ω|t→∞ → −∞. This
is because the pressure is negative (opposes the collapse) along all
the contraction and its asymptotic value tends to zero, but more
slowly than does the energy density. In this Letter we shall re-
visit a collapsing system, but from a different 5D metric, with the
aim to study with detail the non-perturbative quantum dynamics
of the dispersal scalar field.

2. An example: pre-big-bang collapsing universe

We consider the 5D canonical extended de Sitter Riemann-flat
metric [18]

dS2 =
(

ψ

ψ0

)2[
dt2 − e−2ψ−1

0 t dr2] − dψ2, (13)

such that dr2 = dxiδi j dx j . The relevant nonzero connections are

Γ 0
ii = − 1

ψ0
e−2ψ−1

0 t, Γ α
α4 = 1

ψ
,

Γ i
i0 = − 1

ψ0
, Γ 4

00 = ψ

ψ2
0

. (14)

Since the metric (13) is Riemann-flat (and therefore Ricci-flat),
hence it is suitable to describe a 5D vacuum (Gab = 0) in the
framework of the IMT of gravity. With this aim we shall consider
the 5D action

I =
∫

d4x dψ
√|g|

(
R

16πG
+ 1

2
gabϕ,aϕ,b

)
, (15)

where g is the determinant of the covariant metric tensor gab:

g = (
ψ
ψ0

)8e−6ψ−1
0 t .

2.1. Effective 4D dynamics of ϕ

The effective 4D spacetime being described by the line element

dS2 =
[

ψ2(t)

ψ2
0

− ψ̇2
]

dt2 − ψ2(t)

ψ2
0

e−2ψ−1
0 t dR2, (16)

where the dot denotes the derivative with respect to t and ψ0 is
some constant. In order to consider t as a cosmic time, one must
require that

ψ2(t)

ψ2
0

− ψ̇2 = 1, (17)

2 Here, ∇̄α denotes the covariant derivative on the effective 4D hypersurface, with
respect to the Christoffel connections Γ̄ α

βγ .
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so that the foliation is described by

ψ(t) = ψ0 cosh(t/ψ0) → ψ̇(t) = sinh(t/ψ0). (18)

Finally, the metric (16), for a foliation (18) is described by

dS2 = dt2 − cosh (t/ψ0)
2e2ψ−1

0 t dR2, (19)

which describes an 3D (flat) spatially isotropic universe which is

collapsing with a scale factor a(t) = cosh(t/ψ0), e−ψ−1
0 t , a Hubble

parameter H(t) = ȧ
a and a deceleration parameter q = − äa

ȧ2 given
by (for H0 = 1/ψ0)

H(t) = H0
[
tanh(H0t) − 1

]
, (20)

q(t) = − 2 cosh(H0t)

cosh(H0t) − sinh(H0t)
. (21)

Notice that Ḣ > 0 and a(t)|t→∞1/2, such that the asymptotic size
of the universe is finite. Furthermore the late time asymptotic
derivative the Hubble parameter and the deceleration parameter,
are

Ḣ(t)|t→∞ → 0, (22)

q(t)|t→∞ → −∞, (23)

which means that the universe describes a collapse with asymp-
totic Minkowski spacetime.

2.2. Einstein’s equations

On the other hand, the relevant components of the Einstein ten-
sor in Cartesian coordinates, are

Ḡ0
0 = − 3H2

0

cosh2 (H0t)

[
cosh (H0t) − sinh (H0t)

]2
, (24)

Ḡ i
j = − H2

0

cosh2 (H0t)

[
cosh (H0t) − sinh (H0t)

]

× [
5 cosh (H0t) − sinh (H0t)

]
δi

j, (25)

so that, using the fact that the Einstein equations are respectively
G0

0 = −8πGρ and Gx
x = G y

y = Gz
z = 8πG P , we obtain the equa-

tion of state for the universe

P

ρ
= ω(t) = −1

3

[5 cosh(H0t) − sinh(H0t)]
[cosh(H0t) − sinh(H0t)] . (26)

Notice that ω always remains with negative values ω(t) < −1, and
evolves from −5/3 to −∞, for large asymptotic times. The effec-
tive 4D scalar curvature

R̄ = 6H2
0

cosh2(H0t)

[
cosh(H0t) − sinh(H0t)

]

× [
3 cosh(H0t) − sinh(H0t)

]
, (27)

decreases with the time and has a null asymptotic value
R̄|t→∞ → 0.

