
Electronic Notes in Theoretical Computer Science 76 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume76.html 10 pages

Demandness in Rewriting and Narrowing

Sergio Antoy 1

Computer Science Department
Portland State University, Portland OR 97207, U.S.A

Salvador Lucas 2

DSIC
Universidad Politécnica de Valencia, Spain

Abstract

The traditional investigation of rewriting and narrowing strategies aims at estab-
lishing fundamental properties, such as soundness, completeness and/or optimality,
of a strategy. In this work, we analyze and compare rewriting and narrowing strate-
gies from the point of view of the information taken into account by a strategy to
compute a step. The notion of demandness provides a suitable framework for pre-
senting and comparing well-known strategies. We find the existence of an almost
linear sequence of strategies that take into account more and more information. We
show on examples that, as we progress on this sequence, a strategy becomes more
focused and avoids some useless steps computed by strategies preceding it in this
sequence. Our work, which is still in progress, clarifies the behavior of similar or
related strategies and it promises to simplify the transfer of some results from one
strategy to another. It also suggest that the notion of demandness is both atomic
and fundamental to the study of strategies.

Keywords: Declarative programming, narrowing, rewriting, strategies.

1 Introduction

Modern functional logic programs are, for the most part, modeled by construc-
tor based term rewriting systems and are executed by narrowing. Narrowing

1 Supported in part by the NSF under grants INT-9981317 , CCR-0110496 and CCR-
0218224 . Email: antoy@cs.pdx.edu, WWW: http://www.cs.pdx.edu/ antoy
2 Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas HI
2000-0161, HA 2001-0059, HU 2001-0019, and Generalitat Valenciana GV01-424.Email:
slucas@dsic.upv.es, WWW: http://www.dsic.upv.es/users/elp/slucas.html

42

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82099039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Antoy and Lucas

is a generalization of rewriting that allows the evaluation of expressions possi-
bly containing incomplete information, which is represented by uninstantiated
variables.

An essential component of the execution of functional logic programs is a
narrowing strategy, i.e., the policy or algorithm that determines both which
subexpression of an expression should be evaluated first and the binding, if
any, of uninstantiated variables. Over the years, many strategies have been
proposed. Some of these generalize to narrowing well-known behaviors of
functional evaluation such as call-by-value or call-by-need. Some of these
strategies are fairly complicated. Other strategies propose a simpler approach
where the evaluation of some arguments of a function call is prioritized by
means of replacement maps, which are often defined by the programmer. For
example, a map may establish which arguments of a function call should
always (or never) be evaluated before the call.

A significant difference between functional programming and functional
logic programming is that, in some cases, the latter is modeled by larger
classes of rewrite systems, in particular, rewrite systems that support non-
deterministic computations. Non-determinism originates from choices of over-
lapping rewrite rules. With this kind of rules, narrowing strategies become
more complicated. The classic notions of call-by-value and call-by-need are no
longer applicable or meaningful and the properties of the proposed strategies
are less well understood.

A non-negligible number of strategies can be informally classified as de-
mand driven. Some demand driven strategies are applicable to classes of
rewrite systems much larger than those modeling first order computations in
typical functional languages. Demand driven strategies are informally char-
acterized as follows. If possible, a term t is evaluated (reduced or narrowed)
at the top. Otherwise, some arguments of the root of t are (recursively) eval-
uated if they might promote the application of a rewrite rule at the top—in
other words, if a rule “demands” the evaluation of these arguments.

This notion of “demandness,” which varies among strategies and will be
specialized later, is simple and often practical, but imperfect in some situ-
ations. The fact that a rule demands the evaluation of certain arguments,
neither implies that the evaluation of those arguments guarantees the appli-
cation of the rule nor that the application of the rule is necessary, in some
intuitive sense, to the (full) evaluation of t. In general, these problems are un-
decidable. In the worst case, a demand driven strategy may fail to terminate
a computation even when termination is possible (incompleteness). In other
cases, the strategy may simply execute steps that a smarter strategy would
avoid (wastefulness or non-optimality). Finally, a demand driven strategy may
terminate a computation, but without yielding a normal form (incorrectness).

In this paper, we recall a few rewriting or narrowing strategies, we char-
acterize and analyze them from the viewpoint of “demandness” as discussed
earlier, and we specifically compare what each strategy is looking at to com-

43



Antoy and Lucas

pute a step. The main result of our investigation is that the more information a
strategy is looking at the more focused the strategy is. More precisely, a strat-
egy that look at more information is able to execute fewer steps to compute
a result. This conclusion is hardly surprising. However, our novel approach
allows us to study within the same framework both simple strategies, such as
context sensitive rewriting strategies [12], and more complex strategies such as
needed narrowing [7]. Our approach makes it easier to understand both each
strategy in isolation and some relationships between strategies. This eases the
choices of which strategy is more appropriate to use for certain applications
or in certain contexts.

Section 2 briefly recalls some strategies and presents them from the view-
point of demandness. Section 3 offers our conclusion.

2 Strategies

Intuitively, a demand driven strategy works as follows. Given a term t to
evaluate, the strategy aims at applying every possible rewrite rule at the root
of t. Let l → r be a rule. In some cases, e.g., when t and l unify, l → r is
immediately applicable. In other cases, e.g., when the leading symbol of l and
the root of t differ, one can immediately exclude the rule. The interesting cases
are those in which it is not immediate to say whether a rule might eventually
be applicable. This occurs, e.g., when the roots of t and l are the same, but
the subterm of l at some position p and the corresponding subterm t|p of t do
not unify. Since we consider constructor based term rewriting systems, the
subterm of l at position p is constructor-rooted; if the subterm of t at position
p is also constructor-rooted, then we can immediately exclude the rule. If the
subterm of t at position p is operation-rooted, it needs to be evaluated before
the rule l → r can be applied at the root of (a descendant of) t. Loosely
speaking, in this case the evaluation of t|p is demanded by l → r. Different
demand driven strategies go about selecting p in different ways.

For example, consider the following familiar operations on lists. The
notation adopts the syntax of Curry [9], which in this case is identical to
Haskell [18], except that we represent natural numbers in Peano notation.
This choice both simplifies the code and keeps a closer correspondence be-
tween the program and the rewrite system modeling it.

append [] ys = ys

append (x:xs) ys = x:append xs ys

drop 0 xs = xs

drop (Succ -) [] = []

drop (Succ n) (-:xs) = drop n xs

(1)

Given the term t = (drop (n+m) (append p q)), some demand driven strate-
gies would evaluate either (n+m) or (append p q) or both in hopes that once

44



Antoy and Lucas

these subterms are evaluated some rule of drop could become applicable to
the resulting term.

This example prompts several considerations. (C1) the arguments of drop
are not all alike. Without looking at the right-hand sides, it would seem prefer-
able to evaluate (n+m) than (append p q). The reason is that depending
on the value of (n+m), the evaluation of (append p q) might not be needed.
More precisely, if (n+m) does not evaluate to a constructor-rooted term, t itself
cannot be evaluated to a constructor-rooted term. Since in functional (logic)
languages normal forms are interesting only if they are constructor terms, in
this example the evaluation of (append p q) would be useless. Many demand
driven strategies are not that sophisticated, but for some classes of rewrite sys-
tems for which a demand driven strategy is intended, this sophistication may
be impossible, e.g., see the definition of operation insert in Display (2). (C2)
some demand driven strategies use individual rules for selecting which term
to evaluate. This condition leads to suboptimal computations, in some cases.
(C3) a demand driven strategy is top-down. By this, we mean that a demand
driven strategy selects which subterm of a term t to evaluate by traversing
t from the root down to the leaves. This top-down traversal has two inter-
related and somewhat subtle consequences: (C3a) a demand driven strategy
is mostly lazy in the sense that the arguments of a function are preferably
not evaluated, but the strategy is not completely lazy in the sense that only
unavoidable steps are performed, see (1), and (C3b) a demand driven strategy
is mostly outermost in the sense that inner narrexes of a term are preferably
not narrowed, but the strategy is not completely outermost in the sense that
only outermost narrexes are narrowed, see (2).