The expectation values for the energy density and the pressure,
written in terms of the scalar field ϕ(t,�r,ψ(t)) ≡ ϕ̄(t,�r), are

ρ̄ = 〈0|T̄ 0
0|0〉

=
〈

ψ2
0

ψ2(t)

[
1

2
ϕ̇2 + 1

2a2(t)
( �∇ϕ)2

]
+ 1

2

(
∂ϕ

∂ψ

)2〉
ψ(t)

=
〈

1 ˙̄ϕ2 + 1
2

( �∇ϕ̄)2
〉
, (28)
2 2a (t)
P̄ = −〈0|T̄ i
j|0〉

= −δi
j

〈
ψ2

0

ψ2(t)

[
1

2
ϕ̇2 − 1

6a2(t)
( �∇ϕ)2

]
− 1

2

(
∂ϕ

∂ψ

)2〉
ψ(t)

= −δi
j

〈
1

2
˙̄ϕ2 − 1

6a2(t)
( �∇ϕ̄)2

〉
. (29)

Here, the notation 〈0| . . . |0〉 denotes the quantum expectation
value calculated on a 4D vacuum state. Because we are consid-
ering a spatially isotropic and homogeneous background, we shall
consider an averaging value with respect to a Gaussian distribution
on a Euclidean 3D volume.

3. Field dynamics and vacuum

The effective 4D equation of motion for ϕ̄ , is

¨̄ϕ − e2H0t

cosh2 (H0t)
∇̄2

r ϕ̄ + 3H0
[
tanh (H0t) − 1

] ˙̄ϕ = 0, (30)

which in the limit of t → ∞ tends to an equation of motion for
a massless scalar field on a asymptotic Minkowski spacetime: ¨̄ϕ −
∇̄2

r ϕ̄ = 0.
Using Eqs. (24) and (25) joined with Eqs. (28) and (29), we

obtain from the effective 4D Einstein equations (5) the following
relevant non-perturbative expressions for the expectation values of
squared scalar field ϕ̄:

〈
( �∇ϕ̄)2〉 = − 3H2

0

4πG
e−2H0t[cosh2 (H0t) − sinh2 (H0t)

]
, (31)

〈
( ˙̄ϕ)2〉 = − 3H2

0

2πG

[
1 − tanh (H0t)

]
, (32)

that has the asymptotic large time limits
〈
( �∇ϕ̄)2〉

t→∞ → 0, (33)〈
( ˙̄ϕ)2〉

t→∞ → 0. (34)

3.1. The modes

If we redefine the modes χk(t) = a3/2ξk(t), we obtain the equa-
tion of motion for χk(t)

χ̈k(t) +
[

k2

a2
−

(
9

4
H2(t) + 3

2
Ḣ(t)

)]
χk(t) = 0, (35)

which has the general solution

χk(t) = e3H0te
1
2 ln (1+e2H0t )

{
Ake− 1

2

√
1−(k/H0)2 ln (1+e2H0t )

× 2 F1
[[a1,b1], [c1];1 + e2H0t]

+ Bke
1
2

√
1−(k/H0)2 ln (1+e2H0t )

× 2 F1
[[a2,b2], [c2];1 + e2H0t]}, (36)

such that 2 F1[[a,b], [c]; x(t)] is the Gaussian hypergeometric func-
tion with argument x(t) = 1 + e2H0t , and

a1 = 2 + i
k

H0
−

√
1 − (k/H0)2

∣∣
k�H0

� 2, (37)

b1 = 2 − i
k

H0
−

√
1 − (k/H0)2

∣∣
k�H0

� 2

(
1 − i

k

H0

)
, (38)

c1 = 1 − 2
√

1 − (k/H0)2
∣∣
k�H0

� 1 − 2i
k

H0
, (39)

a2 = 2 + i
k +

√
1 − (k/H0)2

∣∣
k�H0

� 2

(
1 + i

k
)