The following example defines an operation that inserts an element in a
list at some position non-deterministically chosen. This operation is typically
used, e.g., for computing the permutations of a list or for extracting some
element from a list.

insert x y = x:y

insert x (y:ys) = y:insert x ys
(2)

The expression (insert 0 [1,2]) yields any of [0,1,2], [1,0,2] or [1,2,0].
Now, consider the evaluation of t = (insert 0 (append p q)). Among the
computations of t, one evaluates (append p q), but another does not. There
is no universally accepted notion of needed step for computations involving
operations of this kind, and the computation that evaluates (append p q) is
not outermost.

In the remainder of this section, we recall some strategies and present them
from the viewpoint of demandness.

Context-sensitive rewriting strategies [12]

Context-sensitive rewriting (CSR) uses a replacement map defining which
indexes of the arguments of a function (call) to evaluate [13]. Any evaluation

45



Antoy and Lucas

is forbidden for the other arguments. The definition of the map is the
responsibility of the programmer. As a rule of thumb, the arguments of a
function call to evaluate are those corresponding to non-variable terms in
the left-hand side of some rewrite rule. The map obtained in this way is
called canonical. The canonical replacement map ensures that head-normal
forms can be computed for left-linear rewrite systems [13]. For example, the
canonical map of operation append defined in (1) contains position 1, but
not position 2. The reason is that unless the first argument of append is
evaluated, no rule of append can be fired. The value of the second argument
of append does not affect the application of either rule. The definition of
canonical replacement map is akin to the notion of demandness (by the
rules of the term rewriting system), see Section 5.1 of [13].
The canonical map of operation drop defined in (1) contains both po-

sitions 1 and 2. This strategy look at each argument of each rewrite rule
individually. Therefore, the strategy is unable to determine that the eval-
uation of the second argument of drop might not be needed depending on
the value of the first argument.

Lazy rewriting strategies [8,15]

Lazy rewriting (LR) uses a replacement map similarly to CSR. This map
is intended to define a ‘pure’ eager behavior (since the ‘lazy’ or demanded
behavior is achieved in a different manner). Again, the replacement map
of LR can be defined by the programmer. As a rule of thumb, given a
defined function f , the map contains the arguments of f that are non-
variable subterms in all the rules defining 3 f (for instance, µ(drop) = {1}
for drop as defined in (1)). The evaluation of such subterms is intended to
take place before the evaluation of the other subterms. Then, the (other)
operation rooted subterms of a function call are evaluated if both they
correspond to non-variable terms in the left-hand side of some rewrite rule
R defining the called function and the symbols occurring in the path from
this position to the root of the rule coincide in R. Additionally, it is required
that the already evaluated part of the term matches the corresponding part
of the left-hand side of the rule. Subterms so evaluated are referred to as
‘activated’ in the terminology of [8,15]. Hence, the activation and evaluation
of such subterms is intended to (eventually) take place after the evaluation
of subterms indicated by the replacement map. Finally, we note that LR
with the canonical map coincides with CSR [15].
In particular, the evaluation of t = (drop (n+m) (append p q)) proceeds

by evaluating (n+m). If (n+m) does not evaluate to 0, then LR activates the
subterm of t at position 2; otherwise, this subterm is not activated. Note
that the evaluation of the second argument of the resulting term, namely
(drop 0 (append p q)), is not demanded. Thus, LR performs better than
CSR because it looks at some context of the arguments that are candidates

3 Strictness information can also be useful for defining the replacement map.

46



Antoy and Lucas

for evaluations. But note that active parts of a recently activated subterm
can automatically become active within the whole term. Hence, they can
be freely evaluated even without being demanded by any rule. Thus, lazy
rewriting is not so lazy, after all.

On-demand rewriting strategies [14]

On-demand rewriting (ODR) uses two replacement maps, µ and µD, for each
symbol of the signature. The map µ is as in CSR. The map µD relaxes the
requirement that any evaluation is forbidden for arguments not in the map
µ. For those arguments, the evaluation is allowed ‘on-demand’, according to
the left-hand side of a rule. The definition of the maps is the responsibility
of the programmer. As a rule of thumb, selecting the first replacement map
as for LR, and the canonical replacement map for the second replacement
map would ensure that head-normal forms are computed for left-linear con-
structor based rewrite systems [14] and the more accurate comparison with
LR.

Demand driven rewriting and narrowing [1,2,11,16]

Several strategies have appeared in the literature under the generic name
of demand driven. A common characteristic of these strategies is the use
of sets of demanded positions instead of replacement maps. A set of de-
manded positions defines which arguments of a function (call) to evaluate.
In principle, this is similar to a replacement map, but different occurrences
of a same function may have different sets of demanded positions. In an
intuitive sense, an argument of a function call may or may not be evaluated
depending on the values of other arguments. A variant of this strategy [2],
proposed for non-deterministic functional computations in logic program-
ming, uses definitional trees and is therefore limited to constructor based
rewrite systems. [11] generalizes this strategy to narrowing computations,
but restrict it to conditional weakly orthogonal rewrite systems.
For example, second argument of a call to the function drop defined in (1)

is evaluated only when the first argument is Succ-rooted. It is not evaluated
in calls where the first argument is 0. DDR is more sophisticated than
CSR, ODR, and LR in some cases, and without burdening the programmer
with the definition of a replacement map. [2] applied to a term rooted by
operation insert defined in (2) non-deterministically either applies the first
rule without evaluating any argument or it evaluates the second argument,
if it is not already constructor-rooted, to attempt to apply the second rule.

Needed rewriting and narrowing [4,7,10]

(Strongly) Needed rewriting (NR) simultaneously looks at the left-hand
sides of all the rules defining an operation. Loosely speaking, an argument
of a function call is evaluated only when it is demanded by all the rules that
could be applied to that call. In other words, some arguments are more

47



Antoy and Lucas

popular than others and the strategy evaluates a position according to this
popularity order. In strongly sequential systems, the order of evaluation is
determined by matching automata [10]. In inductively sequential, the order
of evaluation is determined by definitional trees [3]. This strategy extends
the behavior of call-by-need computations to narrowing. [4] extends this
strategy to rewrite systems with a particular kind of overlapping rules. All
these strategies are quite accurate in the sense that they compute only
necessary steps—[4] modulo non-deterministic choices. The drawback of
this accuracy is a limitation in the kinds of rewrite systems to which these
strategies are applicable. These strategies have been proved to be complete
and optimal for the domains for which they are intended.
For example, none of these strategies is applicable to the operation insert

defined in (2). Applied to operation drop defined in (1) these strategies first
evaluate the first argument and then evaluate the second argument if the
first is Succ-rooted.
It is interesting to observe that these strategies are not explicitly defined

in term of demandness or replacement maps, but are closely related to the
previous strategies (see [12] for a detailed comparison). One may obtain an
individual canonical map for each rule defining an operation. CSR obtains
the canonical map of an operation as the union of all these individual maps.
NR finds needed positions as the intersection of all the individual maps
applicable to a function call.

Weakly needed rewriting and narrowing [6,19].

WNR, similar to NR, simultaneously looks at all the rules of a single opera-
tion. By continuing the analogy introduced for NR, WNR, similar to CSR,
obtains the canonical map of an operation as the union of all the individual
maps of each rule. However, by contrast to CSR, WNR evaluates in par-
allel all the demanded positions of all the rules potentially applicable to a
function call. WNR is a relatively simple strategy for rewriting [19]. For nar-
rowing, the situation becomes much more complicated because the steps at
distinct positions may require incompatible substitutions and consequently
cannot be executed in parallel as for rewriting. A narrowing strategy that
conservatively extends [19] is presented in [6]. Both strategies have been
proved to be complete for the constructor based weakly orthogonal rewrite
systems. However, the optimality result of the former have not been entirely
proved for the latter.
These strategies are intended for weakly orthogonal rewrite systems. In

these, there exist terms without needed positions. This may occur when
some rewrite rules overlap as in the following well-known parallel-or opera-
tions:

or True - = True

or - True = True

or False False = False

(3)

48



Antoy and Lucas

For the sake of completeness, we also mention a couple of important strategies
that are not based on demandness. The parallel outermost and outermost fair
strategies [17] have been investigated for rewriting only. They radically differ
from the previous ones in that they do not look specifically at the rewrite
rules. Rather they look at the outermost redexes of term. They are complete
for the same class for which WNR is complete. It is easy to see on simple
examples that these strategies may evaluate more redexes than WNR does.