, (40)

H0 H0
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b2 = 2 − i
k

H0
+

√
1 − (k/H0)2

∣∣
k�H0

� 2, (41)

c2 = 1 + 2
√

1 − (k/H0)2
∣∣
k�H0

� 1 + 2i
k

H0
. (42)

In this UV limit the hypergeometric functions take the asymptotic
expressions

2 F1
[[a1,b1], [c1]; e2H0t]∣∣

U V � [1 + 2ik/H0]
[1 − 2ik/H0]e−4H0t, (43)

2 F1
[[a2,b2], [c2]; e2H0t]∣∣

U V � [1 − 2ik/H0]
[1 + 2ik/H0]e−4H0t, (44)

so that the large times asymptotic UV redefined modes χk(t) can
be written as

χk(t)|H0t�1,k/H0�1

� Ake−ikt[1 + 2ik/H0]2 + Bkeikt[1 − 2ik/H0]2

[1 + 4(k/H0)2] , (45)

where Ak and Bk are constants to be determined by normalization
of the modes on the effective 4D hypersurface: χkχ̇

∗
k − χ̇kχ

∗
k = i.

From this condition we obtain that χkχ
∗
k = 1

2k , so that if we choose
Bk = 0, we obtain that

Ak = − 1√
2k

[
1 + 4(k/H0)

2
]

[1 + 2ik/H0]2
,

and the normalized modes χk on the UV sector become

χk(t)|H0t�1,k/H0�1 � − 1√
2k

e−ikt . (46)

The final solution for the redefined modes are

χk(t) = −e3H0te
1
2 [1+

√
1−(k/H0)2] ln (1+e2H0t )[1 + 4(k/H0)

2]√
2k[1 + 2ik/H0]2

× 2 F1
[[a2,b2], [c2];1 + e2H0t]. (47)

Using the fact that 〈( �∇ϕ̄)2〉 = − 1
2π2 a3

∫ k0(t)
0 k4(χkχ

∗
k )dk, with the

expression (31), we obtain that the maximum time-dependent
wave-number, k0(t), is

k0(t) = [
12π H2

0 M2
p

]1/4
e− 5H0

4 t cosh3/4 (H0t)

× [
cosh2 (H0t) − sinh2 (H0t)

]1/4
, (48)

which tends to zero as t → ∞.

3.2. Classical and quantum contributions

We consider the background solution of the field, which is
given by the zero mode (k = 0) solution χ0(t) of the differential
equation (35). A particular solution for this equation is

χ0(t) = C

[1 + tanh (H0t)]3/2
, (49)

such that ξ0(t) = a−3/2χ0(t) comply with ξ̇0(t) = 0. Such that so-
lution provide us the background (classical) contribution for the
field ϕ̄ . Therefore, the results (31) and (32), for 〈( �∇ϕ̄)2〉 and 〈( ˙̄ϕ)2〉,
respectively, has the unique origin in the quantum contributions of
the field. This result is valid along all the collapse and has been
calculated exactly without using any approximation.

4. Final comments

The idea that our universe is a 4D space-time embedded in
a higher-dimension has been a topic of increased interest in sev-
eral branches of physics, and in particular, in cosmology. This idea
has generated a new kind of cosmological models that includes
quintessential expansion. In particular, theories on which is con-
sidered only one extra dimension have become quite popular in
the scientific community. Among these theories are counted the
braneworld scenarios [19], the Induced Matter (IM) theory [20–24]
and all noncompact Kaluza–Klein theories. The approach here con-
sidered is inspired in the IM, where 4D sources appear as induced
by one extended extra dimension, meaning, by extended, that the
fifth dimension is considered noncompact. However, we have stud-
ied the case where the foliation on the fifth extra coordinate is
dynamical, so that the resultant effective 4D scalar field ϕ̄(xα) that
describes the collapsing system on the effective 4D hypersurface
(19) is dispersal. The important result here obtained relies in that
the origin of 〈( �∇ϕ̄)2〉 and 〈( ˙̄ϕ)2〉, is in the quantum contributions
of the field. This result is valid along all the collapse and has been
calculated exactly without using any approximation.
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