Another strategy not directly based on demandness is defined in [5]. This
strategy is important because it is the first complete narrowing strategy for
the whole class of the conditional constructor based rewrite systems. The
strategy is implicitly defined by a transformation that allows the application
of [4].

3 Conclusion

This paper recalls some fundamental rewriting and narrowing strategies. The
presentation is new and unusual in that all the presented strategies are casted
from the viewpoint of demandness. This viewpoint more easily allows to
understand the conditions in which a strategy executes steps that are not
executed by another strategy.

Our work is still in progress. Therefore this conclusion is more a prologue
of future work than an epilogue of the achieved results. We plan to precisely
formulate a notion, for defined operations, of an argument demanded by a
rewrite rule. The canonical replacement maps of context sensitive, lazy and
on-demand rewriting can all be expressed using this notion. To a large extent,
more advanced strategies, such as demand driven, needed and weakly needed
rewriting can expressed using this notion, as well.

These considerations suggest that the notion of an argument demanded by
a rewrite rule is both atomic and fundamental to the study of strategies. By
comparing how different strategies use this fundamental notion, we expect new
insights on the behavior of a strategy and on the differences and similarities
between related strategies.

References

[1] M. Alpuente, M. Falaschi, P. Julian, and G. Vidal. Specialization of lazy
functional logic programs. In Proc. of PEPM’97. ACM, 1997.

[2] S. Antoy. Non-determinism and lazy evaluation in logic programming. In
T. P. Clement and K.-K. Lau, editors, Logic Programming Synthesis and
Transformation (LOPSTR’91), pages 318–331, Manchester, UK, July 1991.
Springer-Verlag.

49



Antoy and Lucas

[3] S. Antoy. Definitional trees. In Proc. of the 4th Intl. Conf. on Algebraic and
Logic Programming, pages 143–157. Springer LNCS 632, 1992.

[4] S. Antoy. Optimal non-deterministic functional logic computations. In Proc.
of the 6th International Conference on Algebraic and Logic Programming
(ALP’97), pages 16–30. Springer LNCS 1298, 1997.

[5] S. Antoy. Constructor-based conditional narrowing. In Proc. of the
3rd International Conference on Principles and Practice of Declarative
Programming (PPDP’01), pages 199–206, Florence, Italy, Sept. 2001. ACM.

[6] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for
functional logic languages. In Proc. of the 14th International Conference on
Logic Programming (ICLP’97), pages 138–152. MIT Press, 1997.

[7] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal
of the ACM, 47(4):776–822, July 2000.

[8] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on eager
machinery. ACM Transactions on Programming Languages and Systems,
22(1):45–86, 2000.

[9] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available
at http://www.informatik.uni-kiel.de/~curry, 2000.

[10] G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems.
In J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour
of Alan Robinson, pages 395–443. MIT Press, Cambridge, MA, 1991.

[11] R. Loogen, F. López Fraguas, and M. Rodŕıguez Artalejo. A demand
driven computation strategy for lazy narrowing. In Proc. 5th International
Symposium on Programming Language Implementation and Logic Programming
(PLILP’93), pages 184–200. Springer LNCS 714, 1993.

[12] S. Lucas. Context-sensitive rewriting strategies. Information and Computation.
to appear.

[13] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998(1):1–61,
January 1998.

[14] S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Proc. of 3rd International Conference on Principles and Practice
of Declarative Programming, PPDP’01, pages 82–93. ACM Press, 2001.

[15] S. Lucas. Lazy rewriting and context-sensitive rewriting. In M. Hanus,
editor, Electronic Notes in Theoretical Computer Science, volume 64. Elsevier
Science Publishers, 2002. Available at http://www.elsevier.nl/locate/
entcs/volume64.html.

[16] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming
with functions and predicates: The language BABEL. Journal of Logic
Programming, 12:191–223, 1992.

50



Antoy and Lucas

[17] M. J. O’Donnell. Computing in Systems Described by Equations. Springer
LNCS 58, 1977.

[18] S. Peyton Jones and J. Hughes (ed.). Haskell 98: A non-strict, purely functional
language. Available at http://www.haskell.org/onlinereport/.

[19] R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond
strong sequentiality. Information and Computation, 104(1):78–109, 1993.

51


